
The Definitive Guide to
ARM® Cortex®-M0 and
Cortex-M0+ Processors

Second Edition

Joseph Yiu

AMSTERDAM � BOSTON � HEIDELBERG � LONDON

NEW YORK � OXFORD � PARIS � SAN DIEGO

SAN FRANCISCO � SINGAPORE � SYDNEY � TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods, professional practices, or medical treatment may become
necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

ISBN: 978-0-12-803277-0

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing-in-Publication Data
A catalog record for this book is available from the Library of Congress

For information on all Newnes publications
visit our website at http://store.elsevier.com/

Publisher: Todd Green
Acquisition Editor: Tim Pitts
Editorial Project Manager: Charlotte Kent
Production Project Manager: Jason Mitchell
Designer: Mark Rogers

Typeset by TNQ Books and Journals
www.tnq.co.in

Printed and bound in the United States of America

http://www.elsevier.com/permissions
http://store.elsevier.com/
http://www.tnq.co.in

This book is dedicated to the memory of my sister, Lucia Yiu

Adventurous, supportive, loads of fun and full of energy.

the whole family miss you.

Foreword

I started my professional career in 1982, working in a microprocessor software department,

and focused for years on the 8051 as this microcontroller architecture wasdduring the

1990sdthe engine for all types of embedded applications. Over decades, I was part of a

booming embedded industry that created a wide spectrum of processor architectures. During

this time, the microcontroller market became extremely fragmented with numerous silicon

vendors and technologies. Some years ago, every embedded application was created from

scratch with no software reuse and ground-up training for engineers to cope with the project

challenges.

But over the years, microcontroller systems became increasingly complex and demanded even

higher performance to fulfil the wishes for more features and convenient operations. Often

these systems are also price sensitive and therefore increasingly microcontroller systems are

designed as single-chip designs based on high performance 32-bit processors, which are

dominant today. Meanwhile, cost pressure and challenging software development require

standardization, while, at the same time, a diverse I/O connectivity requires a range of devices.

To solve these challenges, the embedded industry has established the ARM� Cortex�-M

processor series as the de-facto standard microcontroller architecture. These processors are

licensed to more than 200 companies that produce devices ranging from standard

microcontrollers to domain-specific sensors to complete radio communication systems for

the Internet of Things.

To support a wide range of applications ARM launched multiple processors that implement

the Cortex-M architecture. At the low-end of the spectrum, the Cortex-M0 and Cortex-M0+

is available for applications that were previously dominated by 8-bit microcontrollers. It is

no surprise that these processors are today widely used for low-cost devices.

With the availability of even more capable microcontrollers, software development for these

devices has become increasingly complex. Use of real-time operating systems is rapidly

becoming an industry best practice and the use of prebuilt middleware as well as software

reuse is gaining importance for productive software engineering. Combining software

building blocks often poses a problem for developers, but industry standards are a great way

xxi

to reduce system development costs and speed up time-to-market. And the Cortex-M

processor architecture along with the CMSIS software programming standard is the basis

for this hardware and software standardization.

Joseph’s book, The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors,

gives you the foundation for designing and creating applications for all devices that are

based on ARM Cortex-M0 or Cortex-M0+ processors. I recommend this reading for

practical every embedded engineer as it gives you in-depth ground-up knowledge for your

day-to-day work.

Reinhard Keil
Director of MCU Tools, ARM

Foreword

xxii

Preface

Embedded system technologies have changed a lot since 2011, when the first edition of this

book was published. In 2012, ARM� announced the Cortex�-M0þ processor and, in 2014,

the Cortex-M7 processor was announced. Today, the Cortex-M processor is used in many

microcontrollers, as well as in a range of mixed signals and wireless communication chips.

In addition to processor design, embedded software development technologies have also

moved on. As the use of the ARM Cortex-M microcontrollers has become more common,

this has enabled microcontroller software developers to write more sophisticated

applications. At the same time, the quest for better battery life and energy efficiency

continues, along with improvements in development suites.

With all these changes, microcontroller users need to adapt to new technologies quickly and

thus the availability of technical literature is becoming more and more important. This

new edition is therefore full of new information and enhancement. In addition to the new

information related to the Cortex-M0þ processor, examples of using several popular

development suites are also covered. For example, the book has detailed examples of utilizing

low-power features in microcontrollers and illustrations of using RTOS in a simple application.

