Python 2.7 Quick Reference

Co

o o o o

*

® ¢ & & o O O o o 0o o

Front matter

ntents

Front matter

Invocation Options

Environment variables

Lexical entities : keywords, identifiers, string literals, boolean constants, numbers, sequences, dictionaries, sets,
operators

Basic types and their operations: None, bool, Numeric types, sequence types, list, dictionary, string, file, set, named
tuples, date/time

Advanced types

Statements: assignment, conditional expressions, control flow, exceptions, name space, function def, class def
Iterators; Generators; Descriptors; Decorators

Built-in Functions

Built-in Exceptions

Standard methods & operators redefinition in user-created Classes

Special inform ative state attributes for some types

Important modules : sys, os, posix, posixpath, shutil, time, string, re, math, compressions

List of modules in the base distribution

Workspace exploration and idiom hints

Python mode for Emacs

Version 2.7 (What's new?)
Check updates at http://rgruet.free.fr/#QuickRef.
Please report errors, inaccuracies and suggestions to Richard Gruet (pqr at rgruet.net).

O]

@ Creative Commons License.

SR

Last updated on April 16, 2013.

Apr 16, 2013
Some corrections, see bottom, by Stefan McKinnon Hgj-Edwards.
Oct, 2011
upgraded by Stefan McKinnon Hgj-Edwards for Py thon 2.7
Feb 10, 2009
upgraded by Richard Gruet and Josh Stone for Python 2.6
Dec 14, 2006
upgraded by Richard Gruet for Python 2.5
Feb 17, 2005,
upgraded by Richard Gruet for Python 2.4

Oct 3,

2003

upgraded by Richard Gruet for Python 2.3
May 11, 2003, rev 4

upgraded by Richard Gruet for Python 2.2 (restyled by Andrei)
Aug 7, 2001

upgraded by Simon Brunning for Python 2.1
May 16, 2001

upgraded by Richard Gruet and Simon Brunning for Python 2.0
Jun 18, 2000

upgraded by Richard Gruet for Python 1.5.2
Oct 20, 1995

created by Chris Hoffmann for Python 1.3

Color coding:
Features added in 2.7 since 2.6
Features added in 2.6 since 2.5
Features added in 2.5 since 2.4
A link

Originally based on:
L]

[
*
[]

Python Bestiary, author: Ken Manheimer

Python manuals, authors: Guido van Rossum and Fred Drake
python-mode.el, author: Tim Peters

and the readers of comp.lang.python

Useful links :

@ & &6 & & 0 o o o

Python's nest: http://www.python.org

Official documentation: http://docs.python.org/2.7/

Other doc & free books : FAQs, Dive into Python (from 2004), Python Cookbook - Popular Python recipes, Thinking in
Python (from 2001), Text processing in Python (from 2003)

Getting started: Python Tutorial, 7mn to Hello World (windows)

Topics: HOWTOs, Databases, Web programming, XML, Web Services, Parsers, NumPy & SciPy - Numeric & Scientific
Computing, GUI programming, Distributing

Where to find packages: Python Package Index (Py PI), Python Eggs, SourceForge (search "python"), Easy Install, O'Reilly
Python DevCenter

Wiki: moinmoin

Newsgroups: comp.lang.python and comp.lang.python.announce

Misc pages: Daily Python URL

Python Development: http://www.python.org/dev/

Jython -Java implementation of Python: http://www.jython.org/

IronPython - Python on .Net: http://www.codeplex.com /Wiki/View.aspx?ProjectName=1IronPython

ActivePython: http://www.ActiveState.com /ASPN/Python/

Help desk: help@python.org

2 excellent (but somehow outdated) Python reference books: Python Essential Reference (Python 2.1) by David Beazley &
Guido Van Rossum (Other New Riders) and Python in a nutshell by Alex martelli (O'Reilly).

Python 2.4 Reference Card (cheatsheet) by Laurent Pointal, designed for printing (15 pages).

Online Python 2.2 Quick Reference by the New Mexico Tech Computer Center.

Tip: From within the Python interpreter, type help, help (object) or help ("name") to get help.

Invocation Options

python[w] [-BdEhim OQsStuUvVWxX3] [-c command | scriptFile | -] [args]
(pythonw does not open a terminal/console; python does)

Invocation Options

-B Prevents module imports from creating .pyc or .pyo files (see also envt variable PYTHONDONTWRITEBYTECODE=x and
attribute sys.dont write bytecode).

-d Output parser debugging information (also PYTHONDEBUG=x)

-E Ignore environment variables (such as PYTHONPATH)

-h Print a help message and exit (formerly -?)

- Inspect interactively after running script (also PYTHONINSPECT=x) and force prompts, even if stdin appears not to be
a terminal.

-m Search for module on sys.path and runs the module as a script. (Implementation improved in 2.5: module runpy)

module

-0 Optimize generated by tecode (also PYTHONOPTIMIZE=x). Asserts are suppressed.

-00 Remov e doc-strings in addition to the -O optimizations.

-Qarg Division options: -Qold (default), -Qwarn, -Qwarnall, -Qnew

- Disables the user-specific module path (also PYTHONNOUSERSITE=x)

-S Don't perform import site on initialization.

-t Issue warnings about inconsistent tab usage (-tt: issue errors).

-u Unbuffered binary stdout and stderr (also PYTHONUNBUFFERED=x).

-U Force Python tointerpret all string literals as Unicode literals.

-v Verbose (trace import statements) (also PYTHONVERBOSE=x).

-V Print the Python version number and exit.

-W arg Warning control (arg is action:message:category :module:lineno)

-X Skip first line of source, allowing use of non-unix Forms of # ! cmd

= Pisabtechrsst it . orbarct : it : omrs)

-3 Emit a DeprecationWarning for Python 3.x incompatibilities that 2to3 cannot trivially fix

-C Specify the command to execute (see next section). This terminates the option list (following options are passed as

command argumentstothe command).
scriptFile The name of a python file (.py) to execute. Read from stdin.

args

Program read from stdin (default; interactive mode if a tty).
Passed to script or command (in sys.argv[1:])
If no scriptFile or command, Python entersinteractive mode.

® Available IDEs in std distrib: IDLE (tkinter based, portable), Pythonwin (on Windows). Other free IDEs: IPython
(enhanced interactive Python shell - 2011), Eric (2011), SPE (2010), BOA constructor (GUI Builder - 2011), PyDev
(Eclipse plugin - 2011).

¢ Typical python module header:

#!/usr/bin/env python
-*- coding: latinl -*-

Since 2.3 the encoding of a Python source file must be declared as one of the two first lines (or defaults to 7 bits Ascii)
[PEP-0263], with the format:

-*- coding: encoding -*-

Std encodings are defined here, e.g. ISO-8859-1 (aka latin1), is0o-8859-15 (lating), UTF-8... Not all encodings supported,

in particular UTF-16 is not supported.

ae. 1 L N I | . 1 .o (] 1.

® lt'snow a syntax error 1f a module contains string literals with 8-bit characters but doesn't have an encoding
declaration (was a warning before).

¢ Since 2.5, from _ future

import feature statements must be declared at beginning of source file.

¢ Site customization: File sitecustomize.py is automatically loaded by Python if it exists in the Python path (ideally
located in $ {PYTHONHOME} /1ib/site-packages/).
¢ Tip: when launching a Python script on Windows,

<pythonHome>\python myScript.py args
... if<pythonHome> isin the PATH envt variable, and further reduced to:
... provided that .py; .pyw; .pyc; .pyo isadded to the PATHEXT envt variable.

myScript.py args
myScript args

. can bereducedto:

Environment variables

Environment variables

PYTHONHOME Alternate prefix directory (or prefix:exec_prefix). The default module search path uses prefix/lib

PYTHONPATH Augments the default search path for module files. The format is the same as the shell's $pATH:
one or more directory pathnames separated by "'or ';' without spaces around (semi-) colons!
On Windows Python first searches for Registry key
HKEY LOCAL MACHINE\Software\Python\PythonCore\x.y\PythonPath (default value). You
can create a key named after your application with a default string value giving the root
directory path of your appl.
Alternatively, you can create a text file with a . pth extension, containing the path(s), one per
line, and put the file somewhere in the Python search path (ideally in the site-packages/
directory). It's better to create a .pth for each application, to make easy touninstall them.

PYTHONSTARTUP If thisis the name of a readable file, the Python commands in that file are executed before the
first prompt is displayed in interactive mode (no default).

PYTHONDEBUG If non-empty, same as -d option

PYTHONINSPECT If non-empty, same as -i option

PYTHONOPTIMIZE If non-empty, same as -O option

PYTHONUNBUFFERED If non-empty, same as -u option

PYTHONVERBOSE If non-empty, same as -v option

PYTHONCASEOK If non-empty, ignore case in file/module names (imports)

PYTHONDONTWRITEBYTECODE If non-empty, same as -B option

PYTHONIOENCODING Alternate encodingname or encodingname:errorhandler for stdin, stdout, and stderr, with
the same choices accepted by str.encode ().

PYTHONUSERBASE Provides a private site-packages directory for user-specific modules. [PEP-0370]
-On Unix and Mac OS X, defaultsto~/.local/, and modules are found in a version-specific
subdirectory like 1ib/python2.6/site-packages.
-On Windows, defaultsto *APPDATA%/Python and Python26/site-packages.

PYTHONNOUSERSITE If non-empty, same as -s option

PYTHONWARNINGS Allows controlling warnings, same as -W option

Notable lexical entities

Keywords
and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass with
def finally in print yield

[

(List of keywords available in std module: keyword)

Illegitimate Tokens (only valid in strings): s 2 (plus ¢ before 2.4)
* A statement must all be on a single line. To break a statement over multiple lines, use "\", as with the C preprocessor.

Exception: can always break when inside any (), [], or {} pair, or in triple-quoted strings.
®* More than one statement can appear on a line if they are separated with semicolons (";").
¢ Comments start with "#"and continue to end ofline.

Identifiers

(letter | "_") (letter | digit | "_")*

¢ Python identifiers keywords, attributes, etc. are case-sensitive.
® Special forms: _ident (not imported by 'from module import *");
private name mangling).

ident___ (system defined name); __ident (class-

String literals

Two flavors: str (standard 8 bits locale-dependent strings, like ascii, iso 8859-1, utf-8, ...) and unicode (16 or 32 bits/char in utf-

16 mode or 32 bits/char in utf-32 mode); one common ancestor basestring.

"a string enclosed by double quotes"

'another string delimited by single quotes and with a "inside'

"a string containing embedded newlines and quote (') marks, can be delimited with triple quotes.
""" may alsouse 3-double quotes as delimiters """

b"An 8-bit string" - A bytes instance, a forward-com patible form for an 8-bit string’
B"Another 8-bit string"

u'a unicade string'

U"Another unicade string"

r'a raw string where \ are kept (literalized): handy for regular expressions and windows paths!’
R"another raw string" --raw strings cannot end with a \

ur'a unicode raw string'

UR"another raw unicode"

"

¢ Use \ at end ofline to continue a string on next line.
® Adjacent strings are concatened, e.g. 'Monty ' 'Python' isthe same as 'Monty Python'.
® u'hello' + ' world' -->u'hello world' (coerced to unicode)

String Literal Escapes

\newline Ignored (escape newline)

\\ Backslash (\)

\e Escape (ESC)

\v Vertical Tab (VT)

\' Single quote (")

\f Formfeed (FF)

\ooo char with octal value ooo

\" Double quote (")

\n Linefeed (LF)

\a Bell (BEL)

\r Carriage Return (CR)

\xhh char with hex value hh

\b Backspace (BS)

\t Horizontal Tab (TAB)

\uwxxxx Character with 16-bit hex value xxxx (unicode only)

\ Uxooooooo Character with 32-bit hex value xoooooo (unicode only)

\N{name} Character named in the Unicode database (unicode only), e.g. u'\N{Greek Small Letter Pi}' <=>
u'\u03c0"'.
(Conversely, in module unicodedata, unicodedata.name (u'\u03c0') == 'GREEK SMALL LETTER PI')

\AnyOtherChar left as-is, including the backslash, e.g. str('\z') == "\\z'

¢ NULbyte (\000) is not an end-of-string marker; NULs may be embedded in strings.
¢ Strings (and tuples) are immutable: they cannot be modified.

Boolean constants

® True
® False

Since 2.3, they are of new type bool.

Numbers

Decimal integer: 1234, 1234567890546378940L (or 1)

Binary integer: 0b10, 0B10, 0b10101010101010101010101010101010L (beginswith a 0b or 0B)
Octal integer: 0177, 00177, 00177, 0177777777777777777L (begins with a 0, 0o, or 00)

Hex integer: 0xFF, OXFFFFffffFFFFFFFFFFL (begins with 0x or 0X)

Long integer (unlimited precision): 1234567890123456L (ends with L or 1) or long (1234)

Float (double precision): 3.14e-10, .001, 10., 1E3

Complex: 13, 2+3J, 4+5j (endswith Jor j, + separates (float) real and imaginary parts)

® & & &6 0 o o

Integers and long integers are unified starting from release 2.2 (the L suffix is nolonger required)

Sequences

Strings and tuples are immutable, lists are mutahle.
® Strings (types str and unicode) of length 0, 1, 2 (see above)
" "1, "12", 'hello\n'
® Tuples (type tuple) of length 0, 1, 2, etc:
0 (1,) (1,2) # parentheses are optional iflen > o
® Lists (type 1ist) of length o, 1, 2, etc:
[101][1,2]

¢ Indexingis 0-based. Negative indices (usually) mean count backwards from end of sequence.

® Qanmanca celicina letartina_atoindovyv « hut_loce_than_indov [+ ctonTl Qtart dafanltc tan n and tn lanflcannancra) ctan tn 1

DCTYUCLILT drivii DDLU LUILYTULTULIUECA « DULTLEDdTLILUILTLILIUEA . oL . JLal L uciaulild v U, Cliu LU 1T11\(dDCYyucluiLc DLC LU 1.
> >

a=(0,1,2,3,4,5,6,7)
a[3] == 3
al-1] == 7
af[2:4] == (2, 3)
afl:] == (1, 2, 3, 4, 5, 6, 1)
al:3] == (0, 1, 2)
al:] == (0,1,2,3,4,5,6,7) # makes a copy of the sequence.
al[::2] == (0, 2, 4, 6) # Only even numbers.
al::-1] = (7, 6, 5, 4, 3 , 2, 1, 0) # Reverse order.
. . . . S)

Dictionaries (type dict) of length o, 1, 2, etc: {key: value} {1 : 'first'} {1 : 'first', 'two" 2, key:value}

Keys must be of a hashable type; Values can be any type.

Dictionaries are unordered, ie. iterating over a dictionary provides key/value pairs in arbitrary order. orderedpict in the
collections module works as regular dictionaries but iterates over keys and values in a guaranteed order depending on when a
key was first inserted.

Sets

A set kan either be mutable or immutable. Curly brackets ({}) are used to surround the contents of the resulting mutable set; set
literals are distinguished from dictionaries by not containing colons and values. An empty {} continues to represent an empty
dictionary; use set () for an empty set.

Operators and their evaluation order

Operators and their evaluation order

L1400 Tuple, list & dict. creation; string conv.
s[il s[izj] s.attr £(...) indexing & slicing; attributes, function calls
+X, =X, ~X Unary operators

x**y Power

x*y x/y x%y mult, division, modulo

X+y X-y addition, substraction

X<<y X>>y Bit shifting

x&y Bitwise "and"; also intersection of sets
Xy Bitwise exclusive or

x|y Bitwise "or"; also union of sets

X<y Xx<=y x>y x>=y x==y x!=y x<>y Comparison,

xisy xisnoty identity,

xins xnotins membership

not x boolean negation

x andy boolean and

X ory boolean or

lambda args: expr anonymous function

¢ Alternate names are defined in module operator (e.g. add_ and add for +)
®* Most operators are overridable

Basic types and their operations

mparison fin ween an

Comparisons

< strictly lessthan (1)

<= less than or equal to

> strictly greater than

>= greater than or equal to

== equal to

!=or <> not equal to

is object identity (2)

is not negated object identity (2)
Notes:

¢ Comparison behavior can be overridden for a given class by defining special method __cmp___
® (1) X <Y <Z< Whas expected meaning, unlike C
¢ (2) Compare object identities (i.e. id(object)), not object values.

None

® None isused as default return value on functions. Built-in single object with ty pe NoneType. Might become a keyword in the
future.
® Input that evaluates toNone does not print when running Python interactively.

"

® Nhanaicnnur a nnnctant: trvinatnhind a valunatathanamaN\Tanaic naur a covntav anran

ANULIC IS LHUW d COLlLSLAILL, L1y 11g LU pllu d Vdlug LU LLC 1Hdlll€ INULIC 1D HIUW d Sy 1l1ldaXx €11UL.

Boolean operators

Boolean values and operators

built-in bool(expr) True if expris true, False otherwise. see True, False

None, numeric zeros, empty sequences and mappings considered False

all other values considered True

not x True if x is False, else False

xory if x is False then y, else x (1)

xandy if x is False then x, else y (1)
Notes:

¢ Truth testing behavior can be overridden for a given class by defining special method _ nonzero__.
® (1) Evaluate second arg only if necessary to determine outcome.

Numeric types

Floats, integers, long integers, Decimals.

Floats (ty pe float) are implemented with C doubles.

Integers (type int) are implemented with Clongs (signed 32 bits, maximum valueis sys.maxint)

Long integers (ty pe long) have unlimited size (only limit is sy stem resources).

Integers and long integers are unified starting from release 2.2 (the L suffix isnolonger required). int () returnsa long
integer instead of raising OverflowError. Overflowing operations such as 2<<32 nolonger trigger FutureWarning and
return a long integer.

® Since 2.4, new type Decimal introduced (see module: decimal) to compensate for some limitations of the floating point ty pe,
in particular with fractions. Unlike floats, decimal numbers can be represented exactly; exactness is preserved in
calculations; precision is user settable via the context type [PEP 327].

e o o o

Operators on all numeric types

Operators on all numeric types

abs(x) the absolute value of x

int(x) x converted tointeger (2)

long(x) x converted tolong integer (2)

float(x) x converted to floating point

-x xnegated

+x xunchanged

x+y the sum of xand y

x-y difference of xand y

x*y product of xand y

x/y true division of x by y:1/2 -> 0.5 (1)

x//y floor division operator:1//2 -> o (1)

x%y xmoduloy

divmod(x, y) thetuple (x//y, x%y)

x**y xtothe power y (the same as pow(x,y))
Notes:

¢ (1) /isstill afloor division (1/2 == 0) unless validated by a from __ future import division.
®* (2)intand longhasbit length() method that returns the number of bits necessary to represent its argument in binary.
¢ classes may override methods truediv__and floordiv__ to redefine these operators.