As the Internet of Things (IoT) is getting more attention and becoming more main-stream,

there are more people taking an interest in and starting to learn about embedded

programming. There are also more universities and colleges that are now moving on from

teaching about legacy 8-bit and 16-bit microcontrollers to starting to teach students about

32-bit embedded processors- like ARM Cortex-M processors. Therefore, many parts of this

book have been rewritten and many basic examples have been included to make this even

more suitable for beginners, students, hobbyists, etc.

There are of course audiences who demand in-depth information such as professional

embedded software developers, researchers, or even semiconductor product designers. To

cater for their needs, this book also covers a wide range of technical details and advanced

examples.

I hope that you will find this book helpful and enjoy using Cortex-M processors in your

next embedded projects.

xxiii

Acknowledgment

Many people have assisted me during the time I have been writing this book and this

includes the assistance given when I wrote the first edition.

First of all, many thanks to the various readers who have provided feedback for the first

edition, enabling me to improve the contents of this second edition.

There are also a number of people in ARM, including Colin Jones and Edmund Player for

reviewing the contents. A number of companies have also provided me with a deal of

assistance, including ST Microelectronics, Freescale and IAR Systems.

Of course, without the successful first edition, the second edition would not be here.

I would therefore like to express my gratitude to the following people for their help in the

first edition: Amit Bhojraj, Bob (Robert) Boys, David Donley, Derek Morris, Dominic

Pajak, Drew Barbier, Jamie Brettle, Jeffrey S. Mueller, Jim Kemerling, Joe Yu, John Davies,

Jon Marsh, Kenneth Dwyer, Milorad Cvjetkovic, Nick Sampays, Reinhard Keil, Simon

Craske, William Farlow.

I would also like to thank the staff from Elsevier for their professional work in getting this

book published.

And finally, a big thank you to all of my friends for their encouragement and for forgiving

me for being slightly anti-social (I hear you ☺), while I was working on this book.

xxv

Terms and Abbreviations

Abbreviations Definitions

AAPCS ARM architecture procedure call standard
AHB Advanced high-performance bus
ALU Arithmetic logic unit
AMBA Advanced microcontroller bus architecture
APB Advanced peripheral bus
API Application programming interface
ARM ARM ARM Architecture Reference Manual
BE8 Byte invariant big endian mode
BPU Break point unit
CMSIS Cortex microcontroller software interface standard
CMOS Complementary metal oxide semiconductor
CPU Central processing unit
DAP Debug access port
DDR Double data rate (memory)
DS-5 Development Studio 5
DWT Data watchpoint and trace unit (unit)
EABI/ABI Embedded application binary interface
EWARM IAR embedded workbench for ARM
EXC_RETURN Exception return
FPGA Field programmable gate array
GPIO General purpose input/output
GPU Graphic processing unit
gcc GNU C compiler
HAL Hardware abstraction layer
ICE In-circuit emulator
IDE Integrated development environment
ISA Instruction set architecture
ISR Interrupt service routine
JTAG Joint test action group (a standard of test and debug interface)
LR Link register
LSB Least significant bit
MCU Microcontroller unit
MDK/MDK-ARM ARM� Keil� Microcontroller Development Kit
MSB Most significant bit

Continued

xxvii

dcont’d

Abbreviations Definitions

MTB Micro trace buffer
MSP Main stack pointer
NMI Non-maskable interrupt
NVIC Nested vectored interrupt controller
OS Operating system
PC Program counter
PCB Printed circuit board
PSP Process stack pointer
PSR/xPSR Program status register
RTC Real-time clock
RVDS ARM RealView Development Suite
RTOS Real-time operating system
RTX Keil Real-Time eXecutive kernel
SCS System control space
SCB System control block
SoC System-on-a-Chip
SP Stack pointer
SPI Serial peripheral interface
SWD Serial wire debug
TAP Test access port
TRM Technical Reference Manual
UART Universal asynchronous receiver transmitter
ULP Ultra low power
USB Universal serial bus
WIC Wakeup interrupt controller

Terms and Abbreviations

xxviii

Conventions

Various typographical conventions have been used in this book, as follows:

• Normal assembly program codes:

MOV R0, R1 ; Move data from Register R1 to Register R0

• Assembly code in generalized syntax; items inside “< >” must be replaced by real

register names:

MRS <reg>, <special_reg> ;

• C program codes:

for (i = 0;i < 3;i++) { func1(); }

• Pseudo code:

if (a > b) { .