Bit operators on integers and long integers

Bit operators

~X the bitsof xinverted

x"Ny bitwise exclusive or of xand y
x&y bitwise and of xand y

x|y bitwise or of xand y

x<<n x shifted left by n bits

x>>n x shifted right by n bits

Complex Numbers

* Type complex, represented as a pair of machine-level double precision floating point numbers.
¢ The real and imaginary value of a complex number z can be retrieved through the attributes z.real and zimag.

Numeric exceptions

TypeError

raised on application of arithm etic operation to non-number
OverflowError

numeric bounds exceeded
ZeroDivisionError

raised when zerosecond argument of div or m odulo op

Operations on all sequence types (lists, tuples, strings)

Operations on all sequence types

xins True if an item of s is equal to x, else False (3)
xnot in s False if an item of s is equal to x, else True (3)
S1+s2 the concatenation of s1 and s2

s *n, n*s n copies of s concatenated

s[i] i'th item of s, origin o (1)
slizj] Slice of s from i (included) toj(excluded). Optional step value, possibly negative (default: 1). (1), (2)
sliz j:step]

s.count(x) returns number of i's for which s[i] == x

s.index(x[, start[, returns smallest i such that s[i]==x. start and stop limit search to only part of the sequence. (4)
stopl])

len(s) Length of s

min(s) Smallest item of s

max(s) Largest item of s

reversed(s) [2.4] Returns an iterator on s in reverse order. s must be a sequence, not an iterator (use

reversed (list (s)) in this case. [PEP 322]
sorted(iterable [, cmp] [2.4] works like the new in-place list.sort(), but sorts a new list created from the iterable.
[, cmp=cmpFunc]
[, key =keyGetter]
[, reverse=bool])

Notes:
® (1)ifiorjis negative, the index is relative to the end of the string, ie len(s)+i or len(s)+j is substituted. But note that -0 is
still 0.
® (2) The slice of s from ito j is defined as the sequence of items with index k such that i<=k <.
Ifiorjis greater than len(s), use len(s). Ifjis omitted, use len(s). Ifiis greater than or equal to j, the slice is empty.
® (3) Forstrings: x in sisTrue ifx is a substring of's.
®* (4)Raises a valueError exception when x is not found in s (i.e. out of range).

Operations on mutable sequences

sl =x item iof s isreplaced by x

s[ij [:step]] =t slice of s from itoj is replaced by ¢

del s[i;j[:step]] same as s[i;j] = []

s.append(x) same as s[len(s) : len(s)] = [x] (6)

s.extend(x) same as s[len(s):len(s)]= x (5) (6)

s.count(x) returns number of {'s for which s[i] == x

s.index(x[, start[, stop]]) returns smallest i such that s[i]==x. start and stop limit search to only part of (1)
the list.

s.insert(i, x) same as s[i:i] = [x] if i>= 0. i== -1 inserts before the last element.

s.remove(x) same as del s[s.index(x)] (1)

s.pop([iD) same asx = s[i]; del s[i]; return x 4)

s.reverse() reverses the items of s in place (3)

s.sort([cmp]) sorts the items of s in place (2), (3)

s.sort([cmp=cmpFunc]
[, key =keyGetter]
[, reverse=bool])

Notes:

® (1) RaisesavalueError exception when x is not found in s (i.e. out of range).

® (2) The sort() method takes an optional argument cmp specifying a comparison function taking 2 list items and returning
-1, 0, or 1 depending on whether the 1st argument is considered smaller than, equal to, or larger than the 2nd argument.
Note that this slows the sorting process down considerably. Since 2.4, 2 optional keywords args are added: key is a
function of one argument that used to extract a comparison key from each list element (faster than cmp). Also, see
attrgetter and itemgetter in the operator module. reverse: If True, reverse the sense of the comparison used.
Since Python 2.3, the sort is guaranteed "stable". This means that two entries with equal keys will be returned in the same
order as they were input. For example, you can sort a list of people by name, and then sort the list by age, resulting in a
list sorted by age where people with the same age are in name-sorted order.

®* (3) The sort () and reverse () methods modify the list in place for economy of space when sorting or reversing a large
list. They don't return the sorted or reversed list to remind you of this side effect.

® (4) The pop () method is not supported by mutable sequence types other than lists. The optional argument i defaults to -1,
so that by default the last item is removed and returned.

¢ (5) Raises a TypeError when x is not a list object.

* (6) append vs. extend: append takes any object and places as last element in list, while extend only takes a iterable object
and extends the list with each element in x.

ings / dictionaries (type dict)

Operations on mappings

len(d)

The number of itemsin d

dict() Creates an empty dictionary.

dict(**kwargs) Creates a dictionary init with the keyword args kwargs.
dict(iterable) Creates a dictionary init with (key, value) pairs provided by iterable.
dict(d) Creates a dictionary which is a copy of dictionary d.

d.fromkeys(iterable, value=None)

Class method to create a dictionary with keys provided by iterator, and
all values set to value.

provided and kis not in the map, None is returned.

dlk] The item of d with key k (1)
dlk] =x Set d[k] tox
del d[k] Removes d[k] from d (1)
d.clear() Removes all items from d
d.copy() A shallow copy of d
d.has_key(k) True if d has key k, else False
kind
d.items() A copy of d'slist of (key, item) pairs (2)
d.keys() A copy of d's list of keys (2)
di.update(d2) for k, v in d2.items(): dI[k] = v
Since 2.4, update(**kwargs) and update(iterable) may also be used.
d.values() A copy of d's list of values (2)
d.get(k [, defaultval]) The item of d with key k (3)
d.setdefault(k[,defaultval]) d[k] if k in d, else defaultval (and inserts it) (1)
d.iteritems() Returns an iterator over (key, value) pairs.
d.iterkeys() Returns an iterator over the mapping's keys.
d.itervalues() Returns an iterator over the mapping's values.
d.pop(k[, default]) Removes key k and returns the corresponding value. If key is not found,
default is returned if given, otherwise KeyError is raised.
d.popitem() Removes and returns an arbitrary (key, value) pair from d
d.viewitems() Returns a view otject of the (key, value) pairs (5)
d.viewkeys() Returns a view otject of the mappings keys (5)
d.viewvalues() Returns a view otbject of the mappings values (5)
Notes:

® TypeError is raised ifkey is not acceptable.

® (1) KeyError is raised ifkey k is not in the map.

¢ (2)Keys and values are listed in random order.

[]

(3) Never raises an exception if k is not in the map, instead it returns defaultval. defaultval is optional, when not

® (4)Never raises an exception if k is not in the map, instead returns defaultVal, and adds k to map with value defaultVal.

defaultValis optional. When not provided and k is not in the map, None is returned and added to map.
* (5) A view object provides a dynamic view on the dictionary's entries, which means that when the dictionary changes,
the view reflects these changes. A view object is also iterable.

Operations on strings (types str & unicode)

These string methods largely (but not completely) supersede the functions available in the string module.
The str and unicode types share a common base class basestring.

Operations on strings

s.capitalize()

Returnsa copy of s with its first character capitalized, and the rest of the
characterslowercased.

s.center(width[, fillChar=""]) Returns a copy of s centered in a string of length width, surrounded by the (1)
appropriate number of fillChar characters.
s.count(subl, start[, end]]) Returnsthe number of occurrences of substring sub in string s. (2)
s.decode([encodingl, errors]] Returns a unicode string representing the decoded version of str s, using the (3)
given codec (encoding). Useful when reading from a file or a I/O function that
handles only str. Inverse of encode.
s.encode([encoding[, errors]l) Returnsa str representing an encoded version of s. Mostly used to encode a (3)
unicode string toa str in order to print it or write it to a file (since these I/O
functions only accept str), e.g. u'légére'.encode ('utfs'). Alsoused toencode
astrtoastr,e.g. tozip (codec zip") or uuencode (codec 'uu') it. Inverse of
decode.
s.endswith(suffix [, start[, end]]) Returns True if s ends with the specified suffix, otherwise return false. Since 2.5 (2)
suffix can also be a tuple of stringstotry.
s.expandtabs([tabsize]) Returnsa copy of s where all tab characters are expanded using spaces. (4)
s.find(sub [,start[,end]]) Returnsthe lowest index in s where substring sub is found. Returns -1 if sub is not (2)
found.
s.format(*args, *kwargs) Returnss after replacing numeric and named formatting references found in
braces {}. (details)
s.index(subl, start[, end]]) like find(), but raises valueError when the substring is not found. (2)
s.isalnum() Returns True if all charactersin s are alphanumeric, False otherwise. (5)
s.isalpha() Returns True if all charactersin s are alphabetic, False otherwise. (5)
s.isdigit() Returns True if all charactersin s are digit characters, False otherwise. (5)
s.islower() Returns True if all charactersin s are lowercase, False otherwise. (6)
s.isspace() Returns True if all charactersin s are whitespace characters, False otherwise. (5)
s.istitle() Returns True if string s is a titlecased string, False otherwise. (7)
s.isupper() Returns True if all charactersin s are uppercase, False otherwise. (6)

separator.join(seq)

Returnsa concatenation of the strings in the sequence seq, separated by string

separator, e.g.: ", ".join(|l'A", 'B', 'C'])->"A,B,C"

s.ljust/rjust/center(width|, Returnss left/right justified/centered in a string of length width. (1), (8)
SfillChar=""7)

s.lower() Returnsa copy of s converted tolowercase.

s.Istrip([chars]) Returns a copy of s with leading chars (default: blank chars) removed.

s.partition(separ) Searches for the separator separin s, and returns a tuple (head, sep, tail)

containing the part before it, the separator itself, and the part after it. If the
separator is not found, returns (s, ",).

s.replace(old, new[, maxCount =-1]) Returns a copy of s with the first maxCount (-1: unlimited) occurrences of (9)
substring old replaced by new.

s.rfind(sub[, start[, end]]) Returnsthe highest index in s where substring sub is found. Returns -1 if sub is (2)
not found.

s.rindex(sub[, start[, end]]) like rfind(), but raises valueError when the substring is not found. (2)

s.rpartition(separ) Searches for the separator separin s, starting at the end of s, and returns a tuple

(head, sep, tail) containing the (left) part before it, the separator itself, and

non

the (right) part after it. If the separator is not found, returns (", ", s).

s.rstrip([chars]) Returnsa copy of s with trailing chars(default: blank chars) removed, e.g.
aPath.rstrip('/"') willremove the trailing '/'from aPath if it exists

s.split([separator[, maxsplit]]) Returnsa list of the words in s, using separator as the delimiter string. (10)

s.rsplit([separator[, maxsplit]]) Same as split, but splits from the end of the string. (10)

s.splitlines([keepends]) Returns a list of the linesin s, breaking at line boundaries. (11)

s.startswith(prefix [, start[, end]]) Returns True if s starts with the specified prefix, otherwise returns False. (2)

Negative numbers may be used for start and end. Since 2.5 prefix can alsobe a
tuple of strings totry.

s.strip([chars]) Returnsa copy of s with leading and trailing chars(default: blank chars)
removed.
s.swapcase() Returnsa copy of s with uppercase characters converted tolowercase and vice
versa.
s.title() Returns a titlecased copy of s, i.e. words start with uppercase characters, all
remaining cased characters are lowercase.
s.translate(table[, deletechars="]) Returnsa copy of s mapped through translation table table. Characters from (12)

deletechars are removed from the copy prior tothe mapping. Since 2.6 table may
also be None (identity transformation) - useful for using translate to delete

charsonly.
s.upper() Returnsa copy of s converted touppercase.
s.zfill (width) Returnsthe numeric string left filled with zerosin a string of length width.

Notes:
® (1) Padding is done using spaces or the given character.
® (2)Ifoptional argument start is supplied, substring s[start:] is processed. If optional arguments start and end are
supplied, substring s[start:end] is processed.
® (3) Default encodingis sys.getdefaultencoding (), can be changed via sys.setdefaultencoding (). Optional argument
errors may be given to set a different error handling scheme. The default for errors is 'strict', meaning that encoding
errors raise a ValueError. Other possible values are 'ignore'and 'replace’. See also module codecs.
(4) If optional argument tabsize is not given, a tab size of 8 characters is assumed.
(5) Returns False if string s does not contain at least one character.
(6) Returns ralse if string s does not contain at least one cased character.
(7) A titlecased string is a string in which uppercase characters may only follow uncased characters and lowercase
characters only cased ones.
(8) sis returned if width is less than len(s).
¢ (9)Ifthe optional argument maxCount is given, only the first maxCount occurrences are replaced.
* (10) Ifseparatoris not specified or None, any whitespace string is a separator. If maxsplit is given, at most maxsplit splits
are done.
® (11) Line breaks are not included in the resulting list unless keepends is given and true.
¢ (12)table must be a string oflength 256.

e o o o

[2

String formatting with the % operator
formatString % args --> evaluates to a string
* formatString mixes normal text with C printf format fields :
%[flag][width][.precision] formatCode

where formatCode is one ofc, s,1,d, u, 0,x, X, e, E, f, g, G, r, % (see table below).

* The flag characters -, +, blank, # and 0 are understood (see table below).

¢ Width and precision may be a * to specify that an integer argument gives the actual width or precision. Examples of
width and precision :

Examples

'$3d' % 2 v
rgxdr % (3, 2) v
15-3d4' & 2 2
1503d' % 2 002"
'S d' % 2 v
"s+d' % 2 42
1943d' & -2 -2

"$- 5d' % 2 2o

5.4 %5 2 'Z2.0000"
'S.FEY % (4, 2) '2.0000"
'S0*.xf' % (10, 4, 2) '00002.0000"
'$10.4f" % 2 ''2.0000"
'$010.4f" % 2 '00002.0000"

* %s will convert any type argument to string (uses str() function)
¢ args may be a single arg or a tuple of args

'$s has %03d quote types.' % ('Python', 2) == 'Python has 002 quote types.'

¢ Right-hand-side can also be a mapping:

a = '%$(lang)s has %(c)03d quote types.' % {'c':2, 'lang':'Python'}

(vars () function very handy to use on right-hand-side)

Format codes

Signed integer decimal.

Signed integer decimal.

Unsigned octal.

Unsigned decimal.

Unsigned hexadecimal (lowercase).

Unsigned hexadecimal (uppercase).

Floating point exponential format (lowercase).

Floating point exponential format (uppercase).

Floating point decimal format.

Floating point decimal format.

Same as "e"if exponent is greater than -4 or less than precision, "f" otherwise.
Same as "E"if exponent is greater than -4 or less than precision, "F" otherwise.
Single character (acceptsinteger or single character string).

String (converts any python object using repr ()).

String (converts any python object using str ()).

Noargument is converted, resultsin a "%" character in the result. (The complete specification is %%.)

X w " O QO mM—IEod MM S 0 — A

Conversion flag characters

Thevalue conversion will use the "alternate form".
0 The conversion will be zero padded.
- Theconverted value is left adjusted (overrides "-").
(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.

+ Asign character ("+"or "-") will precede the conversion (overrides a "space" flag).

String templating
Since 2.4 [PEP 292] the string module provides a new mechanism to substitute variables into template strings.

Variables to be substituted begin with a $. Actual values are provided in a dictionary via the substitute OT safe_substitute
methods (substitute throws keyError if a key is missing while safe substitute ignoresit):

t = string.Template ('Hello $name, you won $$Samount') # (note $$ to literalize $)
t.substitute({'name': 'Eric', 'amount': 100000}) # -> u'Hello Eric, you won $100000'

String formatting with format()
Since 2.6 [PEP 3101] string formatting can also be done with the format () method:

"string-to-format".format(args)
Format fields are specified in string-to-format, surrounded by (3, while actual values are args to format () :
{[field][!conversion][:format_spec]}

® Each field refers to an arg either by its position (>=0), or by its name ifit's a keyword argument. Ifleft out, automatic
numbering is used, so the first {. ..} specifier will use the first argument, the next specifier will use the next argument,
and so on. Autonumbering cannot be mixed with explicit numbering, but it can be mixed with named fields. The same arg
can be referenced more than once.

* The conversioncanbe !sor !rtocall str() or repr () on the field before formatting.

¢ The format_spec takes the following form:

[fillalign][sign][#1[o][width][,][.precision][type]

° The align flag controls the alignment when padding values (see table below), and can be preceded by a fill
character. A fill cannot be used on its own.

The sign flag controls the display of signs on numbers (see table below).

The # flag adds a leading 0b, 0o, or 0x for binary, octal, and hex conversions.

The o flag zero-pads numbers, equivalent to having a fill-align of 0=.

The width is a number giving the minimum field width. Padding will be added according to align until this width is

© © © ©

achieved.

¢ The, option indicates that commas should be included in the output as a thousands separator.
° For floating-point conversions, precision gives the number of places to display after the decimal point. For non-
numeric conversion, precision gives the maximum field width.
° The type specifies how to present numeric types (see tables below).
® Braces canbe doubled ({{ or }}) to insert a literal brace character.

Alignment flag characters

Left-aligns the field and pads to the right (default for non-numbers)
Right-aligns the field and pads to the left (default for numbers)
Inserts padding between the sign and the field (numbers only)
Aligns the field to the center and pads both sides

>V A

Sign flag characters

+ Displaysa sign for all numbers
- Displaysa sign for negative numbers only (default)
(a space) Displays a sign for negative numbers and a space for positive numbers

Integer type flags

Binary format (base 2)

Character (interpretsinteger as a Unicode code point)
Decimal format (base 10) (default)

Octal format (base 8)

Hexadecimal format (base 16) (lowercase)
Hexadecimal format (base 16) (uppercase)

H ™ oo T

Floating-point type flags

Exponential format (lowercase)

Exponential format (uppercase)

Fixed-point format

Fixed-point format (same as "f")

General format - same as "e"if exponent is greater than -4 or less than precision, "f" otherwise. (default)
General format - Same as "E"if exponent is greater than -4 or less than precision, "F" otherwise.