Values:

1. 4’hC, 0x123 are both hexadecimal values

2. #3 indicates item number 3 (e.g., IRQ #3 means IRQ number 3)

3. #immed_12 refers to 12-bit immediate data

4. Register bitsdTypically used to illustrate a part of a value based on bit position.

For example, bit[15:12] means bit number 15 down to 12.

Register access types:

1. R is Read only

2. W is Write only

3. R/W is Read or Write accessible

4. R/Wc is Readable and cleared by a Write access

xxix

References

The following documents are referenced in this book:

Document title Document number

1 ARMv6-M Architecture Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html

ARM DDI 0419C

2 Cortex-M0 Devices Generic User Guide
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/index.html

ARM DUI 0497A

3 Cortex-M0þ Devices Generic User Guide
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/index.html

ARM DUI 0662B

4 Cortex-M0 r0p0 Technical Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/index.html

ARM DDI 0432C

5 Cortex-M0þ r0p1 Technical Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/index.html

ARM DDI 0484C

6 Procedure Call Standard for ARM Architecture
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_
aapcs.pdf

ARM IHI 0042E

7 AN237dMigrating from 8051 to Cortex Microcontroller
http://infocenter.arm.com/help/topic/com.arm.doc.dai0237a/index.html

ARM DAI 0237A

8 AN321dARM Cortex-M Programming Guide to Memory Barrier Instructions
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html

ARM DAI 0321A

9 Keil MDK-ARM Compiler Optimization - Getting the Best Optimized Code
for your Embedded Application
http://www.keil.com/appnotes/docs/apnt_202.asp

Keil Application
Note 202

10 IAR Application NotedMastering stack and heap for system reliability
http://www.iar.com/About/Blog/2012/4/Mastering-Stack-and-Heap-for-
System-Reliability/

e

11 AMBA� 3 AHB�-Lite Protocol Specification
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html

ARM IHI 0033a

12 AMBA APB� Protocol Specification
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024c/index.html

ARM IHI 0024C

13 CoreSight Technical Introduction
http://infocenter.arm.com/help/topic/com.arm.doc.epm039795/index.html

ARM EPM 039795

14 ARM Debug Interface v5
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0031c/index.html

ARM IHI 0031C

15 CoreSight� MTB-M0þ Technical Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.set.coresight/index.html

ARM DDI 0486B

16 ARM Compiler armasm User Guide
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473k/index.html

ARM DUI 0473K

xxxi

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dai0237a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.iar.com/About/Blog/2012/4/Mastering-Stack-and-Heap-for-System-Reliability/
http://www.iar.com/About/Blog/2012/4/Mastering-Stack-and-Heap-for-System-Reliability/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0033a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0024c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.epm039795/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0031c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.set.coresight/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0473k/index.html

CHAPTER 1

Introduction

1.1 Welcome to the World of Embedded Processors
1.1.1 Where Are the Processors Used?

If you are new to microcontrollers or ARM� processors, first I would like to give you a

very warm welcome.

Processors are used in majority of electronic products. For example, your mobile phones,

televisions, washing machines, cars, bank card (smartcards), and even simple devices like

the remote control for your radio can have processors inside. In most cases, these

processors are placed inside in chips called microcontrollers. In modern microcontrollers,

the chip also contains the essential elements like memory systems and interface hardware

(often called peripherals). There are many different types of microcontrollers; they can be

available with different processors, memory sizes, and peripherals inside, and can be

available in different packages (Figure 1.1).

Large numbers of microcontrollers are designed for general purpose, which means they

can be used in wide range of applications. Sometimes processors are used in chips that are

NXP LPC1114
(Cortex-M0)

NXP LPC1343
(Cortex-M3)

Freescale Kine�s KL03
(Cortex-M0+)

Figure 1.1
Microcontrollers are available in wide range of physical packages.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00001-1

Copyright © 2015 Elsevier Inc. All rights reserved. 1

http://dx.doi.org/10.1016/B978-0-12-803277-0.00001-1

designed for specialized purposes and for particular products, and they are often referred

as Application-Specific Integrated Circuits (ASICs).