Number format - Same as "g", except it uses locale settings for separators.
Percentage - Multiplies by 100 and displays as "f", followed by a percent sign.

XB QW o

For examples, see Format examples in the Python documentation.

Operations on files (type fiie)

(Type file). Created with built-in functions open () [preferred] or its alias £ile (). May be created by other modules' functions as
well.

Unicode file names are now supported for all functions accepting or returning file names (open, os.listdir, etc...).
Operators on file objects

File operations

f.close() Close file f.

f.fileno() Get fileno (fd) for file f.

fAflush() Flush file f's internal buffer.

fisatty() 1 if file fis connected to a tty -like dev, else 0.

fnext() Returns the next input line of file f, or raises StopIteration when EOF is hit. Files are their own
iterators. next is implicitly called by constructslike for line in f: print line.

f.read([size]) Read at most size bytes from file fand return as a string object. If size omitted, read to EOF.

freadline() Read one entire line from file f. The returned line has a trailing \n, except possibly at EOF. Return "
on EOF.

f.readlines() Read until EOF with readline() and return a list of lines read.

f.xreadlines() Return a sequence-like object for reading a file line-by -line without reading the entire file into

for line in f: do something...

f.seek(offset[, whence=0])

memory. From 2.2, use rather: for line in f (see below).
Iterate over the lines of a file (using readline)

Set file f's position, like "stdio's fseek()".

whence == 0 then use absolute indexing.
whence == 1 then offset relative to current pos.
whence == 2 then offset relative to file end.

ftell(Return file f's current position (by te offset).

f.truncate([size]) Truncate f's size. If size is present, fis truncated to (at most) that size, otherwise fistruncated at
current position (which remains unchanged).

f.write(str) Write string to file f.

f-writelines(list) Write list of strings to file f. No EOL are added.

File Exceptions

EOFError
End-of-file hit when reading (may be raised many times, e.g. if fisa tty).
IOError

Other I/O-related I/O operation failure

set and frozenset (immutable set). Sets are unordered collections of unique (non duplicate) elements. Elements must be
hashable. frozensets are hashable (thus can be elements of other sets) while sets are not. All sets are iterable.

A set may be created with set (iterabie) or curly brackets ({}), which also allows for list comprehensions, using curly brackets
instead of square brackets.

Classes sets and Immutableset in the module sets is now deprecated.

Main Set operations
set/frozenset([iterable=None])

len(s)

eltins /notin s

for elt in s: process elt...
s1.issubset(s2)
s1.issuperset(s2)
s.add(elt)
s.remove(elt)
s.discard(elt)

s.pop()

s.clear()
si.intersection(s2[, s3...]) or s1&s2

s1.union(s2[, s3...]) or s1|s2

s1.difference(s2[, s3...]) or s1-s2

[using built-in ty pes] Builds a set or frozenset from the given iterable (default:
empty), e.g. set ([1,2,3]), set ("hello").

Cardinality of set s.

True if element elt belongs / does not belong to set s.

Iterates on elements of set s.

True if every element in sz isin iterable s2.

True if every element in s2 isin iterable s1.

Adds element elt to set s (if it doesn't already exist).

Removes element elt from set s. KeyError if element not found.

Removes element elt from set s if present.

Removes and returns an arbitrary element from set s; raises KeyError if empty.
Removes all elements from this set (not on immutable sets!).

Returns a new Set with elements common to all sets (in the method s2, s3,... can be
any iterable).

Returns a new Set with elements from either set (in the method s2, s3,... can be any
iterable).

Returns a new Set with elementsin s1 but not in any of s2, s3 ... (in the method s2,

s3,... can be any iterable)

Returns a new Set with elements in either sz or s2 but not both.
Returns a shallow copy of set s.

Adds all values from all given iterables to set s.

si.symmetric_difference(s2) or s1”s2

s.copy()
s.update(iterable1[, iterablez...])

Named Tuples

Python 2.6 module collections introduces the namedtuple datatype. The factory function namedtuple (typename, fieldnames)
creates subclasses of tup1e whose fields are accessible by nam e as well as index:

Create a named tuple class 'person':

person = collections.namedtuple('person', 'name firstName age') # field names separated by space or comma
assert issubclass (person, tuple)
assert person. fields == ('name', 'firstName',K 'age')

Create an instance of person:

jdoe = person('Doe', 'John', 30)

assert str(jdoe) == "person(name='Doe', firstName='John', age=30)"

assert jdoe[0] == jdoe.name == 'Doe' # access by index or name is equivalent
assert jdoe[2] == jdoe.age == 30

Convert instance to dict:

assert jdoe. asdict() == {'age': 30, 'name': 'Doe', 'firstName': 'John'}

Although tuples are normally immutable, one can change field values via _replace():
jdoe. replace(age=25, firstName='Jane')
assert str(jdoe) == "person(name='Doe', firstName='Jane',6 age=25)"

Date/Time

Python has no intrinsic Date and Time types, but provides 2 built-in modules:
® time:time access and conversions
® datetime: classes date, time, datetime, timedelta, tzinfo.
® calendar: with functions such as isleap (year), leapdays (y1, y2) and weekday(year, month, day).

See also the third-party module: mxDateTime.

Advanced Types

- See manuals for more details -

Module objects

Class objects

Class instance objects

Type objects (see module: ty pes)
File objects (see above)

Slice objects

e & & ¢ o o

Ellipsis object, used by extended slice notation (unique, named E11ipsis)
Null object (unique, named None)
XRange objects
Callable ty pes:
© User-defined (written in Python):
® User-defined Function objects
® User-defined Method objects
© Built-in (written in C):
® Built-in Function objects
® Built-in Method object
¢ Internal Types:
® (Code objects (by te-compile executable Py thon code: bytecode)
© Frame objects (execution frames)
© Traceback objects (stack trace of an exception)

o & o o

Statements
pass Null statement
del namel[, name]* Unbind name(s) from object. Object will be indirectly (and automatically) deleted only
if nolonger referenced.
print[>> fileobject,] [s1 [, s21* [,] Writes to sy s.stdout, or to fileobject if supplied. Puts spaces between arguments. Puts

newline at end unless statement ends with comma [if nothing is printed when using a
comma, try calling sys.stdout.flush()]. Print is not required when running
interactively, simply ty ping an expression will print its value, unless the value is None.

execx [in globals [, locals]] Executes x in namespaces provided. Defaults to current namespaces. x can be a string,
open file-like object or a function object. locals can be any mapping ty pe, not only a
regular Python dict. See also built-in function execfile.

callable(uvalue,... [id=value] , [*args], Call function callable with parameters. Parameters can be passed by name or be omitted
[**kw]) if function defines default values. E.g. if callable is defined as "def callable(pl=1,
p2-2)"

"callable()" <=> "callable(1, 2)"
"callable(10)" <=> "callable(10, 2)"
"callable(p2=99)" <=> "callable(1, 99)"

*args is a tuple of positional arguments.
**kw is a dictionary of keyword arguments.
See function definition.

Assignment operators

Assignment operators

a=b Basic assignment - assign object btolabela (1)(2)

a+=b Roughly equivalenttoa=a+ b (3)

a-= Roughly equivalenttoa=a-b (3)

a*=b Roughly equivalenttoa=a*b (3)

a/=b Roughly equivalenttoa=a/b (3)

a//=b Roughly equivalenttoa=a// b (3)

a%=>b Roughly equivalenttoa=a % b (3)

a**=p Roughly equivalenttoa=a**b (3)

a&=b Roughly equivalenttoa=a &b (3)

al=b Roughly equivalenttoa=a|b (3)

a”=b Roughly equivalenttoa=a " b (3)

a>>=b Roughly equivalenttoa=a>> b (3)

a<<=b Roughly equivalenttoa=a<<b (3)

Notes:
® (1) Can unpack tuples, lists, and strings:

first, second = 1[0:2] # equivalent to: first=1[0]; second=1[1]
[f, s] = range(2) # equivalent to: £=0; s=1
cl,c2,c3 = 'abc' # equivalent to: cl='a'; c2='b'; c3='c'
(a, b), ¢, (d, e, £f) = ['ab', 'c', 'def'] # equivalent to: a='a'; b='b'; c='c'; d='d'; e='e'; f='f"

Tip: x,y = y,xswapsxand y.
¢ (2) Multiple assignment possible:

a=b=c=0
listl = 1list2 = [1, 2, 3] # listl and 1list2 points to the same list (11 is 12)

® (3) Not exactly equivalent - a is evaluated only once. Also, where possible, operation performed in-place - a is modified
rather than replaced.

Conditional Expressions

result =

is equivalent to:

if condition:
result = whenTrue
else:

result = whenFalse

Control Flow statements

Control flow statements

if condition:
suite
[elif condition: suite]*
[else:
suite]
while condition:
suite

[else:
suite]

for element in sequence:
suite

[else:
suite]

break

continue

return [result]

yield expression

Exception statements

Exception statements

assert expr[, message]

try:

block1

[except [exception [, value]]:
handler]+

[except [exception [as value]]:
handler]+

[else:

else-block]

try:

block1

finally:

final-block

try:

block1

[except [exception [, value]]:
handler1]+

[except [exception [as value]]:
handler]+

[else:

else-block]

finally:

final-block

with allocate-expression [as variable]:

with-block

with allocate-expression as variable [,
allocate-expression2 as variable2:

with-block

Conditional Expressions (not statements) have been added since 2.5 [PEP 308]:

(whenTrue if condition else whenFalse)

() are not mandatory but recommended.

Usual if/else if/else statement. See also Conditional Expressions for one-line if-statements.

Usual while statement. The else suite is executed after loop exits, unless the loop is exited with
break.

Iterates over sequence, assigning each element to element. Use built-in range or xrange function to
iterate a number of times. The else suite is executed at end unless loop exited with break.
Also see List comprehensions.

Immediately exits for or while loop.

Immediately does next iteration of for or while loop.

Exits from function (or method) and returns result (use a tuple toreturn more than one value). If
noresult given, then returns None.

(Only used within the body of a generator function, outside a try ofa try..finally). "Returns"the
evaluated expression.

expris evaluated. if false, raises exception AssertionError with message. Before 2.3,
inhibited if debug iso.

Statements in blocki1 are executed. If an exception occurs, look in except clause(s) for
matching exception(s). If matches or bare except, execute handler of that clause. If no
exception happens, else-block in else clause is executed after blockz. If exception has a
value, it is put in variable value. exception can also be a tuple of exceptions, e.g.
except (KeyError, NameError), e: print e.

2.6 also supports the keyword as instead of a comma between the exception and the
value, which will become a mandatory change in Python 3.0 [PEP3110].

Statements in block1 are executed. If no exception, execute final-block (even if block1 is
exited with a return, break or continue statement). If exception did occur, execute
final-block and then immediately re-raise exception. Ty pically used to ensure that a
resource (file, lock...) allocated before the try isfreed (in the final-block) whatever
the outcome of blockl execution. See also the with statement below.

Unified try /except/finally. Equivalent toa try. . .except nested inside a
try..finally [PEP341]. See alsothe with statement below.

Alternativetothe try...finally structure [PEP343].

allocate-expression should evaluate to an object that supports the context management
protocol, representing a resource. This object may return a value that can optionally
be bound to variable (variable is not assigned the result of expression).

The object can then run set-up code before with-block is executed and some clean-
up code is executed after the block is done, even if the block raised an exception.
Standard Python objects such as files and locks support the context management
protocol:

with open('/etc/passwd, 't') as f: # file automatically closed on block exit
for line in f:

LIPS NN

print line

with threading.Lock(): # lock automatically released on block exit
do something...

-You can write your own context managers.

- Helper functions are available in module contextlib.

In 2.5 the statement must be enabled by: from future import

with statement. The statement is always enabled starting in Python 2.6.

raise exceptionInstance Raises an instance of a class derived from BaseException (preferred form of raise).

raise exceptionClass [, value [, Raises exception of given class exceptionClass with optional value value. Arg traceback

traceback]] specifies a traceback object touse when printing the exception's backtrace.

raise A raise statement without arguments re-raises the last exception raised in the current
function.

® Anexception is an instance of an exception class.
* Exception classes must be derived from the predefined class: Exception, e.g.:

class TextException (Exception): pass
try:
if bad:
raise TextException ()
except Exception:
print 'Oops' # This will be printed because TextException is a subclass of Exception

¢ When an error message is printed for an unhandled exception, the class name is printed, then a colon and a space, and
finally the instance converted to a string using the built-in function str ().

¢ All built-in exception classes derives from standarderror, itself derived from Exception.

¢ [PEP 352]: Exceptions can now be new-style classes, and all built-in ones are. Built-in exception hierarchy slightly
reorganized with the introduction of base class BaseException. Raising strings as exceptions is now deprecated (warning).

Name Space Statements

Imported module files must be located in a directory listed in the Python path (sys.path). Since 2.3, they may reside in a zip
file [e.g. sys.path.insert(o, "aZipFile.zip")].

Absolute/relative imports (since 2.5 [PEP328]):
¢ Feature must be enabled by: from future import absolute import:will probably be adoptedin 2.7.
* Imports are normally relative: modules are searched first in the current directory/package, and then in the builtin
modules, resulting in possible ambiguities (e.g. masking a builtin symbol).

®* When the new feature is enabled:
° import x will look up for module Xin sys.patn first (absolute import).
° import .X (with a dot) will still search for Xin the current package first, then in builtins (relative import).
° import ..x will search for Xin the package containing the current one, etc...

Packages (>1.5): a package is a name space which maps to a directory including module(s) and the special initialization
module init__ .py (possibly empty).

Packages/directories can be nested. You address a module's symbol via [package. [package...].module.symbol.

[1.51: On Mac & Windows, the case of module file names must now match the case as used in the import statement]

Name space statements

import module1 [as namei] [, Imports modules. Members of module must be referred to by qualifying with
module2]* [package.]module name, e.g.:

import sys; print sys.argv
import packagel.subpackage.module
packagel.subpackage.module. foo ()

module1 renamed as namesi, if supplied.
from module import namei1 [as Imports names from module module in current namespace.
othername1][, name2]*
from sys import argv; print argv
from packagel import module; module.foo ()
from packagel.module import foo; fool()

namei renamed as othernamel, if supplied.
[2.4] You can now put parentheses around the list of namesin a from module import
names statement (PEP 328).

from module import * Imports all names in module, except those starting with "_". Use sparsely, beware of
name clashes!

from sys import *; print argv
from package.module import *; print x

Only legal at the top level of a module.
If module definesan _all attribute, only nameslistedin all will be imported.
NB: "from package import *"only importsthe symbolsdefined in the package's

~_init .pyfile, not those in the package's modules !
global namesi [, namez2] Names are from global scope (usually meaning from module) rather than local (usually

meaning only in function).
E.g. in function without global statements, assuming "x"is name that hasn't been used in
function or module so far:

nen

-Try toread from "x"-> NameError

-Try towrite to "x"-> creates "x"local to function

If "x"not defined in function, but isin module, then: - Try toread from "x", gets value from
module

-Try towrite to "x", creates "x"local to function

But note "x[0]=3"starts with search for "x", will use to global "x"if nolocal "x".

Function Definition

def funcName ([paramList]):
suite

Creates a function object and binds it to name funcName.

paramList ::= [param [, param]*]
param ::= value | id=value | *id | **id

® Args are passed by "call-by-object-reference". This means, that mutable objects can be modified (ie. inout parameters),
while immutable are passed by value (ie. in parameters).

¢ Use return to return (None) from the function, or return valueto return value. Use a tuple to return more than one
value, e.g. return 1,2,3

* Keyword arguments arg=value specify a default value (evaluated at function def. time). They can only appear last in the
param list, e.g. foo (x, y=1, s='").

®* Pseudo-arg *args captures a tuple of all remaining non-keyword args passed to the function, e.g. ifdef foo(x, *args):
...iscalled foo(1, 2, 3),thenargswill contain (2, 3).

¢ Pseudo-arg **kwargs captures a dictionary of all extra keyword arguments, e.g. if def foo (x, **kwargs): ... iscalled
foo (1, y=2, z=3),thenkwargswill contain {'y':2, 'z':3}.ifdef foo(x, *args, **kwargs): ...iscalled foo(1, 2,
3, y=4, z=5),thenargswill contain (2, 3), and kwargs will contain {'y':4, 'z':5}

®* argsand kwargs are conventional names, but other names may be used as well.

* *args and **kwargs can be "forwarded" (individually or together) to another function, e.g.
def fl(x, *args, **kwargs):

f2 (*args, **kwargs)

Since 2.6, **kwargs can be any mapping, not only a dict.

¢ See also Anonymous functions (lambdas).

Class Definition

class className [(super classll, super class2]*)]:
suite

Creates a class object and assigns it name className.
suite may contain local "defs" of class methods and assignments to class attributes.

Examples:

class MyClass (classl, class2):
Creates a class object inheriting from both class1 and class2. Assigns new class object to name MycClass.

class MyClass:
Creates a base class object (inheriting from nothing). Assigns new class object to name Myciass. Since 2.5 the equivalent
syntax class MyClass(): ... isallowed.

class MyClass (object):
Creates a new-style class (inheriting from object makes a class a new-style class -available since Python 2.2-). Assigns new
class object to name MyC1ass.

® First arg to class instance methods (operations) is always the target instance object, called 'self by convention.

* Special static method __new__ (cls[,...]) called when instance is created. 1st arg is a class, others are args to __init__ (),
more details here

¢ Special method ___init__ () is called when instance is created.

* Special method __del__ () called when no more reference to object.

* Create instance by "calling" class object, possibly with arg (thus instance=apply(aClassObject, args...) creates an

instance!)
class ¢ (c_parent):
def init (self, name):
self.name = name

def print name (self):
print "I'm", self.name
def call parent(self):

c _parent.print name (self)

instance = c('tom"')
print instance.name
'tom'

instance.print name ()

ni

m tom"

Call parent's super class by accessing parent's method directly and passing se1f explicitly (see call _parent in example above).
Many other special methods available for implementing arithmetic operators, sequence, mapping indexing, etc...

Types / classes unification

Base types int, float, str, 1ist, tuple, dict and file now (2.2) behave like classes derived from base class object, and may
be subclassed:

X

int(2) # built-in cast function now a constructor for base type

y = 3 # <=> int(3) (litterals are instances of new base types)
print type(x), type(y) # int, int

assert isinstance (x, int) # replaces isinstance(x, types.IntType)

assert issubclass (int, object) # base types derive from base class 'object'.
s = "hello" # <=> str("hello")
assert isinstance (s, str)

f =2.3 # <=> float(2.3)
class MyInt(int): pass # may subclass base types
%X,y = MyInt(l), MyInt("2")

print x, y, x+y # =>1,2,3

class MyList(list): pass

1 = MyList ("hello")

print 1 # ['h', 'e', '1', 'l', 'o'

New-style classes extends object. Old-style classes don't.

Documentation Strings

Modules, classes and functions may be documented by placing a string literal by itself as the first statement in the suite. The
documentation can be retrieved by getting the'__doc__'attribute from the module, class or function.

Example:

class C:

C.
C.

Iterators

[]

"A description of C"
def init (self):
"A description of the constructor"

etc.
__doc_ == "A description of C".
__init_ . doc__ == "A description of the constructor"

An iterator enumerates elements of a collection. It is an object with a single method next () returning the next element or
raising stopIteration.

You get an iterator on obj via the new built-in function iter (obj), which calls obj. class . iter ().
A collection may be its own iterator by implementing both _iter () and next ().
Built-in collections (lists, tuples, strings, dict) implement iter (); dictionaries (maps) enumerate their keys; files

enumerates their lines.
Youcanbuilda 1ist ora tuple from an iterator, e.g. 1ist (anTterator)
Python implicitly uses iterators wherever it has to loop :

©® for elt in collection:

® if elt in collection:

° when assigning tuples: x, vy, z= collection

Generators

[2

[2

A generatoris a function that retains its state between 2 calls and produces a new value at each invocation. The values
are returned (one at a time) using the keyword yield, while return or raise stopIteration () are used to notify the end of
values.

A typical use is the production of IDs, names, or serial numbers. Fancier applications like nanothreads are also possible.
To use a generator: call the generator function to get a generator object, then call generator.next () to get the next
value until stopIteration is raised.

2.4 introduces generator expressions [PEP 289] similar to list comprehensions, except that they create a generator

that will return elements one by one, which is suitable for long sequences :
linkGenerator = (link for link in get all links() if not link.followed)
for link in linkGenerator:
...process link...
Generator expressions must appear between parentheses.

* [PEP342] Generators before 2.5 could only produce output. Now values can be passed to generators via their method
send (value). yield is now an expression returning a value, so val = (yield i) will yieldito the caller, and will
reciprocally evaluate to the value "sent"back by the caller, or none.

Two other new generator methods allow for additional control:
® throw(type, value=None, traceback=None) is used to raise an exception inside the generator (appears as raised
by the yield expression).
© close () raises a new GeneratorExit exception inside the generator to terminate the iteration.
® Since 2.6 Generator objects have a gi_code attribute that refers to the original code object backing the generator.

Example:

def genID (initialValue=0):
v = initialValue
while v < initialValue + 1000:

yield "ID %054d" % v

v o+=1
return # or: raise StopIteration()
generator = genID() # Create a generator
for i in range(10): # Generates 10 values

print generator.next(

Descriptors / Attribute access

® Descriptors are objects implementing at least the first of these 3 methods representing the descriptor protocol:

® get (self, obj, type=None) --> value

® set (self, obj, value)
® delete (self, obj)
Python now transparently uses descriptors to describe and access the attributes and methods of new-style classes (i.e.

derived from object).)

¢ Built-in descriptors now allow to define:

¢ Static methods: Use staticmethod (f) to make method f (x) static (unbound), or (recommended) use decorator
@staticmethod

° Class methods: like a static but takes the Class as 1st argument => Use f = classmethod (f) to make method
f(theClass, x) aclassmethod, or (recommended) use decorator @classmethod.

° Properties : A property is an instance of the new built-in type property, which implements the descriptor
protocol for attributes => Use propertyName = property (fget=None, fset=None, fdel=None, doc=None) to define
a property inside or outside a class. Then access it as propertyName OT obj.propertyName.
Since 2.6, the new decorators @prop.getter, @prop.setter, and eprop.deleter add functions to an existing

property:

class C(object):
@property # (since Python 2.4)
def x(self):
return self. x

@x.setter
def x(self, wvalue):
self. x = value

@x.deleter
def x(self):
del self. x

° Slots. New style classes can define a class attribute s1ots _ to constrain the list of assignable attribute names,
to avoid typos (which is normally not detected by Python and leads to the creation of new attributes), e.g.
_slots__ = ('x', 'y")
Note: According to recent discussions, the real purpose of slots seems still unclear (optimization?), and their use

should probably be discouraged.

Decorators for functions, methods & classes

* [PEP 318] A decorator Dis noted ep on the line preceding the function/method it decorates :
@p
def £():
and is equivalent to:
def f£():
£ = D(f)
thus, a decorator can be any function returning another function usually applied as a function transformation.
¢ Several decorators can be applied in cascade :

A
@B
ec
def £():
is equivalent to:
f = A(B(C(f)))
¢ A decorator is just a function taking the function to be decorated and returns the same function or some new callable
thing.
* Decorator functions can take arguments:
@A
@B
@C (args)
becomes :
def £():
_deco = C(args)
f = A(B(_deco(f)))
* The decorators @staticmethod and éclassmethod replace more elegantly the equivalent declarations £ =
staticmethod (f) and £ = classmethod (f).
¢ [PEP 3129] Decorators may also be applied to classes:
@p
class C():
is equivalent to:

class C{():
c = D(c)
Some selected decorators
® @staticmethod - makes a method static (unbound) from an instance.
® @classmethod - A class method receives the class as implicit first argument, just like an instance method receives the
instance.
® @prop.getter, @prop.setter and @prop.deleter - Use a function for getting, setting or deleting the property prop

Misc

lambda [param list]: returnedExpr

Creates an anonymous function.
returnedExpr must be an expression, not a statement (e.g., not "if xx:...", "print xxx", etc.) and thus can't contain newlines. Used
mostly for filter(), map(), reduce() functions, and GUI callbacks.

List comprehensions

result = lexpression for iteml in sequencel [if conditionl]
[for item2 in sequence2 ... for itemN in sequenceN]

1
isequivalent to:

result = []
for iteml in sequencel:
for item2 in sequenceZ2:

for itemN in sequenceN:
if (conditionl) and further conditions:
result.append(expression)

List comprehensions for dictionaries and sets

>>> {x: x*x for x in range(6)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25} # Dictionary

Equivalent to:

>>> dict ([(x, x*x) for x in range(6)])
Sets:
>>> {('a'*x) for x in range(6)}
set(['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa'l)

See also Generator expressions.

Built-In Functions

Built-in functions are defined in a module builtin__automatically imported.

Built-In Functions

__import__(name[,
globals[,locals[.from list]]])
abs(x)

all(iterable)

any (iterable)

applytf,argst; kegwordsty

basestring()

bin(x)
bool ([x])

buffer(otject[, cjfset[, size]])

bytearray (iterable)
bytearray (length)
bytes(otject)

callable(x)
chr(i)
classmethod(function)

cmp(x,y)
coerce(x,y)

compile(string, filename, kind/,

flags[, dont_inherit]])

complex(real[, image])

delattr(otj, name)
dict([mapping-or-sequence])

dir([otject])

divmod(a,b)

enumerate(iterable[, start=0])

eval(s[, globalsl, locals]])

execfile(file[, globals[,locals]])

file(filename[,mode[,bufsize]])
filter(function,sequence)

float(x)

format(valuel, format_spec])
frozenset([iterable])

Imports module within the given context (see library reference for more details)

Returnsthe absolute value of the number x.

Returns True if bool (x) is True for all valuesx in the iterable.

Returns True if bool (x) is True for any value x in the iterable.

Cattsfumrc/mrethrod fwithargunrentsargsandoptiomat keywords: Deprecated since 2.3,
replace apply (func, args, keywords) with func(*args, **keywords) [details]

Abstract superclass of str and unicode; can't be called or instantiated directly, but useful in:
isinstance (obj, basestring).

Converts a number to a binary string.

Converts a value toa Boolean, using the standard truth testing procedure. If x is false or omitted,
returns False; otherwise returns True. bool is also a class/ty pe, subclass of int. Class bool
cannot be subclassed further. Its only instances are False and True. See also boolean operators
Returnsa Buffer from a slice of otject, which must support the buffer call interface (string,
array, buffer). Non essential function, see [details]

Constructs a mutable sequence of bytes. This ty pe supports many of the same operations
available in strsand 1ists. The latter form sets the size and initializes to all zero by tes.
Constructs an 8-bit string representation of an object. Equivalent to str for now, but this can be
used to explicitly indicate strings which should not be unicode when converting to Python 3.0
[PEP3112]

Returns True if x callable, else False.

Returns one-character string whose ASCII code is integer i.

Returns a class method for function. A class method receives the class as implicit first argument,
just like an instance method receives the instance. To declare a class method, use thisidiom:

class C:
def f(cls, argl, arg2, ...):
f = classmethod (f)

Then call it on the classc. £ () or on an instance C () . £ (). The instance isignored except for its
class. If a class method is called for a derived class, the derived class object is passed as the implied
first argument.
Since 2.4 you can alternatively use the decorator notation:
class C:
@classmethod
def f(cls, argl, arg2, ...): ...
Returns negative, o, positive if x <, ==, > toy respectively.
Returns a tuple of the two numeric arguments converted toa common type. Non essential
Sfunction, see [details]
Compiles string into a code object. filename is used in error message, can be any string. It is
usually the file from which the code wasread, or e.g. '<string>" if not read from file. kind can
be 'eval’ if string is a single stmt, or 'single' which prints the output of expression statements
that evaluate tosomething else than None, or be 'exec'. New args flags and dont_inherit concern
future statements. Since 2.6 the function accepts keyword arguments as well as positional
parameters.
Creates a complex object (can also be done using J or j suffix, e.g. 1+3J). Since 2.6, also accepts
strings, with or without parenthesis, e.g. complex ('1+3J") or complex (' (1+3J)").
Deletes the attribute named name of object olj <=> del obj.name
Returns a new dictionary initialized from the optional argument (or an empty dictionary if no
argument). Argument may be a sequence (or anything iterable) of pairs (key,value).
Without args, returns the list of names in the current local symbol table. With a module, class or
class instance object as arg, returns the list of names in its attr. dictionary. Since 2.6 otject can
override the std implementation via special method dir ().
Returns tuple (a//b, a%b)
Iterator returning pairs (index, item) from iterable, e.g. List (enumerate ('Py')) -> [(O,
"P'), (1, 'y')l.2.6:Arg start specifies initial index value (default: o).
Evaluates string s, representing a single python expression, in (optional) globals, locals contexts.
s must have no NUL's or newlines. s can also be a code object. locals can be any mapping ty pe,
not only a regular Python dict.

Example:

x = 1; assert eval('x + 1') == 2

(To execute statements rather than a single expression, use Python statement exec or built-in
function execfile)

Executes a file without creating a new module, unlike import. locals can be any mapping ty pe,
not only a regular Python dict.

Opens a file and returns a new f£ile object. Alias for open.

Constructs a list from those elements of sequence for which function returns true. function takes
one parameter.

Converts a number or a string to floating point. Since 2.6, x can be one of the strings 'nan’,
"+inf', or '-inf' torepresent respectively IEEE 754 Not A Number, positive and negative
infinity. Use module math functions isnan () and isinf () tocheck for NAN or infinity.

Formats an object with the given specification (default ") by calling its format method.
Returnsa frozenset (immutable set) object whose (immutable) elements are taken from

torahla Ar amntr hyr Aafanld Qan alen Qata

getattr(otject,namel,default]))

globals()
hasattr(otject, name)
hash(otject)
help([otject])

hex(x)

id(otject)
input([prompt])

int(x[, base])
intern(aString)
isinstance(olj, classIr fo)

issubclass(classi, class2)
iter(olj[,sentinel])

len(otj)
list([seq])

locals()
long(x[, base])

map(function, sequencel,
sequence, ...])

max (iterable[, key=func])
max(vi1, v2, ...[, key=func])

min(iterable[, key=func])
min(vi, vz, ...[, key=func])

next(iterator[, default])
object()

oct(x)
open(filename [, mode="r',

[bufsize]])

ord(c)

pow(x, y [, z])
property([fget[, fset], fdell,
doc]11D

print(*args [, sep=""]
[, end="\n"] [, file=sys.stdout])

ueruvie, UL Cl1IpPLY DYy Ugldaull. OEC aldU OLLd.
Gets attribute called name from otject, e.g. getattr(x, 'f) <=> x.f). If not found, raises
AttributeError or returns default if specified.
Returns a dictionary containing the current global variables.
Returnstrue if otject has an attribute called name.
Returnsthe hash value of the object (if it has one).
Invokes the built-in help system. Noargument -> interactive help; if otject is a string (name of
a module, function, class, method, keyword, or documentation topic), a help page is printed on
the console; otherwise a help page on otject is generated.
Converts a number x toa hexadecimal string.
Returnsa unique integer identifier for object. Since 2.5 always returns non-negative numbers.
Prints prompt if given. Reads input and evaluates it. Uses line editing / history if module
readline available.
For un-evaluated input, see raw_input.
Converts a number or a string to a plain integer. Optional base parameter specifies base from
which toconvert string values.
Enters aString in the table of interned strings and returns the string. Since 2.3, interned
strings are nolonger 'immortal' (never garbage collected), see [details]
Returnstrueif otj is an instance of class classIt.fo or an object of type classIr fo (classItfo may
alsobe a tuple of classes or types). If issubclass (a,B) then isinstance (x,2) =>
isinstance (x, B)
Returns true if classi is derived from class2 (or if class1 is class2).
Returns an iterator on otj. If sentinel is absent, obj must be a collection implementing either
__iter () or __getitem__ (). Ifsentinelis given, otj will be called with no arg; if the value
returned is equal to sentinel, StopIteration will be raised, otherwise the value will be returned.
See Iterators.
Returnsthe length (the number of items) of an object (sequence, dictionary, or instance of class
implementing __len_).
Creates an empty list or a list with same elements as seq. seq may be a sequence, a container
that supportsiteration, or an iterator object. If seq is already a list, returns a shallow copy of it.
Returns a dictionary containing current local variables.
Converts a number or a string to a long integer. Optional base parameter specifies the base from
which toconvert string values.
Returns a list of the results of applying function to each item from sequence(s). If more than one
sequence is given, the function is called with an argument list consisting of the corresponding
item of each sequence, substituting None for missing values when not all sequences have the
same length. If function is None, returns a list of the items of the sequence (or a list of tuples if
more than one sequence). => You might also consider using list comprehensions instead of
map().
With a single argument iterable, returns the largest item of a non-empty iterable (such asa
string, tuple or list). With more than one argument, returns the largest of the arguments. The
optional key arg is a function that takes a single argument and is called for every value in the
list.
With a single argument iterable, returns the smallest item of a non-empty iterable (such asa
string, tuple or list). With more than one argument, returns the smallest of the arguments. The
optional key arg is a function that takes a single argument and is called for every value in the
list.
Returnsthe next item from iterator. If iterator exhausted, returns default if specified, or raises
StopIteration otherwise.
Returns a new featureless object. object is the base class for all new style classes, its methods are
common toall instances of new style classes.
Converts a number to an octal string.
Returns a new file object. See also alias file(). Use codecs.open () instead to open an encoded file
and provide transparent encoding / decoding.
¢ filename is the file name to be opened
® mode indicates how the file is to be opened:

¢ 'r'for reading

¢ ‘'w'for writing (truncating an existing file)

® ‘'a'opensit for appending

® '+'(appended toany of the previous modes) open the file for updating (note that
'w+'truncates the file)
'b' (appended to any of the previous modes) open the file in binary mode
'U" (or 'rU") open the file for reading in Universal Newline mode: all variants of EOL

(CR, LF, CR+LF) will be translated to a single LF ("\n").
® bufsize is o for unbuffered, 1 for line buffered, negative or omitted for system default, >1
for a buffer of (about) the given size.

o ©

Returnsinteger ASCIIvalue of ¢ (a string of len 1). Works with Unicode char.
Returns x to power y [modulo z]. See also ** operator.
Returns a property attribute for new-style classes (classes deriving from object). fget, fset, and
fdel are functions to get the property value, set the property value, and delete the property,
respectively. Typical use:
class C(object):
def init (self):
def getx(self): return self.

self. x = None

X
def setx(self, value): self. x = value
def delx(self): del self. x
x = property(getx, setx, delx, "I'm the 'x' property.")
When future .print functionisactive, the print statement is replaced by this function

[PEP3105]. Each item in args is printed to file with sep as the delimiter, and finally followed by

range([start,] end [, step])

raw_input([prompt])
reduce(f, list [, init])

reload(module)

repr(otject)

round(x, n=0)
set([iterable])
setattr(otject, name, value)
slice([start,] stop[, step])
sorted(iterable[, cmpl, keyl,

reverse]]])

staticmethod(function)

str(otject)
sum (iterable[, start=0])

super(type[, object-or-typel)

tuple([seq])
type(ot))
unichr(code)
unicode(string[,

encodingl,error]]])

vars([otject])

xrange(start [, end [, step]])

zip(seqil, seqz2,...])

end.