There are also chips designed to perform particular functions, but are offered for wide

range of products. In such case, these chips are called Application Specific Standard

Products (ASSPs).

In some chip product designs, the chip could be referred to as System-on-a-Chip (SoC).

The term SoC is somewhat vague and can ranged from very complex application

processor designs for mobile computing (e.g., A smart phone’s application processor chip

can contain a number of processors), to very low-power designs like smart sensors.

In most of these products, processors are used because the ability to control the system

using software to enable powerful features to be created. In some cases some of these

chips can contain multiple processors.

The ARM Cortex�-M0 and Cortex-M0þ (pronounced as Cortex-M0 “plus”) processors

are used in microcontrollers, ASICs and ASSPs, SoC, etc. In some cases, these

processors might also be used in subsystems as part of complex SoC devices. In the rest

of this book, we will be focusing on the microcontroller products. But the overall

programming knowledge and software development techniques are similar for all these

devices.

1.1.2 Processor, CPU, Core, Microprocessor, and All These Names

If you have been studying computer science or computer engineering in the 1980s, you

possibly recall that processors are often referred as Central Processing Units (CPUs).

Typically the term CPU is referred to the main processor chip used in a computer, and

usually in form of a physical chip product, which requires external memory chips. The

term CPU is still used frequently today, but the word “Central” might no longer be

relevant to a number of systems because many systems contain multiple processors. As a

result, we normally just refer the processing unit as a “processor.”

Some of the terminologies that are commonly used:

• Processor core/CPU coredtypically refer to the processor inside a microcontroller

product or chip product, excluding the memory system, peripherals, and other system

support components (e.g., power management, clock generation circuits). In some

articles the word “core” might also refer to the part inside a processor that handles the

software execution, excluding the interrupt controller and debug support hardware.

• Microprocessorda chip device containing processor(s), which is designed primarily to

handle computational tasks, and can also handle control tasks. The system designers

typically need to add memory and potentially additional peripheral hardwares to build a

2 Chapter 1

complete system with microprocessors. The terms “Microprocessor” and “CPU” can be

interchangeable in some contexts (if referring to a chip device).

• Microcontrollerda chip device containing processor(s), which is designed to handle

control and computational tasks. This chip typically contains a memory system (e.g.,

flash memory for program ROM and Static Random Access Memory (SRAM), and a

number of peripherals).

1.1.3 Programming on Embedded Systems

For those of you who have been doing programming on a Personal Computer (PC), or

programming for Apps (Applications for mobile platforms), you may find that

programming on microcontroller devices is very different from what you have learnt

before. Typically, we called these systems built on microcontrollers as “Embedded

System,” which means they blended into the products, and are sort of hidden (apart from

the user interface).

Most embedded systems have the following characteristics compared to traditional

computing platforms:

• Many embedded systems have very small memory footprint (e.g., 16 KB of program

memory based on flash memory technologies, and 8 KB of SRAM for data).

• Many embedded systems have very simple user interface (e.g., a few buttons and just a

few LEDs, or a simple LCD display).

• In most simple microcontroller-based systems there are no file systems, and if a

microcontroller application require a storage device like SD card interface, the software

developer need to add an SD card interface device driver (potentially supplied by the

microcontroller vendor), and need to add software for file system support (you can get

file system middleware from third parties).

• Many of the embedded systems do not have any Operating System (OS). We sometimes

called these systems as “bare-metal.” In these systems there is only one application, and

potentially a number of interrupt-driven processes.

• Some of these systems have OS developed specially for embedded systems, such as

Real-Time Operating System (RTOS). These OS have very small memory footprints

and need very low processing overhead. But at the same time, some of these OS might

only able to provide task scheduling and basic task management features.

• You still need your personal computer (or MAC/workstation) to do the software

development. Since the embedded systems are very small and have limited capabilities,

the software development environments are running on your PC/MAC/workstation. You

will need tools to transfer the developed program code to the microcontrollers. In many

cases, the process is referred as flash memory programming because many

microcontrollers use flash memories for program storage. Many microcontroller software

Introduction 3

development environments come with built-in support for flash programming, but you

might also need an adaptor to hook up the microcontroller to the PC/MAC/workstation.

For many readers, this is a completely different world compared to the type of software

development they have been doing previously. But at the same time this can be fascinating.