Each of these statements:

print 'foo', 42

print 'foo', 42,

print >> sys.stderr 'warning'
can now be written in this functional form:

print ('foo', 42)

print ('foo', 42, end='")

print ('warning', file=sys.stderr)
Returnslist of ints from >= start and < end.
With 1 arg, list from o..arg-1
With 2 args, list from start..end-1
With 3 args, list from start up to end by step
Prints prompt if given, then reads string from std input (notrailing \n). See also input().
Applies the binary function f to the items of list so as toreduce the list to a single value. If init is
given, it is "prepended" to list.
Re-parses and re-initializes an already imported module. Useful in interactive mode, if you want
toreload a module after fixing it. If module was syntactically correct but had an error in
initialization, must import it one more time before calling reload().
Returnsa string containing a printable and if possible evaluable representation of an object.
<=> ‘object" (using backquotes). Class redefinable (_repr). See alsostr()
Returnsthe floating point value x rounded to n digits after the decimal point.
Returnsa set object whose elements are taken from iterable, or empty by default. See also Sets.
This is the counterpart of getattr().setattr(o, 'foobar', 3) <=> o.foobar = 3. Creates attribute if it
doesn't exist!
Returns a slice object representing a range, with R/O attributes: start, stop, step.
Returns a new sorted list from the items in iterable. This contrasts with 1ist.sort () that sorts
lists in place and doesn't apply toimmutable sequences like strings or tuples. See sequences.sort
method.
Returns a static method for function. A static method does not receive an implicit first argument.
Todeclare a static method, use this idiom:

class C:
def f (argl, arg2, ...):
f = staticmethod (f)

Then call it on the classc. £ () or on an instance C () . £ (). The instance isignored except for its
class.
Since 2.4 you can alternatively use the decorator notation:
class C:

@staticmethod

def f (argl, arg2, ...): ...
Returnsa string containing a nicely printable representation of an object. Class overridable
(__str__). Seealsorepr().
Returnsthe sum of a sequence of numbers (not strings), plus the value of parameter. Returns
start when the sequence is empty.
Returns the superclass of type. If the second argument is omitted the super object returned is
unbound. If the second argument is an object, isinstance (obj, type) must be true. If the

second argument isa type, issubclass (type2, type) mustbetrue. Typical use:
class C(B):

def meth(self, arg):

super (C, self) .meth(arg)

Creates an empty tuple or a tuple with same elements as seq. seq may be a sequence, a container
that supportsiteration, or an iterator object. If seq is already a tuple, returns itself (not a copy).
Returns a type otject [see module types] representing the ty pe of otj. Example: import ty pes if
type(x) == types.StringType: print Tt is a string'. NRB: it is better to use instead: if isinstance(x,
ty pes.StringTy pe)...
Returnsa unicode string 1 char long with given code.
Creates a Unicode string from a 8-bit string, using the given encoding name and error treatment
(‘strict’, 'ignore',or replace'}. For objects which providea unicode () method, it will call this
method without arguments to create a Unicode string.
Without arguments, returns a dictionary corresponding tothe current local symbol table. With
a module, class or class instance object as argument, returns a dictionary corresponding tothe
object's symbol table. Useful with the "%" string formatting operator.
Like range(), but doesn't actually store entire list all at once. Good to use in "“for"loops when there
isa big range and little memory.
[No, that's not a compression tool! For that, see module zipfile] Returns a list of tuples where each
tuple contains the nth element of each of the argument sequences. Since 2.4 returns an empty
list if called with no arguments (wasraising TypeError before).

Built-In Exception classes

BaseException
Mother of all exceptions (was Exception before 2.5). New-style class. exception.args is a tuple of the arguments passed to the
constructor.Since 2.6 the exception.message attribute is deprecated.

KovhaardTntarvriint & QuetamFvi+ WATA mnvpﬂ nnt (\f Fvrantinn]’\PF?]]QP f]’lP‘7 Hnn'f T‘Pﬂ]]‘Y renrecent arrnre en nnw a

NS YIUUGLULIILELLUPL W OYSLEHLALL WULL LIV YV UU UUL UL LACSPLLULL UULAUOL LIILY UULL L 1UAILY LUPLIUOLLIL LI ULD, OU LU W A
try:...except Exception: will only catch errors, while a try:...except BaseException: (OI‘ simply try:.. except:)will still
catch everything.

¢ GeneratorExit
Raised by the close () method of generators to terminate the iteration. Before 2.6 was derived from Exception.
* KeyboardInterrupt
On user entry ofthe interrupt key (often *CTRL-C"). Before 2.5 was derived from Exception.
¢ System Exit
On sys.exit (). Before 2.5 was derived from Exception.
* Exception
Base of all errors. Before 2.5 was the base of all exceptions.
° GemeratorExit
Moved under BaseException.
° StandardError
Base class for all built-in exceptions; derived from Exception root class.
* ArithmeticError
Base class for arithmetic errors.
* FloatingPointError
When a floating point operation fails.
* OverflowError
On excessively large arithmetic operation.
= ZeroDivisionError
On division or modulo operation with o as 2nd argument.
= AssertionError
When an assert statement fails.
* AttributeError
On attribute reference or assignment failure
* EnvironmentError
On error outside Python; error arg. tuple is (errno, errMsg...)
" IOError
1/0O-related operation failure.
®" OSError
Used by the os module's os.error exception.

®* WindowsError
When a Windows-specific error occurs or when the error number does not correspond to an
errno value.
" EOFError
Immediate end-of-file hit by input() or raw_input()
* ImportError
On failure of import to find module or name.
n
Keyboardinterrupt
Moved under BaseException.
* LookupError
base class for IndexError, KeyError
* IndexError
On out-of-range sequence subscript
* KeyError
On reference to a non-existent mapping (dict) key
" MemoryError
On recoverable memory exhaustion
" NameError
On failure to find alocal or global (unqualified) name.
* UnboundLocalError
On reference to an unassigned local variable.
* ReferenceError
On attempt to access to a garbage-collected object via a weak reference proxy.
* RuntimeError
Obsolete catch-all; define a suitable error instead.
* NotImplementedError
On method not implemented.
" SyntaxError
On parser encountering a syntax error
* IndentationError
On parser encountering an indentation syntax error
= TabError
On improper mixture of spaces and tabs
® SystemError
On non-fatal interpreter error - bug - report it !
" TypeError
On passing inappropriate type to built-in operator or function.
* ValueError
On argument error not covered by TypeError or more precise.

B TTminadaLD s

- vnioucnorror
On Unicode-related encoding or decoding error.

®* UnicodeDecodeError
On Unicode decoding error.

® UnicodeEncodeError
On Unicode encoding error.

® UnicodeTranslateError
On Unicode translation error.

° Stoplteration

Raised by an iterator's next () method to signal that there are no further values.

¢ SystemrExit

Moved under BaseException.

° Warning

Base class for warnings (see module warning)
* DeprecationWarning
Warning about deprecated code.
* FutureWarning
Warning about a construct that will change semantically in the future.
* ImportWarning
Warning about probable mistake in module import (e.g. missing __init__.py).
" OverflowWarning
Warning about numeric overflow. Won't exist in Python 2.5.

" PendingDeprecationWarning
Warning about future deprecated code.
* RuntimeWarning
Warning about dubious runtime behavior.
* SyntaxWarning
Warning about dubious syntax.
* UnicodeWarning
When attempting to compare a Unicode string and an 8-bit string that can't be converted to Unicode using
default ASCII encoding (raised a unicodeDecodeError before 2.5).

* UserWarning

Warning generated by user code.

Standard methods & operators redefinition in classes

Standard methods & operators map to special methods' method__'and thus can be redefined (mostly in user-defined

classes), e.g.:

class C:

def init (self, v): self.value = v

def __add__ (self, r): return self.value + r
a = C(3) # sort of like calling C.__init__(a, 3)
a + 4 # is equivalent to a.__add__ (4)

Special methods for any class

__new__(cis[,...])

__init__ (sef, args)

__del__(se))
__repr__(sef)
__str__(sef)

__sizeof__ (sef)

__format__ (sef, formai_spec)
__cmp__(sef,other)
__index__(sef)

__It_ (sef, other)
__le__(sef, other)
_ gt (sef, other)
__ge__(sef, other)
__eq__(sef, other)
__ne__(sef, other)

__hash__(sef)

__nonzero__(sef)

__getattr__ (sef,name)
__getattribute__(sef, name)
__dir__(se))

Instance creation (on construction). If __new__ returnsan instance of ¢is then __init__ is
called with the rest of the arguments (...), otherwise __init__ isnot invoked. More details
here.

Instance initialization (on construction)

Called on object demise (refcount becomes 0)

repr () and " ... conversions

str() and print statement

Returns amount of memory used by object, in bytes (called by sys.getsizeof ()).

format () and str.format () conversions

Compares se f to other and returns <0, 0, or >0. Implements >, <, == etc...

[PEP357] Allows using any object asinteger indice (e.g. for slicing). Must return a single
integer or long integer value.

Called for sef < other comparisons. Can return anything, or can raise an exception.

Called for sef <= other comparisons. Can return anything, or can raise an exception.
Called for sef > other comparisons. Can return anything, or can raise an exception.

Called for sef >= other comparisons. Can return anything, or can raise an exception.
Called for sef == other comparisons. Can return anything, or can raise an exception.
Called for sef != other (and sef <> other) comparisons. Can return anything, or can raise an
exception.

Compute a 32 bit hash code; hash () and dictionary ops. Since 2.5 can alsoreturn a long

integer, in which case the hash of that value will be taken.Since 2.6 can set hash = None
tovoid class inherited hashability.
Returns o or 1 for truth value testing. when this method is not defined, len () iscalledif

defined; otherwise all class instances are considered "true".

Called when attribute lookup doesn't find name. See also ___getattribute__.

Same as__getattr___ but always called whenever the attribute name is accessed.

Returns the list of names of valid attributes for the object. Called by builtin function dir (),

but ignored unless getattr or getattribute isdefined.

__setattr___(sef, name, value) Called when setting an attribute (inside, don't use "se f.name = value", use instead
"sef.__dict__[name] = value")

__delattr__ (sef, name) Called to delete attribute <name>.

__call__(sef, *args, **kwargs) Called when an instance is called as function: obj (argl, arg2, ...) isashorthand for
obj. call (argl, arg2, ...).

__enter__(sef) For use with context managers, i.e. when entering the block in a with-statement. The with
statement binds this method's return value tothe as object.

__exit__(sef, type, value, When exiting the block of a with-statement. If no errors occured, type, value, traceback are

traceback) None. If an error occured, they will contain information about the class of the exception, the

exception object and a traceback object, respectively. If the exception is handled properly,
return True. If it returns ralse, the with-block re-raises the exception.

Operators

See list in the operator module. Operator function names are provided with 2 variants, with or without leading & trailing'__'
(e.g. _add__ or add).

Numeric operations special methods

sef + other __add__(sef, other)

se f - other __sub__(sef, other)

sef * other _ _mul__ (sef, other)

sef / other __div__(sef, other) or __truediv__(sef,other)if future .divisionisactive.

sef// other __ floordiv__ (sef, other)

sef % other __mod__(sef, other)

divmod(se f,other) __divmod__(sef, other)

se f ** other __pow__(sef, other)

sef & other __and__(sef, other)

sef ”~ other __xor__(sef, other)

sef | other __or__(sef, other)

sef << other __lshift__ (sef, other)

sef >> other __rshift__ (sef, other)

bool(sef) __nonzero__(sef) (used in boolean testing)

-sef __neg_ (sef)

+se f __pos__(sef)

abs(se f) __abs__(sef)

~se f __invert__ (sef) (bitwise)

sef +=other __iadd__(sef, other)

sef-=other __isub__(sef, other)

se f *= other __imul__ (sef, other)

sef /= other __idiv___(sef, other) or __itruediv__(sef,other)if future .divisionisin effect.

sef //=other __ifloordiv__ (sef, other)

se f %= other __imod__(sef, other)

sef**=other __ipow__(sef, other)

se f &= other __iand__ (sef, other)

sef ~=other __ixor__(sef, other)

sef |= other __ior__(sef, other)

se f <<= other __ilshift__ (sef, other)

sef >>=other __irshift__(sef, other)

Conversions

int(sef) __int__(sef)

long(se.f) __long__ (sef)

float(sef) _ float__(sef)

complex(se f) __complex__(sef)

oct(sef) __oct__(sef)

hex(sef) __hex__(sef)

coerce(se f, other) __coerce___(sef, other)
Right-hand-side equivalents for all binary operatorsexist (__radd__, __rsub__,__rmul__,__ rdiv__,...).

They are called when class instance is on r-h-s of operator:
® a+3calls add (a, 3)

® 3 +a calls ”radaﬁ<a, 3)

Special operations for containers

len(self) __len__(self) length of object, >= 0. Length o == false
selflk] getitem__ (self, k) Get element at indice /key k (indice starts at 0). Or, if k is a slice object, return
a slice.
__missing__(self, key) Hook called when key is not found in the dictionary, returns the default value.

selfl[k] = value __setitem__ (self, k, value) Set element at indice/key /slice k.

del se fl k| __delitem__ (sef, k) Delete element at indice/key /slice k.

eltin sef __contains__(sef, elt) More efficient than std iteration thru sequence.

eltnot in se f not __contains__(sef, elt)

iter(sef) __iter__ (sef) Returns an iterator on elements (key s for mappings <=> se.f.iterkeys()). See
iterators.

se flij] __getslice__(sef, 1,j) Deprecated since 2.0, replaced by getitem with a slice object as
parameter.

se f[ij] = seq __setslice__(sef, i,j,seq) Deprecated since 2.0, replaced by setitem with a slice object as
parameter.

del se f[i:j] __delslice__(sef, 1,j) Same as self[i:j] = [] - Deprecated since 2.0, replaced by delitem witha
slice object as parameter.

sef*n __mul__(sef,n) (__repeat___in the official doc but doesn't work!)

sef + other __add__(sef, other) (__concat___in the official doc but doesn't work!)

hash(sef) __hash__(sef) hashed value of object se f is used for dictionary keys

Special informative state attributes for some types:

Tip: use module inspect to inspect live objects.

Lists & Dictionaries

—mretlrods— (list; RfO)tist of mrethod manres of theobject Deprecated, use dir () instead

Modules
__doc___ (string/None, R/0): doc string (<=> __dict__[' doc__'T)
__name___ (string, R/0): module name (alsoin __dict__["__name__"])
_ package___ (string/None, R/W): If defined, package name used for relative imports (alsoin __dict_ [' _package__).
[PEP366].
_dict__ (dict, R/0O): module's name space
__ file_ (string/undefined, R/0): pathname of .pyc, .pyo or .pyd (undef for modules statically linked to the interpreter).
__path___ (list/undefined, R/W): List of directory paths where to find the package (for packages only).
Classes
__doc__ (string/None, R/W): doc string (<=> __dict__[' _doc__'])
__name___ (string, R/W): classname (alsoin __dict_ [' name__")
__module___ (string, R/W): module name in which the class was defined
__bases___ (tuple, R/W): parent classes
_ dict___ (dict, R/W): attributes (class name space)
Instances
_ class___ (class, R/W): instance's class
_ dict___ (dict, R/W): attributes
User defined functions
__doc__ (string/None, R/W): doc string
__name___ (string, R/0): function name
func_doc (R/W):sameas__doc__
func_name (R/O, R/W from 2.4): same as__name___
func_defaults (tuple/None, R/W): default args values if any
func_code (code, R/W): code object representing the compiled function body

func_globals (dict, R/O): ref to dictionary of func global variables

User-d¢fined Methods

__doc__ (string/None, R/0): Doc string

_ _name___ (string, R/O): Method name (same asim_func.__name__)

im_class (class, R/0): Class defining the method (may be a base class)

im_self (instance/None, R/0O): Target instance object (None if unbound). Since 2.6 use _self instead, will be deprecated
in 3.0.

__self (instance/None, R/0O): Target instance object (None if unbound).

im_func (function, R/0): Function object. Since 2.6 use _ func__ instead, will be deprecated in 3.0.

_ func___ (function, R/0): Function object.

Built-in Functions & methods

__doc__ (string/None, R/0): doc string
__name___ (string, R/0): function name
__self [methods only] target object

—mrembers— histof attr mamrest—doc—5—mame—,—self—1) Deprecated, use dir () instead.

Codes

co_name
co_argcount
co_nlocals
co_varnames

(string, R/0): function name

(int, R/0): number of positional args

(int, R/0): number of local vars (including args)
(tuple, R/O): names of local vars (starting with args)

co_code (string, R/0): sequence of by tecode instructions
co_consts (tuple, R/0): literals used by the bytecode, 1st one is function doc (or None)
co_names (tuple, R/O): names used by the bytecode

co_filename
co_firstlineno

(string, R/0): filename from which the code was compiled
(int, R/0): first line number of the function

co_Inotab (string, R/0): string encoding by tecode offsets toline numbers.

co_stacksize (int, R/0): required stack size (including local vars)

co_flags (int, R/0): flags for the interpreter bit 2 set if function uses "*arg" sy ntax, bit 3 set if function uses
"**keywords' syntax

Frames

f_back (frame/None, R/0): previous stack frame (toward the caller)

f_code (code, R/0O): code object being executed in this frame

f locals (dict, R/O): local vars

f_globals (dict, R/0O): global vars

f_builtins
f restricted

(dict, R/O): built-in (intrinsic) names
(int, R/0): flag indicating whether function is executed in restricted mode

f _lineno (int, R/0O): current line number

f lasti (int, R/0O): precise instruction (index into by tecode)

f_trace (function/None, R/W): debug hook called at start of each source line
f_exc_type (Type/None, R/W): Most recent exception ty pe

f _exc_value

f_exc_traceback

Tracebacks

(any, R/W): Most recent exception value
(traceback/None, R/W): Most recent exception traceback

tb_next (frame/None, R/0): next level in stack trace (toward the frame where the exception occurred)
tb_frame (frame, R/O): execution frame of the current level

tb_lineno (int, R/O): line number where the exception occured

tb_lasti (int, R/0): precise instruction (index into by tecode)

Slices

start (any /None, R/0): lowerbound, included
stop (any /None, R/O): upperbound, excluded
step (any /None, R/O): step value

Complex numbers

real (float, R/O): real part

imag (float, R/O): imaginary part
xranges

tolist (Built-in method, R/0): ?

Important Modules

Sys

System-specific parameters and functions.

Some sys variables

argv The list of command line arguments passed to a Python script. sys.argv[0] isthe script name.

builtin_module_names A list of strings giving the names of all modules written in C that are linked into this interpreter.

byteorder Native byte order, either big'(-endian) or little'(-endian).

copyright A string containing the copyright pertaining to the Python interpreter.

dont_write_bytecode If True, prevents Python from from writing .pyc or .pyofiles (same as invocation option -B).

exec_prefix Root directory where platform-dependent Python files are installed, e.g. 'C:\\Python23', '/usr".

prefix

executable Name of executable binary of the Python interpreter (e.g. 'C:\\Python23\\python.exe/,
'/usr/bin/python’)

exitfumc Usercamset toa parametertess function it witt getcatted before imterpreterexits—Deprecated since 2.4.
Code should be using the existing atexit module

flags Status of command line flags, asa R/O struct. [details]

float info A structseqholding information about the float tvpe (precision, internal representation, etc...).

last_type, last_value,
last_traceback

e e e e e e — e

t;letails]
Set only when an exception not handled and interpreter prints an error. Used by debuggers.

maxint Maximum positive value for integers. Since 2.2 integers and long integers are unified, thus integers
havenolimit.

maxunicode Largest supported code point for a Unicode character.

modules Dictionary of modules that have already been loaded.

path Search path for external modules. Can be modified by program. sys.path[0] == directory of script
currently executed.

platform The current platform, e.g. "sunoss", "wing2"

ps1, ps2 Promptstousein interactive mode, normally ">>>"and"..."

stdin, stdout, stderr

File objects used for I/0. One can redirect by assigning a new file object tothem (or any object: with a
method write (string) for stdout/stderr, or with a method readline () for stdin).
__stdin__, stdout__and__stderr_ _ arethedefault values.

subversion Info about Python build version in the Subversion repository: tuple (interpreter-name, branch-name,
revision-range), e.g. ('CPython', 'tags/r25', '51908').

version String containing version info about Python interpreter.

version_info Tuple containing Python version info - (major, minor, micro, level, serial).

winver Version number used to form registry keys on Windows platforms (e.g. '2.2").

Some sys functions

_current_frames()

Returnsthe current stack frames for all running threads, as a dictionary mapping thread
identifiers to the topmost stack frame currently active in that thread at the time the function

is called.

display hook The function used to display the output of commandsissued in interactive mode - defaults to
the builtin repr (). _displayhook _istheoriginal value.

excepthook Can be set to a user defined function, towhich any uncaught exceptions are passed.
__excepthook__ isthe original value.

exit(n) Exits with status n (usually o means OK). Raises systemExit exception (hence can be caught

getcheckinterval() /

setcheckinterval(interval)

getrefcount(otject)

getsizeof(otject[, default])

and ignored by program)

Gets / Setsthe interpreter's thread switching interval (in number of by tecode instructions,
default: 10 until 2.2, 100 from 2.3).

Returnsthe reference count of the object. Generally 1 higher than you might expect, because
of otject arg temp reference.

Returns the amount of memory used by otject, in bytes. Callso. sizeof () ifavailable.
default returned if size can't be determined. [details]

settrace(func) Sets a trace function: called before each line of code is exited.
setprofile(func) Sets a profile function for performance profiling.
exc_info() Info on exception currently being handled; thisis a tuple (exc_type, exc_value,

setdefaultencoding(encoding)

exc_traceback). Warning: assigning the traceback return value toa local variablein a
function handling an exception will cause a circular reference.
Change default Unicode encoding - defaults to 7-bit ASCIIL.

getrecursionlimit() Retrieve maximum recursion depth.
setrecursionlimit() Set maximum recursion depth (default 1000).
oS

Miscellaneous operating system interfaces. Many functions, see the for a comprehensive list!
"synonym" for whatever OS-specific module (nt, mac, posix...) is proper for current environment. This module uses posix

whenever possible.
See also M.A. Lemburg's utility platform.py (now included in 2.3+).

Some os variables

name name of O/S-specific module (e.g. "posix", "mac", "nt")
path O/S-specific module for path manipulations.

On Unix, os.path.split () <=> posixpath.split()
curdir string used torepresent current directory (eg "
pardir string used to represent parent directory (eg '..")

sep string used to separate directories ('/'or '\"). Tip: Use os.path.join () tobuild portable paths.

altsep Alternate separator if applicable (None otherwise)
pathsep character used to separate search path components (asin $PATH), eg. ;' for windows.
linesep line separator as used in text files, ie "\n' on Unix, "\r\n'on Dos/Win, '\r'on Mac.

Some os functions

makedirs(path[, mode=0777])
remov edirs(path)

Recursive directory creation (create required intermediary dirs); os.error if fails.
Recursive directory delete (delete intermediary empty dirs); fails (os.error) if the
directories are not empty.

Recursive directory or file renaming; os.error if fails.

Returns a string containing n by tes of random data.

renames(old, new)
urandom (n)

posix

Posix OSinterfaces.
Do not import this module directly, import os instead ! (see also module: shutil for file copy & remove functions)

posix Variables

environ dictionary of environment variables, e.g. posix.environ["HOME'].
error exception raised on POSIX-related error.
Corresponding value is tuple of errno code and perror() string.

Some posix functions

access(path, mode) Returns True if the requested access to path is granted. Use mode=F_ OX to check for existence, or an
OR-ed combination of R_0X, W OK, and X_OK to check for r, w, x permissions.

chdir(path) Changes current directory to path.

chmod(path, mode) Changes the mode of path tothe numeric mode

close(fd) Closes file descriptor fd opened with posix.open.

_exit(n) Immediate exit, with no cleanups, no Sy stem Exit, etc... Should use this to exit a child process.

execv (p, args) "Become" executable p with args args

getewd() Returnsa string representing the current working directory.

getcwdu() Returns a Unicode string representing the current working directory.

getpid() Returnsthe current process id.

getsid() Calls the system call getsid() [Unix].

fork() Like C's fork(). Returns o to child, child pid to parent [Not on Windows].

kill(pid, signal) Like C's kill [Not on Windows].

listdir(path) Lists (base)names of entries in directory path, excluding ."and "..". If path is a Unicode string, so will
be the returned strings.

Iseek(fd, pos, how) Sets current position in file fd to position pos, expressed as an offset relative to beginning of file
(how=0), to current position (how=1), or to end of file (how=2).

mkdir(path[, mode]) Creates a directory named path with numeric mode (default 0777). Actual permissions = (mode &
~umask & 0777). To set directly the permissions, use chmod () after dir creation.

openl(file, flags, mode) Like C's open(). Returns file descriptor. Use file object functions rather than thislow level ones.

pipe() Creates a pipe. Returns pair of file descriptors (r, w) [Not on Windows].

popen(command, mode="', Opens a pipe to or from command. Result is a file object toread to or write from, as indicated by

bifSize=0) mode being 'r' or 'w'. Use it to catch a command output ('r' mode), or to feed it ('w' mode).

remov e(path) See unlink.

rename(old, new) Renames/moves the file or directory old to new. [error if target name already exists]

renames(old, new) Recursive directory or file renaming function. Works like rename(), except creation of any

intermediate directories needed to make the new pathname good is attempted first. After the
rename, directories corresponding to rightmost path segments of the old name will be pruned
away using removedirs().

rmdir(path) Removes the empty directory path

read(fd, n) Reads n bytes from file descriptor fd and return as string.

stat(path) Returns st_mode, st_ino, st_dev, st_nlink, st_uid,st_gid, st_size, st_atime, st_mtime, st_ctime.
[st_ino, st_uid, st_gid are dummy on Windows]

sy stem (command) Executes string command in a subshell. Returns exit status of subshell (usually 0 means OK). Since
2.4 use subprocess.call() instead.

times() Returnsaccumulated CPU times in sec (user, system, children's user, children's sys, elapsed real
time) [3 last not on Windows].

unlink(path) Unlinks ("deletes") the file (not dir!) path. Same as: remove.

utime(path, (aTime, mTime)) Setsthe access & modified time of the file to the given tuple of values.

wait() Waits for child process completion. Returns tuple of pid, exit_status [Not on Windows].

waitpid(pid, options) Waits for process pid to complete. Returns tuple of pid, exit_status [Not on Windows].

walk(top[, topdown=True[, Generates a list of file names in a directory tree, by walking the tree either top down or bottom up.

onerror=Nonel[, For each directory in the tree rooted at directory top (including top itself), it yields a 3-tuple

followlinks=False]]]) (dirpath, dirnames, filenames) - more info here. See also os.path.walk ().

2.6: New followlinks parameter. If True, visit directories pointed to by links (beware of infinite
recursion!).
write(fd, str) Writes strto file fd. Returns nb of by tes written.

posixpath

Posix pathname operations.
Do not import this module directly, import os instead and refer to this module as os.path. (e.g. os.path.exists (p))!

posixpath functions

abspath(path) Returns absolute path for path, taking current working dir in account.

commonprefix(list) Returns the longuest path prefix (taken character-by-character) that is a prefix of all pathsin list (or "
if list em pty).

dirname/basename(path) directory and name parts of path. See also split.

exists(path) True if path is the path of an existing file or directory. See also lexists.

expanduser(path) Returns a copy of path with "~" expansion done.

expandvars(path) Returns string that is (a copy of) path with environment vars $name or ${name} expanded. [Windows:
case significant; mustuse Ymix—$ var motation, mot%var%; 2.6: Notation $name% also supported.]

getatime(path) Returns last access time of path (integer nb of seconds since epoch).

getctime(path) Returns the metadata change time of path (integer nb of seconds since epoch).

O~ map s

-—-—0- - - -—r - I = i I <l

getmtime(path) Returns last modification time of path (integer nb of seconds since epoch).

getsize(path) Returns the size in bytes of path. os.error if file inexistent or inaccessible.

isabs(path) True if path is absolute.

isdir (path) True if path is a directory .

isfile(path) True if path is a regular file.

islink(path) True if path is a symbolic link.

ismount(path) True if path is a mount point [true for all dirs on Windows].

join(pL,ql[,...11) Joins one or more path componentsin a way suitable for the current OS.

lexists(path) True if the file specified by path exists, whether or not it's a symbolic link (unlike exists).
normcase(path) Normalizes case of path. Has no effect under Posix.

normpath(path) Normalizes path, eliminating double slashes, etc...

realpath(path) Returnsthe canonical path for path, eliminating any symbolic links encountered in the path.

relpath(path[, start])

samefile(f1, f2)

sameopenfile(f1, f2)

samestat(si, s2)
split(p)

splitdrive(p)
splitext(p)

walk(p, visit, arg)

Returns a relative filepath to path, from the current directory by default, or from start if specified.
True if the 2 paths fr and f2 reference the same file.

True if the 2 open file objects f1 and f2 reference the same file.

True if the 2 stat buffers sz and s2 reference the same file.

Splits p into (head, tail) where tail is last pathname component and head is everything leading up to
that. <=> (dirname (p), basename (p))

Splits path p in a pair ('drive:', tail) [Windows]

Splits into (root, ext) where last comp of root contains no periods and ext is empty or starts with a
period. 2.6: Do not split on leading period.

Calls the function visit with arguments (arg, dirname, names) for each directory recursively in the
directory tree rooted at p (including p itself if it's a dir). The argument dirname specifies the visited
directory, the argument names lists the files in the directory. The visit function may modify names to
influence the set of directories visited below dirname, e.g. toavoid visiting certain parts of the tree. See
alsoos.walk () for an alternative.

shutil

High-level file operations (copying, deleting).

Main shutil functions

Copies the contents of file src to file dest, retaining file permissions.

Recursively copies an entire directory tree rooted at src into dest (which should not
already exist). If symlinks istrue, links in src are kept as such in dest.

2.6: New ignore callable argument. Will be called with each directory path and a list of
the directory's contents, must return a list of names toignore.

shutil.ignore patterns() can be used toexclude glob-style patterns, e.g.:

copy (src, dest)
copy tree(sre, dest[, symlinks=False
[, ignore=None]])

shutil.copytree('projects/myProjUnderSvn', 'exportDir',

', '.svn'))

ignore=shutil.ignore patterns('*~
Recursively moves a file or directory toa new location.
Deletes an entire directory tree, ignoring errors if ignore_errors is true, or calling
onerror(func, path, sys.exc_info()) if supplied, with arguments func (faulty function),
and path (concerned file). This function fails when the files are Read Only .
Create an archive file (eg. zip or tar) and returnsits name. base_name is the name of the
file to create, including the path, minus any format-specific extension. format is the
archive format: one of “zip”, “tar”, “bztar” or “gztar”. root_dir is a directory that will be
the root directory of the archive; ie. we typically chdir into root_dir before creating the
archive. base_diris the directory where we start archiving from; ie. base_dir will be the
common prefix of all files and directories in the archive. root_dir and base_ dir both
default tothe current directory. owner and group are used when creating a tar archive.
By default, uses the current owner and group. logger is an instance of logging.Logger.

move(sre, dest)
rmtree(path [, ignore_errors
[, onerror]])

make_archive(base_name, format
[, root_dir [, base_dir [, verbose

[, dry_run[, owner [, group

[, logger]11111D)

(and also: copyfile, copymode, copystat, copy2)

time

Time access and conversions.
(see also module mxDateTime if you need a more sophisticated date/time management)

Variables

altzone Signed offset of local DST timezone in sec west of the oth meridian.
daylight Non zeroif a DST timezone is specified.

timezone The offset of the local (non-DST) timezone, in seconds west of UTC.
tzname A tuple (name of local non-DST timezone, name of local DST timezone).

Some functions

clock() On Unix: current processor time as a floating point number expressed in seconds.
On Windows: wall-clock seconds elapsed since the 1st call to this function, as a floating point
number (precision < 1us).

time() Returns a float representing UTC time in seconds since the epoch.

gmtime([secs]),

Returns a 9-tuple representing time. Current time is used if secs is not provided.

localtime([secs]) Since 2.2, returnsa struct_time object (still accessible as a tuple) with the following attributes:

[} tm_year Year (e.g. 1993)

1 tm_mon Month [1,12]

2 tm_mday Day [1,31]

3 tm_hour Hour [0,23]

4 tm_min Minute [0,59]

5 tm_sec Second [0,61]; The 61 accounts for leap seconds and (the very rare)

double leap seconds.

6 tm_wday Weekday [0,6], Monday is 0

7 tm_yday Julian day [1,366]

8 tm_isdst Daylight flag: 0, 1 or -1; -1 passed tomktime () will usually work
asctime([timeTuple]), 24-character string of the following form: 'Mon Apr 03 08:31:14 2006". timeTuple defaults to

localtime () if omitted.

ctime([secs]) equivalent toasctime (localtime (secs))
mktime(timeTuple) Inverse of localtime(). Returnsa float representing a number of seconds.

strftime(format[, timeTuple]) Formats a time tuple as a string, according to format (see table below). Current time is used if
timeTuple is omitted.

strptime(string[, format]) Parses a string representing a time according to format (same format as for strftime (), see
below), default "%a %b %d %H:%M:%S %Y" = asctime format.
Returns a time tuple/struct time.

sleep(secs) Suspends execution for secs seconds. secs can be a float.

Formatting in stiftime() and strptime()

[l

Locale's abbreviated weekday name.

o0 o°

A Locale's full weekday name.
%b Locale's abbreviated month name.
%B Locale's full month name.
%c Locale's appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
Sf Microsecond as a decimal number [0,099999], zero-padded on the left.
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%3 Day of the year asa decimal number [001,366].
sm Month as a decimal number [01,12].
M Minute as a decimal number [00,59].
%P Locale's equivalent of either AM or PM.
%S Second as a decimal number [00,61]. Yes, 61 !
U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All daysin a new year
preceding the first Sunday are considered to be in week 0.
Sw Weekday as a decimal number [0(Sunday),6].
W Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All daysin a new year
preceding the first Sunday are considered to be in week 0.
%% Locale's appropriate date representation.
%X Locale's appropriate time representation.
Y% Year without century as a decimal number [00,99].
$Y Year with century asa decimal number.
%7 Time zone name (no characters if no time zone exists).
$z UTC offset in the form + HHMM or -HHMM (empty string if the date is naive).
%% A literal "¢" character.
string

Common string operations.

As of Python 2.0, much (though not all) of the functionality provided by the string module have been superseded by built-in
string methods.
Since 2.5 (?) all string module methods are considered deprecated => use built-in string methods instead.

Some string constant

digits The string '0123456789".

hexdigits, octdigits Legal hexadecimal & octal digits.

letters, uppercase, lowercase, whitespace Strings containing the appropriate characters, taking the current locale into
account.

ascii_letters, ascii_lowercase, Strings containing Ascii characters.

ascii_uppercase
Some string functions

expandtabs(s, tabSize) Returns a copy of string s with tabs expanded.

find/rfind(s, sub[, start=0[, end=0]) Returnsthe lowest/highest index in s where the substring sub is found such that sub is
wholly contained in s[start:end]. Return -1 if sub not found.

ljust/rjust/center(s, widthl[, fillChar=""]) Returns a copy of string s; left/right justified/centered in a field of given width, padded
with spaces or the given character. s isnever truncated.

lower/upper(s) Returnsa string that is (a copy of) s in lowercase/uppercase.

split(s[, sep=whitespace[, maxsplit=0]]) Returns a list containing the words of the string s, using the string sep as a separator.

rsplit(s[, sep=whitespace[, maxsplit=0]]) Same as split above but starts splitting from the end of string, e.g.
'A,B,C'.split(',', 1) == ['A', 'B,C'] but'A,B,C'.rsplit(',', 1) ==
['a,B', 'C']

join(words[, sep=""T) Concatenates a list or tuple of words with intervening separators; inverse of split.

replace(s, old, new[, maxsplit=0] Returns a copy of string s with all occurrences of substring old replaced by new. Limits
to maxsplit first substitutions if specified.

strip(s[, chars=None]) Returns a string that is (a copy of) s without leading and trailing chars (default:

whitespace), if any. Also: 1strip, rstrip.

re (sre)

Regular expression operations.

Handles Unicode strings. Implemented in new module sre, re now a mere front-end for compatibility.
Patterns are specified as strings. Tip: Use raw strings (e.g. r' \w* ') to literalize backslashes.

Regular expression syntax

Matches any character (including newline if DOTALL flag specified).

” Matches start of the string (of every line in MULTILINE mode).
Matches end of the string (of every line in MULTILINE mode).

* 0 or more of preceding regular expression (as many as possible).

+ 1 or more of preceding regular expression (as many as possible).

? o or 1 occurrence of preceding regular expression.

#0472, 27 Same as *, + and ? but matches as few characters as possible.

{m,n} Matches from m to n repetitions of preceding RE.

{m,n}? Idem, attempting to match as few repetitions as possible.

[] Defines character set: e.g. [a-zA-Z]' to match all letters (see also \w \S).

[~] Defines complemented character set: matches if char is NOT in set.

\ Escapes special chars *?+&$|()'and introduces special sequences (see below). Due to Python string rules, write as '\\'
or r'\'in the pattern string.

\\ Matches a litteral '\'; due to Python string rules, write as "\\\\'in pattern string, or better using raw string: r'\\"

| Specifies alternative: foo|bar' matches 'foo' or bar".

(..) Matches any RE inside (), and delimits a group.

(?:...) Idem but doesn't delimit a group (non capturing parenthesis).