You will be able to see and control the details of many low-level operations. For example,

when you execute a simple “printf(“Hello world!\n”); ” statement in a C program, you will

be able to control how the message is sent to the user interface (e.g., LCD module),

whereas all these details are hidden in other high-level programming environments.

1.1.4 What Type of Skills Do I Need to Start Learning Microcontroller
Programming?

In this book, I assumed that you already know a bit of C programming. Some experiences

of using any microcontrollers will certainly help a lot.

Knowledge on electronic engineering areas like digital interface circuits can help you to

understand some of the examples in this book and enable you to start creating your own

electronics projects. It is possible to create your own microcontroller boards, but this often

requires more design experience. To make the learning process easier, for beginners, or

people who are not familiar with electronic engineering should consider starting off with

off-the-shelve microcontroller development boards. They are ready to use and this will

save a lot of time in debugging hardware issues.

1.2 Understanding Different Types of Processors
1.2.1 Why We Need Various Types of Processors

There are a lot of different types of processors in the world. Even in the ARM� processor

product ranges there are different processor series for different applications. For example,

if you need to design a server, you need to have processors that can deliver very high data

processing performance, and can run at fairly high speed clock speed to provide the

performance required. But if you are developing battery-powered gadgets such as wearable

devices, often the application do not necessarily need very high performance, but the

battery life is much more important so the processor and the rest of the system need to

have very low power and therefore different type of processors are required.

In many applications, just having high performance is not enough. For example, in a

processor for smart phone it is also necessary additional features in the processor such as

virtual memory support for feature rich OS.

Unfortunately for chip designers, they cannot break the rule of physics. The higher

performance needed, more things need to be done in parallel and so more transistors are

4 Chapter 1

needed in the designs. And when the clock frequency goes up, the dynamic power again

increases. The same applies to adding more features. The increase of silicon size also

increases the production cost (Figure 1.2).

As a result of the tradeoffs, we need to have different types of processors for different

applications. Based on the technical requirements of the applications, chip designers need

to select the right processor for the project, and sometimes need to compromise between

various requirements to create designs that fit the targeted applications. Fortunately, there

are many different types of processors available on the market, in addition to different

performance points and sizes, some of them also have special feature to fit certain

markets. For example, ARM provides a wide range of processors that are designed to suite

most of the target applications very well by providing the right balance between

performances, features, and power.

1.2.2 Overview of the ARM Processor Families

Over the years, ARM had developed many processors (Figure 1.3). For many readers who

are not familiar with ARM processors, it can be slightly confusing. To understand this

better, let us step back a little bit and look at what were offered a few years back.

ARM has been designing processors for over 20 years. Most of the processors designed by

ARM are 32 bit, and in last few years ARM also have been developing processors that

support a mixed 32-bit and 64-bit architecture.

The ARM7TDMI� processor is the first key ARM processor that was widely deployed in

the market. It is very energy efficient, and provides high code density using an innovative

operation state that support 16-bit instruction set called Thumb�. As a result, it was used

in a number of second generation mobile phones and a number of microcontroller

products. Since then, ARM has continuously developed new processors, and hence the

ARM9/9E processor family and ARM11 processor family are developed, when even

higher performance and more features.

Cost

Performance

Features

Power
Microcontrollers

Smart
Phones

Compu�ng
Servers

Figure 1.2
Trade-off in processor designs.

Introduction 5

In around 2003, ARM realized that it needs to diversify the processor products to address

different technical requirements in different markets. As a result, three product profiles are

defined, and the Cortex� processor brand name is created for the naming of these new

processors:

Cortex-A processorsdThese are Application processors, which are designed to provide

high performance and include features to support advanced operation systems (e.g.,

Android, Linux, Windows, iOS). These processors typically have longer processor pipeline

and can run at relatively high clock frequency (e.g., over 1 GHz). In terms of features,

these processors have Memory Management Unit (MMU) to support virtual memory

addressing required by advanced OS, optional enhanced Java support, and a secure

program execution environment called TrustZone�.

The Cortex-A processors are typically used in mobile phone, mobile computing devices

(e.g., tablets), television, and some of the energy efficient servers.