(€4 Matches any RE inside (), and delimits a named group, (e.g. r'(?P<id>[a-zA-Z_]\w*)'defines a group named id).

P<name>...)

(?P=name) Matches whatever text was matched by the earlier group named name.

(?=..)) Matchesif ... matches next, but doesn't consume any of the string e.g. 'Isaac (?=Asimov)' matches 'Isaac' only if
followed by 'Asimov".

?..) Matchesif ... doesn't match next. Negative of (?=...).

(?<=...) Matchesif the current position in the string is preceded by a match for ... that ends at the current position. This is
called a positive lookbehind assertion.

(?<!.) Matches if the current position in the string is not preceded by a match for This is called a negative lookbehind
assertion.

(¢4 [2.4+] group iseither a numeric group ID or a group name defined with (?Pgroup...) earlier in the expression. If

(group)A|B) the specified group matched, the regular expression pattern A will be tested against the string; if the group didn't
match, the pattern B will be used instead.

#...) A comment; ignored.

(?letters) letters is one or more of i,'L’, 'm’, 's', 'u', 'x". Sets the corresponding flags (re.l, re.L, re.M, re.S, re.U, re.X) for the
entire RE. See the compile () function for equivalent flags.

Special sequences

\number Matches content of the group of the same number; groups are numbered starting from 1.
\A Matchesonly at the start of the string.

\b Empty str at beginning or end of word: "\bis\b' matches 'is', but not 'his"
\B Empty str NOT at beginning or end of word.

\d Any decimal digit (<=> [0-9]).

\D Any non-decimal digit char (<=> [*0-9]).

\s Any whitespace char (<=> [\t\n\r\f\v]).

\S Any non-whitespace char (<=> [* \t\n\r\f\v]).

\w Any alphaNumeric char (depends on LOCALE flag).

\W Any non-alphaNumeric char (depends on LOCALE flag).

\Z Matchesonly at the end of the string.

Variables

error Exception when pattern string isn't a valid regexp.

Functions

com pile(pattern[,flags=0]) Compiles a RE pattern string into a regular expression otject.

Flags (combinable by |):
Tor IGNORECASE <=> (%)

escape(string)
match (pattern, string[, flags])

search(pattern, string[, flags])
split(pattern, string[, maxsplit=0
[, flags=0]1)

findall(pattern, string)
finditer(pattern, string[, flags])
sub(pattern, repl, string[, count=0

[, flags1D)

subn(pattern, repl, string[, count=0

[, flags1D)

Regular Expression Objects

LUt s UL N sy
case insensitive matching
Lor LOCALE <=> (?L)
make \w, \W, \b, \Bdependent on the current locale
M or MULTILINE <=> (?m)
matchesevery new line and not only start/end of the whole string
S or DOTALL <=> (?s)
"“"matches ALL chars, including newline
U or UNICODE <=> (?u)
Make \w, \W, \b, and \Bdependent on the Unicode character properties database.
X or VERBOSE <=> (?x)
Ignores whitespace outside character sets

Returns (a copy of) string with all non-alphanumerics backslashed.

If 0 or more chars at beginning of string matches the RE pattern string, returnsa
corresponding MatchOtject instance, or None if nomatch.

Scans thru string for a location matching pattern, returns a corresponding MatchOtject
instance, or None if nomatch.

Splits string by occurrences of pattern. If capturing () are used in pattern, then
occurrences of patterns or subpatterns are also returned.

Returns a list of non-overlapping matches of pattern in string, either a list of groups or a
list of tuples if the pattern has more than 1 group.

Returns an iterator over all non-overlapping matches of pattern in string. For each match,
the iterator returns a match object. Empty matches are included in the result unless they
touch the beginning of another match.

Returns string obtained by replacing the (count first) leftmost non-overlapping
occurrences of pattern (a string or a RE object) in string by repl; repl can be a string or a
function called with a single MatchOtj arg, which must return the replacement string.

Same as sub (), but returns a tuple (newString, numberOfSubsMade).

RE objects are returned by the compile function.

re object attributes

flags Flags arg used when RE obj was compiled, or o if none provided.
groupindex Dictionary of {group name: group number} in pattern.
pattern Pattern string from which RE obj was compiled.

re object methods

match(string[, pos][, endpos])

search(string[, pos][, endpos])

split(string[, maxsplit=0])
findall(string[, pos[, endpos]])
finditer(string[, pos[, endpos]])
sub(repl, string[, count=0])
subn(repl, string[, count=0])

Match Objects

If zero or more characters at the beginning of string match this regular expression, returns a
corresponding MatchObject instance. Returns None if the string does not match the pattern;
note that this is different from a zero-length match.

The optional second parameter pos gives an index in the string where the search is to start; it

defaults to 0. This is not completely equivalent toslicing the string; the " pattern character
matches at the real beginning of the string and at positions just after a newline, but not
necessarily at the index where the search istostart.

The optional parameter endpos limits how far the string will be searched; it will be asif the

string is endpos characterslong, so only the characters from pos to endpos will be searched for a

match.

Scans through string looking for a location where this regular expression produces a match, and

returns a corresponding MatchObject instance. Returns None if no position in the string

matches the pattern; note that this is different from finding a zero-length match at some point

in the string.
The optional pos and endpos parameters have the same meaning as for the match () method.
Identical tothe split () function, using the compiled pattern.
Identical tothe findall () function, using the compiled pattern.
Identical tothe finditer () function, using the compiled pattern.
Identical tothe sub () function, using the compiled pattern.
Identical tothe subn () function, using the compiled pattern.

Match objects are returned by the match & search functions.

Match object attributes

pos Value of pos passed to search or match functions; index intostring at which RE engine started search.
endpos Value of endpos passed to search or match functions; index into string beyond which RE engine won't go.
re RE object whose match or search function produced this MatchObj instance.

string String passed tomatch () or search ().

Match object methods

groun(faz. g2....1) Returns one or more groups of the match. If one arg, result is a string: if multiple args, result is a tuple

o-

R N R

groups()

start(group),
end(group)
span(group)

Lexical scanners using regular expressions

w1th one item per arg. If giiso, returns the entlre matchlng string; if 1 <= gi<= 99, returns string
matching group #gi (or None if no such group); gi may also be a group name.

Returns a tuple of all groups of the match; groups not participating tothe match have a value of None.
Returns a string instead of tuple if len(tuple)== 1.

Returnsindices of start & end of substring matched by group (or None if group exists but didn't contribute
tothe match).

Returns the 2-tuple (start(group), end(group)); can be (None, None) if group didn't contibute to the
match.

i s T S

There's an undocumented class in the re module called re.scanner. The following recipee is from stackoverflow:

import re
scanner=re.Scanner ([

(r"[0=-9]+", lambda scanner,token: ("INTEGER", token)),
(r"[a-z_]+", lambda scanner,token: ("IDENTIFIER", token)),
r"[,.]1+", lambda scanner,token: ("PUNCTUATION", token)),
(r"\s+", None), # None == skip token.

1)

results, remainder=scanner.scan("45 pigeons, 23 cows, 11 spiders.")

print results

which results in

[

(
(
(
(
(
(
(
(
(

math

For complex number functions, see module cmath. For intensive number crunching, see Numerical Python and the Python and

"INTEGER',
"IDENTIFIER',
"PUNCTUATION',
"INTEGER',
"IDENTIFIER',
'"PUNCTUATION',
"INTEGER',
"IDENTIFIER',
"PUNCTUATION',

a5

130

v

),

'pigeons’'),

1

')y

),

'‘cows'),

')

),

'spiders’'),

1

-]

Scientific computing page.

Constants

pi
e

3.1415926535897931
2.7182818284590451

Functions

acos(x)
acosh(x)
asin(x)
asinh(x)
atan(x)
atan2(y, x)

atanh(x)
ceil(x)
copy sign(x, y)

cos(x)
cosh(x)
degrees(x)
erf(x)
erfe(x)
exp(x)
exmp1(x)
fabs(x)
factorial(n)
floor (x)
fmod(x, y)
frexp(x)

fsum (iterable)
gamma(x)

hy pot(x, y)
isinf(x)
isnan(x)
Idexp(x, 1)

Returnsthe arc cosine (measured in radians) of x.

Returnsthe hyperbolic arc cosine (measured in radians) of x.

Returnsthe arc sine (measured in radians) of x.

Returnsthe hyperbolic arc sine (measured in radians) of x.

Returnsthe arc tangent (measured in radians) of x.

Returnsthe arc tangent (measured in radians) of y/x. The result is between -pi and pi. Unlike atan (y/x), the
signs of both x and y are considered.

Returnsthe hyperbolic arc tangent (measured in radians) of x.

Returnsthe ceiling of x as a float. Thisis the smallest integral value >= x.

Copies the sign bit of an IEEE 754 number, returning the absolute value of x combined with the sign bit of y,
e.g. copysign(l, -0.0) returns-1.0

Returns the cosine of x (measured in radians).

Returns the hyperbolic cosine of x.

Converts angle x from radians to degrees.

Return the error function at x.

Return the complementary error function at x.

Returns e raised to the power of x.

Return e**x - 1 with less loss of precision at small floats than exp (x) - 1.
Returns the absolute value of the float x.
returns n!

Returnsthe floor of x as a float. Thisisthe largest integral value <= x.

Returns fmod(x, y), according to platform C. x % y may differ.

Returnsthe mantissa and exponent of x, as pair (m, e).m isa float and eisan int, such that x = m * 2.**e. If
xis 0, m and e are both o. Else 0.5 <= abs(m) < 1.0.

Returns an accurate floating point sum of values in iterable (assumes IEEE-754 floating point arithmetic).
Return the Gamma function at x.

Returnsthe Euclidean distance sqrt (x*x + y*y).

Returns True if x is infinite (positive or negative).

Returns True if xisnot a number.

X * (2%%)

Igamma/(x)
log(x[, base])

Return the natural logarithm of the absolute value of the Gamma function at x.
Returnsthe logarithm of x tothe given base. If the base is not specified, returns the natural logarithm (base e)
of x.

log10(x) Returnsthe base 10 logarithm of x.

log1p(x) Returnsthe natural logarithm of 1+x (base e). The result is computed in a way which isaccurate for x near
zZero.

m odf(x) Returnsthe fractional and integer parts of x. Both results carry the sign of x. The integer part isreturned asa
float.

pow(x, y) Returns x**y (x tothe power of y). Note that for y=2, it ismore efficient to use x*x.

radians(x) Converts angle x from degrees toradians.

sin(x) Returnsthe sine (measured in radians) of x.

sinh(x) Returnsthe hyperbolic sine of x.

sqrt(x) Returnsthe square root of x.

tan(x) Returnsthe tangent (measured in radians) of x.

tanh(x) Returnsthe hyperbolic tangent of x.

trunc(x) Returnsthe Real value xtruncated toan Integral. Delegatestox. _trunc__ ().

Compressions

Python contains several modules for working with compressed files. The builtin function zip does not have anything to do with
zipping, think instead of a zipper.
There are three different concepts with compressions:

¢ compression of data

® compression of a single file (e.g. gzip, bz2)
¢ compression of archives, ie. zip-files with multple files

Compression of data

zlib Compression and decompression of data (strings), using the zlib library.
bz2 Sequential compression and decom pression using classes BzZ2Compressor and Bz2Decompressor, or One-shot
(de)compression though functions compress () and decompress ().

Compression of single file

gzip Read and write gzip-compressed files as were they normal files, using the GzipFile class.
bz2 Read and write bz2-compressed files as were they normal files, using the Bz2File class.

Compression of archives

zipfile ~ Work with ZIP archives.

Seethe method zipFile.open for reading a single file in the archive as a normal file.
tarfile Read and write tar archive files.
shutil The function make archive provides means for packaging a directory intoa archive.

List of modules and packages in base distribution

Built-ins and content of python rib directory. The subdirectory rib/site-packages contains platform-specific packages and
modules.
[Main distributions (Windows, Unix), some OS specific modules may be missing]

Standard library modules

__builtin__ Provide direct access to all ‘built-in'identifiers of Python, e.g. builtin .openisthe full name
for the built-in function open ().

__future___ Future statement definitions. Used to progressively introduce new featuresin the language.

__main__ Represent the (otherwise anonymous) scope in which the interpreter's main program executes -
commands read either from standard input, from a script file, or from an interactive prompt.
Typical idiom to check if a code wasrun as a script (as opposed to being imported):

if name == ' main_ ':
main () # (this code was run as script)

abce (new in 2.6) Abstract Base Classes (ABC) [PEP 3119]. Equivalent of Java interfaces. The module
collections defines interfaces/ABCs for many behaviors/protocols/data structures (Iterable,
Hashable, Sequence, Set, etc...).

aifc Stuff to parse AIFF-C and AIFF files.

anydbm Generic interface to all dbm clones. (dbhash, gdbm, dbm, dumbdbm).

argparse Parser for command-line options, arguments and sub-commands. For more C-like command-line
processing, see getopt.

array Efficient arrays of numeric values.

ast (new in 2.6) Helpers to process Trees of the Python Abstract Syntax grammar.

asynchat A class supporting chat-style (command/response) protocols.

asyncore Basic infrastructure for asy nchronous socket service clients and servers.

atexit Register functions tobe called at exit of Python interpreter.

audiodev Classes for manipulating audio devices (currently only for Sun and SGI). Deprecated since 2.6.

andiann

Maninnlataraur andiandata a . Qunnartctha a TA annandina

auulvup

base64
BaseHTTPServer
Bastiom

bdb

binascii

binhex

bisect

bsddb

bz2

calendar

cgi
CGIHTTPServer
cgitb

chunk

cmath

cmd

(uuyy
crrpeacte
code
codecs
codeop
collections

colorsys
commands
compileall
ConfigParser
contextlib
Cookie
copy

copy _reg
cPickle
cProfile
crypt
cStringlO
csv

ctypes

curses
datetime

dbhash
decimal
difflib

dircacire
dircmp
dis
distutils

distutils.command.register

distutils.debug

distutils.emxccom piler

distutils.log

H e G
at

doctest

DocXMLRPCServ er

dospati
dumbdbm

dumrp

dummy_thread

dummy_threading

email

encodings

arrnn

lviallipuldate raw auuiv udid. £.5. OUPPULLDS LLIEC a-LA VY culuulllrg.
Conversions to/from base64 transport encoding as per RFC-1521.
HTTP server base class

A generic Python debugger base class.

Convert between binary and ASCII.

Macintosh binhex compression/decompression.

Bisection algorithms.

(Optional) improved BSD database interface [package].

BZ2 compression.

Calendar printing functions.

Wraps the WWW Forms Common Gateway Interface (CGI).
CGIl-savvy HTTP Server.

Traceback manager for CGI scripts.

Read IFF chunked data.

Mathematical functions for complex numbers. See also math.
A generic class tobuild line-oriented command interpreters.

Effictertty comrpare fites; booteamr outcome oty -

Utilities needed to emulate Python'sinteractive interpreter.

Lookup existing Unicode encodings and register new ones. 2.5: support for incremental codecs.
Utilities to compile possibly incomplete Python source code.

High-performance container dataty pes. 2.4: The only datatype defined is a double-ended queue
deque. 2.5: Ty pe deque hasnow a remove method. New type defaultdict. 2.6: New ty pe
namedtuple. Define many ABCs (Abstract Base Classes) like Container, Hashable, Iterable,
Sequence, Set...

Conversion functions between RGB and other color systems.

Execute shell commands via os.popen [Unix].

Force "compilation" of all .py files in a directory.

Configuration file parser (much like windows .ini files).

Utilities for with statement contexts.

HTTP state (cookies) management.

Generic shallow and deep copying operations.

Helper to provide extensibility for modules pickle/cPickle.

Faster, Cimplementation of pickle.

Faster, Cimplementation of profile.

Function to check Unix passwords [Unix].

Faster, Cimplementation of StringlO.

Tools toread comma-separated files (of variations thereof). 2.5: Several enhancements.

"Foreign function"library for Python. Provides C compatible data ty pes, and allows to call functions
in dlls/shared libraries. Can be used towrap these libraries in pure Python.

Terminal handling for character-cell displays [Unix/0OS2/DOS only].

Improved date/time ty pes (date, time, datetime, timedelta). 2.5: New method

strptime (string, format) for classdatetime.2.6:strftime () new format code %f expanding to
number of s.

(g)dbm-compatible interface to bsdhash.hashopen.

Decimal floating point arithmetic.

Tool for comparing sequences, and computing the changes required to convert one into another.
2.5: Improved SequenceMatcher.get_matching blocks () method .

Sortedtistof fites imadiT; using a tactre: Deprecated since 2.6.
Prefi ; b - toot :

Bytecode disassembler.

Package installation system. 2.5: Function setup enhanced with new keyword parameters
requires, provides, obsoletes, and download url [PEP314].

Registers a module in the Python package index (PyPI). This command plugin adds the register
command to distutil scripts.

In 2.7 moved toseparate module sysconfig.
Catt-Cfunrctions i strared objects f8mix}Deprecated since 2.6.

Unit testing framework based on running examples embedded in docstrings. 2.5: New sx1p option.
New encoding arg to testfile () function.

Creation of self-documenting XML-RPC servers, using pydoc to create HTML API doc on the fly. 2.5:
New attribute rpc_paths.

A dumb and slow but simple dbm clone.

Pri 1 tet] bt

Helpers to make it easier to write code that uses threads where supported, but still runs on Py thon
versions without thread support. The dummy modules simply run the threads sequentially.

A package for parsing, handling, and generating email messages. New version 3.0 dropped various
deprecated APIs and removes support for Python versions earlier than 2.3. 2.5: Updated to version
4.0.

New codecs: idna (IDNA strings), koi8_u (Ukranian), palmos (PalmOS 3.5), punycode
(Punycode IDNA codec), string_escape (Python string escape codec: replaces non-printable chars
w/ Python-style string escapes). New codecsin 2.4: HP Roman8, ISO_8859-11, ISO_8859-16,
PCTP-154, TIS-620; Chinese, Japanese and Korean codecs.