While the Cortex-A processors have high performance, the processor is not designed to

provide rapid response time to hardware events (i.e., real-time requirements). As a result, a

Cortex-A9

Cortex-A5

Cortex-A8

Cortex-M4

Cortex-M0

Cortex-M3

Cortex-M1

Microcontroller
applications

High performance
Real-time systems

High-end
Application
processors

ARM11
series

ARM9E
series

ARM7TDMI

Performance,
functionality

2005

Cortex-R4

2009 erutuF3002

ARM Cortex
processors

Cortex-A15

2012

Cortex-R5

Cortex-M0+

Cortex-R7

Cortex-A7

Cortex-A57

Cortex-A53

Cortex-A12
Cortex-A17

Cortex-M7

Cortex-A72

Figure 1.3
Overview of the ARM processor family.

6 Chapter 1

different profile of high-performance processors is needed, and they are the Cortex-R

processors.

Cortex-R processorsdThese are Real-Time, high performance processors that are very

good at data crunching, can run at fairly high clock speed (e.g., 500 MHz to 1 GHz range),

and at the same time can be very responsive to hardware events. They have cache

memories as well as Tightly Coupled Memories, which enable deterministic behavior for

interrupt handling. The Cortex-R processors are also designed with additional features to

enable much higher system reliability such as Error Correction Code (ECC) support for

memory systems and dual-core lock-step feature (i.e., redundant core logic for error

detection).

The Cortex-R processors can be found in hard disk drive controllers, wireless baseband

controllers/modem, specialized microcontrollers such as automotive and industrial

controllers.

While the Cortex-R processors can be very good at high-performance microcontroller

applications, they are quite complex designs and can consume fair amount of power.

Therefore, another group of processors are need for the very low-power embedded

products, and they are the Cortex-M processors.

Cortex-M ProcessorsdThe Cortex-M Processors are designed for main stream

microcontroller market where the processing requirement is less critical, but need to be

very low power. Most of the Cortex-M Processors are designed with a fairly short pipeline,

for example, two stage in the Cortex-M0þ processor and three stages in Cortex-M0,

Cortex-M3, and the Cortex-M4 Processors. The Cortex-M7 processor has a longer

pipeline (six stages) due to higher performance requirement, but still the pipeline is a lot

shorter than the designs of high-end application processors. As a result of the shorter

pipeline and low power optimizations in the design, the maximum clock frequencies for

these processors are slower than Cortex-R and Cortex-A processors, but this is rarely a

problem because even a 100 MHz Cortex-M-based microcontroller can do a lot of work.

The Cortex-M processors are designed to provide very quick and deterministic interrupt

responses. To achieve this, the processor’s execution control part is closely coupled with a

built-in interrupt controller called Nested Vectored Interrupt Controller (NVIC). The NVIC

provides powerful and yet easy-to-use interrupt’s management. In general, the Cortex-M

processors are very easy to use, with almost everything can be programmed in C.

Due to their low power, fairly high performance, and ease of use benefits, the Cortex-M

processors are selected by most major microcontroller vendors in their flagship

microcontroller products. The Cortex-M processors are also used in some of the sensors,

wireless communication chipsets, mixed signal ASICs/ASSPs, and even used as controller

in some of the subsystems in complex application processors/SoC products.

Introduction 7

In addition to the Cortex processor families, ARM also has processors specially designed

for security-sensitive products, which included temper-resistance features. These

processors are the SecurCore� series. For example, the SC000�, one of the SecurCore is

designed based on the Cortex-M0 processor (same instruction set, and uses NVIC for

interrupt management). The SecurCore products can be found in SIM cards, banking/

payment systems, and even some electronic ID cards.

1.2.3 Blurring the Boundaries

In some ways, the term microcontroller can be a bit vague. Some of the microcontrollers

are based on application processors such as ARM926EJ-S, one of the processor in the

ARM9E processor family. In last few years, some of the microcontroller vendors starting

to produce microcontroller products based on the ARM Cortex-A processors

(e.g., Freescale Vybrid, Atmel SAMA5D3), and ARM Cortex-R processors (e.g., Texas

Instruments TMS570, Spansion Traveo Family).

At the same time, the Cortex-M processors are also being used in many complex SoC

devices as power management controller, I/O subsystem controller, etc.

In the next generation of Cortex-R processor based on the ARMv8-R architecture, the

architecture definition also allows the processor to incorporate a MMU so that it can be

used with a full feature OS like Linux or Android, and at the same time handle real-time

tasks based on a virtualization mechanism.

1.2.4 ARM Cortex-M Processor Series

There are a number of processors in the Cortex-M processor family, as shown in Table 1.1.

If we look at the instruction set in a bit more details (Figure 1.4), we can see that the

Cortex-M0, Cortex-M0þ, and Cortex-M1 processors only support a small instruction set

(56 instructions). Most of these instructions are 16 bit, thus provide a very good code

densitydwhich means it need a smaller program memory require for the same task

compared to many architecture.

The instruction set of the Cortex-M0 and Cortex-M0þ processors are fairly simple. But if

an application task involves complex data processing, then potentially a long sequence of

instructions is needed to accomplish the operations in the Cortex-M0/M0þ processor

because of the simple instruction set. In those cases, it might be better to use the

Cortex-M3 processor because the Cortex-M3 processor supports a number of extra

instructions (mostly 32 bit) that supports the following:

• More memory addressing modes

• Larger immediate data in the 32-bit instructions

8 Chapter 1

• Longer branch and conditional branch ranges

• Additional branch instructions

• Hardware divide instructions

• Multiply accumulate (MAC) instructions

• Bit field processing instructions

• Saturation adjustment instructions

As a result, the Cortex-M3 processor can handle complicate data processing quicker.

The code size might be similar to Cortex-M0 or Cortex-M0þ processor because although

fewer number of instructions are required to perform the same operations, and these

powerful instructions are mostly 32 bit instead of 16 bit. These 32-bit instructions also

enable the Cortex-M3 processor to utilize the registers in the register bank better.

In some applications, however, you might need to perform some DSP operations such as

filtering, signal transformations (e.g., Fast Fourier Transform), etc. In these applications,

Table 1.1: The Cortex�-M Processor family

Processor Descriptions

Cortex-M0 The smallest ARM� processordonly approximately 12000a logic gates at minimum
configuration. It is very low power and energy efficient.

Cortex-M0+ The most energy efficient ARM processordit has a similar size as the Cortex-M0
processor, but with additional system level and debug features (all optional), and have
higher energy efficiency than the Cortex-M0 processor design. It supports the same
instruction set as the Cortex-M0 processor.

Cortex-M1 It is a small processor design optimized for field programmable Gate Array (FPGA)
applications. It has the same instruction set and architecture as in the Cortex-M0
processor, but has FPGA specific memory system features.

Cortex-M3 When compared to the Cortex-M0 and Cortex-M0þ processors, the Cortex-M3 has a
much more powerful instruction set, and its memory system is designed to provide
higher processing throughput (e.g., use of Harvard bus architecture). It also has more
system level and debug features, but at a cost of larger silicon area (minimum gate
count is about 40000 gates) and slightly lower energy efficiency. In general, the energy
efficiency of the Cortex-M3 processor is still a lot better than many traditional 8-bit
and 16-bit microcontroller devices because the performance is substantially higher.
The Cortex-M3 processor is very popular in the 32-bit microcontroller market.

Cortex-M4 The Cortex-M4 processor contains all the features of the Cortex-M3 processor, but
with additional instructions to support DSP applications and have an option to
include a floating point unit (FPU). It has the same system level and debug features as
the Cortex-M3 processor.

Cortex-M7 It is a high performance processor designed to cover application spaces where the
existing Cortex-M3 and Cortex-M4 processors cannot reach. Its instruction set is a
superset of the Cortex-M4 processor, for example, supporting both single and double
precision floating point calculations. It also has many advanced features, which are
usually find in high-end processors such as caches and branch predictions.

aThe exact gate count of a processor depends on many factors such as the semiconductor process library used, the chip
design tool used, the design optimization options, signal routing constraints, etc.

Introduction 9

you might want to use the Cortex-M4 processor because the Cortex-M4 processor added

another group of instructions targeted for these applicationsdthese included Single

Instruction Multiple Data (SIMD) operations and saturated arithmetic instructions. The

internal data path of the processor is also redesigned to enable single cycle MAC

operations.