Qtandard earrnn cvctam cumhnle Tha valua afearh ecumhanl ictha rarraennndine intacer valna

exceptions
fentl
filecmp
fileinput

firrd

fanmatch
formatter
fpectl

fpformrat
fractions

ftplib

functools
future_builtins

gc

gdbm
getopt
getpass
gettext
glob
goplrertib
grp
ETep
gZ1p
hashlib
heapq

hmac
hotshot.stones
htmlentity defs
trtrrttib
HTMLParser
httplib

idlelib

ftrooks
imrageop
imaplib
imghdr

imp

imputil

inspect
io

itertools

json
keyword
krree
linecache

h tod
locale

logging
macpath
macurl2path
mailbox

mailcap
marshal
markupbase
math

mrds
mrirhib
Tritretoots
mimety pes
MW
—

mman

YLianuairu il v 0)’ DLC11L 0)’ 111 UULdD. 111C vaiuc vir cavit D‘y 111 UUL 1D L11T LvuL L CBPUIIUIIIS 11 LCSCL vaiuc.
Class based built-in exception hierarchy.

The fentl () and ioctl () system calls [Unix].

File and directory comparison.

Helper class to quickly write a loop over all standard input files. 2.5: Made more flexible (Unicode
filenames, mode parameter, etc...)

Filename matching with shell patterns.

Generic output formatting.

Floating point exception control [Unix].

General floating point formatting functions. Deprecated since 2.6.

(new in 2.6) Rational Numbers.

An FTP client class. Based on RFC 959.

Tools for functional-style programming. See in particular function partial () [PEP309].

(new in 2.6) Python 3 builtins. Provides functions that exist in 2.x, but have different behavior in
Python 3 (ascii, map, filter, hex...). Towrite Python 3 compatible code, import the functions from
thismodule, e.g.:

from future_builtins import map
...code using Pythong-syle map()...

Perform garbage collection, obtain GC debug stats, and tune GC parameters. 2.5: New get count ()
function. gc.collect () takes a new generation argument.

GNU's reinterpretation of dbm [Unix].

Standard command line processing in C getopt () style. See also argparse.

Utilities to get a password and/or the current user name.

Internationalization and localization support.

Filename "globbing" utility.

The group database [Unix].

Read & write gzipped files.

Secure hashes and message digests.

Heap queue (priority queue) helpers. 2.5: nsmallest () and nlargest () takesa key keyword
param.

HMAC (Keyed-Hashing for Message Authentication).

Helper torun the pystone benchmark under the Hotshot profiler.
HTML character entity references.

HTML2 parsing utilities. Deprecated since 2.6; see HTMLParser-class.
Simple HTML and XHTML parser.

HTTP1 client class.

(package) Support library for the IDLE development environment.
Hooks tmtothe " mrport* mrectranismr: Deprecated since 2.6.

Mamiputate Taw rage data: Deprecated since 2.6; removed in Python 3.
IMAP4 client.Based on RFC 2060.

Recognizing image files based on their first few by tes.
Access the import internals.
Provides a way of writing customized import hooks.

Get information about live Python objects.

(new in 2.6) Core tools for working with streams [PEP 3116]. Define Abstract Base Classes
RawIOBase (I/O operations: read, write, seek..), Buf feredIOBase (buffering), and TextI0OBase
(reading & writing strings).

Tools to work with iterators and lazy sequences. 2.5: islice () accepts None for start & step args.
2.6: Several new functions: izip longest, product, combinations, permutations.

(new in 2.6) JSON (JavaScript Object Notation) interchange format support.

List of Python keywords.

Cache lines from files.

Himux7dev/audiosupport: Replaced by ossaudiodev(Linux).

Support for number formatting using the current locale settings. 2.5: format () modified; new
functions format string() and currency ()

(package) Tools for structured logging in log4j style.

Pathname (or related) operations for the Macintosh [Mac].

Mac specific module for conversion between pathnames and URLs [Mac].

Classes to handle Unix style, MMDF style, and MH style mailboxes. 2.5: added capability to modify
mailboxes in addition to reading them.

Mailcap file handling (RFC 1524).

Internal Python object serialization.

Shared support for scanning document ty pe declarations in HTML and XHTML.

Mathematical functions. See also cmath

Deprecated since 2.6, use hashlib module instead.

MH (mailbox) interface. Deprecated since 2.6.

Various tools used by MIME-reading or MIME-writing programs. Deprecated since 2.6.

Guess the MIME ty pe of a file.

Generic MIME writer—Deprecated since 2.3, use email package instead.
Mimrificatiomramd ummirificatior of rait mressages- Deprecated since 2.6, use email package
instead.

Interface to memaoarv-manned files -thev hehave like mutahle strinos

sanap
modulefinder
msilib
msvert

iy
multiprocessing

mutex
netre
ew

nis

nntplib
ntpath
nturlapath
numbers

olddifflib
operator

optparse
0s

os.path
os2emxpath
packmmrait
parser

pdb

pickle

pickletools
pipes
pkgutil

platform

poty
poperrz

poplib
posix
posixpath
pprint
pre
profile
pstats
pty

pwd
py_compile
pyclbr

py doc
pyexpat
Py tmit

Queue

quopri
rand
random
re
readline
TECONVErt

Tegex_syrtax
Tegsub

repr

resource
TEXEC

rfc822

Tgbirg

rlcompleter

robotparser
sched

select

Sets

sgmllib
e

ALLULLULL LU MM VA UL) MU PPUU 100 LIIU) UUIIU Y U AL A W LU VAL DL 11150,

Tools to find what modules a given Python program uses, without actually running the program.
Read and write Microsoft Installer files [Windows].
File & Console Windows-specific operations [Windows].

i = i i - Deprecated since 2.6.
(new in 2.6) Process-based "threading" interface. Allows to fully leverage multiple processors on
a machine [Windows, Unix] [PEP 371].
Mutual exclusion -- for use with module sched. See also std module threading, and glock.
Parses and encapsulates the netrc file format.
Creatiomof Tuntinre irtermat objectstimterface totmterpreter object creation funrctions): Deprecated
since 2.6.
Interface to Sun's NIS (Yellow Pages) [Unix]. 2.5: New domain arg tonis.match () and
nis.maps ().
An NNTP client class. Based on RFC 977.
Common operations on Windows pathnames [Windows].
Convert a NT pathname toa file URL and vice versa [Windows].
Numeric Abstract Base Classes (ABC) [PEP 3141]. Define a ty pe hierarchy for numbers:
Number, Complex, Real, Rational, Integral.
Old version of difflib (helpers for computing deltas between objects)?
Standard operators as functions. 2.5: itemgetter () and attrgetter () now supports multiple
fields.
Improved command-line option parsing library (see also getopt). 2.5: Updated to Optik library 1.51.
OS routines for Mac, DOS, NT, or Posix depending on what system we're on. 2.5: os.stat () return
time values as floats; new constantsto os.lseek (); new functionswait3 () andwait4 ();on
FreeBSD, os.stat () returnstimes with nanosecond resolution.
Common pathname manipulations.
os.path support for OS/2 EMX.

Access Python parse trees.

A Python debugger.

Pickling (save/serialize and restore/deserialize) of Py thon objects (a faster C implementation exists
in built-in module: cPickle). 2.5: Value returned by = reduce () must be different from None.
Tools to analyze and disassemble pickles.

Conversion pipeline templates [Unix].

Tools to extend the module search path for a given package. 2.5: PEP302's import hooks support;
works for packages in ZIP format archives.

Get info about the underlying platform.

Potyromats:

subprocesssitce 24~ Deprecated since 2.6.

A POP3 client class.

Most common POSIX sy stem calls [Unix].

Common operations on POSIX pathnames.

Support to pretty-print lists, tuples, & dictionaries recursively.

Support for regular expressions (RE) - see re.

Class for profiling python code. 2.5: See also new fast Cimplementation cprofile
Class for printing reports on profiled py thon code. 2.5: new stream arg to stats constructor.
Pseudo terminal utilities [Linux, IRIX].

The password database [Unix].

Routine to "compile"a .py file to a .pyc file.

Parse a Python file and retrieve classes and methods.

Generate Python documentation in HTML or text for interactive use.

Interface tothe Expat XML parser. 2.5: now uses V2.0 of the expat parser.

Yt test framrework frspired by JHmit: See unittest.

A multi-producer, multi-consumer queue. 2.6: New queue variants PriorityQueue and
LifoQueue.

Conversions to/from quoted-printable transport encoding as per RFC 1521.

Don't use unless you want compatibility with C'srand().

Random variable generators.

Regular Expressions.

GNU readline interface [Unix].

T i T b4

Alternate repr () implementation.

Resource usage information [Unix].

Restrictedexecutiom facitities (“safeexec; evat; eto)-

Parse RFC-8222 mail headers.

Word completion for GNU readline 2.0 [Unix]. 2.5: Doesn't depend on readline any more; now
works on non-Unix platforms.

Parse robot.txt files, useful for web spiders.

A generally useful event scheduler class.

Waiting for I/O completion.

A Set datatype implementation based on dictionaries. Deprecated since 2.6, use built-in ty pes set
and frozenset instead.

A parser for SGML, using the derived class as a static DTD.

QI A _1 maceanma Aicact alaarithmm a FcNauwr a marawrannar arniind nauwr lithrarg ko ah1 ik

Slia

shelve

shlex

shutil

signal
SimpleHTTPServer
SimpleXMLRPCServ er
site

smtpd

smtplib

sndhdr

socket

SocketServer
spwd

sqlites

sre

stat

statvfs
string
StringlO

stringprep
struct

subprocess
sunau
sunaudio
symbol
symtable
sys

sy sconfig

sy slog
tabnanny
tarfile
telnetlib
tempfile

termios
test
textwrap
thread
threading

threading_api
time

timeit

Tix

Tkinter
toaitf

token
tokenize
trace
traceback
tty

turtle

ty pes
tzparse
unicodedata

unittest
urllib
urllib2
urlparse
user
Userbict

Usertist

OI1ATL LIES AZC ULZECdL dlgULLLLLILIL. Z.5. INUW d 11IC1IEC WldppeEl dluullu lIew 1iplaly dsilllpo.
Deprecated since 2.6, use hashlib instead.

Manage shelves of pickled objects.

Lexical analyzer class for simple shell-like syntaxes.

Utility functions for copying files and directory trees.

Set handlers for asynchronous events.

Simple HTTP Server.

Simple XML-RPC Server. 2.5: New attribute rpc_paths.

Append module search paths for third-party packagestosys.path.

An RFC 2821 SMTP server.

SMTP/ESMTP client class.

Several routines that help recognizing sound.

Socket operations and some related functions. Now supports timeouts thru function
settimeout (t). Alsosupports SSL on Windows. 2.5: Now supports AF_ NETLINK sockets on Linux;
new socket methods recv _buf (buffer), recvfrom buf (buffer), getfamily (), gettype () and
getproto () .

Generic socket server classes.

Access tothe UNIX shadow password database [Unix].

DB-API 2.0 interface for SQLite databases.

Support for regular expressions (RE). See re.

Constants/functions for interpreting results of os.

CUIldellLb IUI illLBl Pr Ulillg StdLVv Ib SIUCt 45 I'etur Iled by Oos.statvis () dlld Oos.Istatvis () Llf L‘Iley
exist)—Deprecated since 2.6.
A collection of string operations (see Strings).

File-like objects that read/write a string buffer (a faster C implementation exists in built-in module
cStringlO).

Normalization and manipulation of Unicode strings.

Perform conversions between Python values and C structs represented as Python strings. 2.5: faster
(new pack () and unpack () methods); pack and unpack to and from buffer objects via methods
pack_into and unpack_from.

Subprocess management. Replacement for os.system, os.spawn*, os.popen*, popen2.* [PEP324]
Stuff to parse Sun and NeXT audio files.

Interpret sun audio headers.

Non-terminal symbols of Python grammar (from "graminit.h").

Interface tothe compiler'sinternal symbol tables.

Sy stem-specific parameters and functions.

Provides access to Python’s configuration information like the list of installation pathsand the
configuration variables relevant for the current platform.

Unix syslog library routines [Unix].

Check Python source for ambiguousindentation.

Tools toread and create TAR archives. 2.5: New method TarFile.extractall().

TELNET client class. Based on RFC 854.

Temporary files and filenames. 2.6: New classes SpooledTemporaryFile and
NamedTemporaryFile.

POSIX style tty control [Unix].

Regression tests package for Python.

Tools to wrap paragraphs of text.

Multiple threads of control (see also threading below).

New threading module, emulating a subset of Java's threading model. 2.5: New function
stack size([size]) allowstoget/set the stack size for threads created. 2.6: Several functions
renamed or replaced by properties, new property Thread.ident. See also new module
multiprocessing.

(doc of the threading module).

Time access and conversions.

Benchmark tool.

Extension widgets for Tk.

Python interface to Tcl/Tk.

Convert "arbitrary" sound files to AIFF (Apple and SGI's audio format). Deprecated since 2.6.
Token constants (from "token.h").

Tokenizer for Python source.

Tools to trace execution of a function or program.

Extract, format and print information about Python stack traces.

Terminal utilities [Unix].

LogoMation-like turtle graphics.

Define names for all type symbols in the std interpreter.

Parse a timezone specification.

Interface tounicode properties. 2.5: Updated to Unicode DB 4.1.0; Version 3.2.0 still available as
unicodedata.ucd_3_2 0.2.6: Updated to Unicode DB 5.1.0.

Python unit testing framework, based on Erich Gamma's and Kent Beck's JUnit.

Open an arbitrary URL.

An extensible library for opening URLs using a variety of protocols.

Parse (absolute and relative) URLs.

Hook to allow user-specified customization code to run.

A wrapper to allow subclassing of built-in dict class (useless with new-style classes. Since Python
2.2, dict is subclassable).

A wrapper to allow subclassing of built-in list class (useless with new-style classes. Since Python 2.2,
list is subclassable)

[S | IS N [T S N U R (SRS (SR S PR S AL NS I,

USETSTITITE A wrapper 1o allow subclassing of bullt-1n String class (useless with new-style classes. Since rytnon
2.2, str is subclassable).

uu Implementation of the UUencode and UUdecode functions.

uuid UUID objects according to RFC 4122.

warnings Python part of the warnings subsy stem. Issue warnings, and filter unwanted warnings.

wave Stuff to parse WAVE files.

weakref Weak reference support for Python. Also allows the creation of proxy objects. 2.5: new methods
iterkeyrefs(),keyrefs(),itervaluerefs()andvaluerefs(%

webbrowser Platform independent URL launcher. 2.5: several enhancements (more browsers supported, etc...).

whichdb Guess which db package touse to open a db file.

whrarmdonr Wichmmanm=Hitt rardomr mamber gemerator-(obsolete, use random instead).

winsound Sound-playing interface for Windows [Windows].

wsgiref WSGI Utilities and Reference Implementation.

xdrlib Implements (a subset of) Sun XDR (eXternal Data Representation).

xml.dom Classes for processing XML using the DOM (Document Object Model). 2.3: New modules
expatbuilder, minicompat, NodeFilter, xmlbuilder.

xml.etree.ElementTree Subset of Fredrik Lundh's ElementTree library for processing XML.

xml.parsers.expat
xml.sax
xmlrpclib
XTEaaHTes

zipfile

zipimport
zlib

zrmod

Workspace exploration and idiom hints

dir (object)

dir ()

if _ _name__ ==
main ()

map (None, 1lstl,

b = al:]

b = list(a)

a,b,c =1,2,3

An interface tothe Expat non-validating XML parser.

Classes for processing XML using the SAX APL

An XML-RPC client interface for Python. 2.5: Supportsreturning datetime objects for the XML-RPC
date ty pe.

Provides a sequence-like object for reading a file line-by-line without reading the entire file into
memory. Deprecated since release 2.3. Use for line in file instead. Removed since 2.4
Read & write PK zipped files. 2.5: Supports ZIP64 version, a .zip archive can now be larger than
4GB. 2.6: Class zipFile hasnew methods extract () and extractall().

ZIP archiveimporter.

Compression compatible with gzip. 2.5: Compress and Decompress objects now support a copy ()
method.

list valid attributes of otject (which can be a module, ty pe or class object)
list names in current local sy mbol table.

__main__': invoke main() if running as script

lst2, ...) merge lists; see also zip(Ist1, Ist2, ...)

create a copy b of sequence a
If a is a list, create a copy of it.
Multiple assignment, same asa=1; b=2;c=3

for key, value in dic.items(): ... Worksalsoin thiscontext

if 1 < x <= 5:

Works as expected

for line in fileinput.input(): ... Processeach filein command line args, one line at a time

Python Mode for Emacs

(underscore) in interactive mode, refers tothe last value printed.

Emacs goodies available here.

(The following has not been revised, probably not up to date - any contribution welcome -)

Type C-c ? when in python-mode for extensive help.

INDENTATION
Primarily for entering new code:
TAB indent line appropriately
LFD insert newline, then indent
DEL reduce indentation, or delete single character
Primarily for reindenting existing code:
C-c guess py-indent-offset from file content; change locally
C-u C-c ditto, but change globally
C-c TAB reindent region to match its context
C-c < shift region left by py-indent-offset
C-c > shift region right by py-indent-offset
MARKING & MANIPULATING REGIONS OF CODE
C-c C-b mark block of lines
M-C-h mark smallest enclosing def
C-u M-C-h mark smallest enclosing class
C-c # comment out region of code
C-u C-c # uncomment region of code

MOVING POINT
c_
c C-p move to statement preceding point

C-c C-n move to statement following point
C-c C-u move up to start of current block

Mo~ masra tA akavt AF AAF

rM=c—d move L0 sitdrLiL oL uelr

C-u M-C-a move to start of class
M-C-e move to end of def
C-u M-C-e move to end of class

EXECUTING PYTHON CODE
C-c C-c sends the entire buffer to the Python interpreter

C-c | sends the current region
C-c ! starts a Python interpreter window; this will be used by

subsequent C-c C-c or C-c | commands
VARIABLES
py-indent-offset indentation increment
py-block-comment-prefix comment string used by py-comment-region
py-python-command shell command to invoke Python interpreter
py-scroll-process-buffer t means always scroll Python process buffer
py-temp-directory directory used for temp files (if needed)

py-beep-if-tab-change ring the bell if tab-width is changed

Changes to this document

April, 2013 (Stefan McKinnon Hej-Edw ards)
Corrections
® Added strikethrough to deprecated modules in module-list.
® Corrected links in modules list.
® Added a recipee for the secret re.Scanner.
® Added context manager methods to special methods in classes.
Oct, 2011 (Stefan McKinnon Hoej-Edw ards)
Upgraded to Python 2.7
Prior to Oct. 2011,
see Last updated on-list