The Cortex-M4 processor also has an optional floating point unit that support IEEE-754

single precision floating point calculations. It does not mean that you cannot perform

floating point processing in the Cortex-M0, Cortex-M0þ, or other processors without the

floating point unit. If you are using these processors for floating point operations, the

VABS VADD VCMP VCMPE VCVT VCVTR VDIV VLDM VLDR

VMLA VMLS VMOV VMRS VMSR VMUL VNEG VNMLA VMMLS

VNMUL VPOP VPUSH VSQRT VSTM VSTR VSUB VFMA VFMS

VFNMA

VFNMS

PKH

QADD QADD16 QADD8

QASX

QDADD

QDSUB

QSAX

QSUB QSUB16 QSUB8

SADD16 SADD8

SASX

SEL

SHADD16 SHADD8

SHASX

SHSAX

SHSUB16

SHSUB8

SMLABBSMLABT

SMLATBSMLATT

SMLAD

SMLALBBSMLALBT

SMLALTBSMLALTT

SMLALD

SMLAWB

SMLAWT

SMLSD

SMLSLD

SMMLA

SMMLS

SMMUL

SMUAD

SMULBBSMULBT

SMULTT SMULTB

SMULWT

SMULWB

SMUSD

SSAT16

SSAX

SSUB16 SSUB8

SXTAB

SXTAB16

SXTAH

SXTB16

UADD16 UADD8

UASX

UHADD16 UHADD8

UHSAX

UHSUB16 UHSUB8

UHASX

UQADD16

UQADD8

UQASXUQSAX

UQSUB16

UQSUB8

USAD8USADA8

USAT16

USAX

USUB16 USUB8

UXTAB

UXTAB16

UXTAH

UXTB16

ADC ADD ADR AND ASR B

CLZBFC BFI

BIC

CDP CLREX

CBNZ

CMN CMP

DBG EOR

LDC

LDMIA LDMDB

LDR LDRB

LDRBT

LDRD

LDREX LDREXB LDREXH

LDRH

LDRHT LDRSB

LDRSBT LDRSHT

LDRSHLDRT

MCR

LSL LSR

MCRR

MLS MLAMOV MOVT

MRC MRRC

MUL MVN

NOP ORNORR

PLD

PLDW

PLI

POPPUSH RBIT

REV REV16 REVSH ROR

RRX

CBZ

BKPT BLXADC ADD ADR

BX CPSAND ASR B

DMB

BL

BIC

DSB

CMN

CMP EOR

ISB

LDR LDRB LDM

MRS

LDRH

MSR

LSL LSB MOV NOP

REV MUL MVN ORR

POPPUSH ROR SEV

SXTB

RSB

SBC STM

SXTHUXTB

STR STRBSTRH

WFE

UXTH

SUB

SVC

TST

WFI

YIELD

RSB SBC

SBFX

SDIV

SEV

SMLAL

SMULL

SSAT

STC

STMIA STMDB

STR

STRB

STRBT

STRD

STREX STREXB

STREXH

STRH

STRHT

STRT

SUB

SXTB

SXTH

TBB TBH

TEQTST

UBFX

UDIV

UMLAL

UMULL

USAT

UXTB

UXTH

WFEWFI

YIELD IT

MOVW

UMAAL
Cortex-M0/M0+/M1

(ARMv6-M)
Cortex-M3 (ARMv7-M) Cortex-M4 (ARMv7E-M)

Cortex-M4 FPU
(single precision
floa ng point)

16-bit instruc ons 32-bit instruc ons

Cortex-M7 FPU
(single and double

precision floa ng point)

VSEL VCVTA VCVTN VCVTP VCVTM VMAXNM VMINNM

VRINTR VRINTA VRINTN VRINTP VRINTM VRINTX VRINTY

Figure 1.4

Instruction set of the Cortex�-M processor family.

10 Chapter 1

compiler will insert runtime library functions to handle the floating point calculation using

software, which can take much longer to do and need additional code size overhead.

For applications that demand very high data-processing requirements, or if double

precision floating point calculation is needed, then the Cortex-M7 processor might be the

best choice. It is designed to provide very high data-processing performance, but use the

same programmer’s model and a superset of the instruction set as Cortex-M4 processor.

To decide which processor to use in a project, you need to understand the processing

requirements of the application. Some general guideline is shown in Table 1.2.

Please note that you might also need to consider the differences of the system-level

features and performance when selecting the right Cortex-M processor. An overview of the

comparison is shown in Table 1.3 and a comparison of the performance is shown in

Table 1.4. Please note that the Cortex-M processors are very configurable and the exact

features can be customized by the chip designers and vary among different devices.

In general, the ARM Cortex-M0 and Cortex-M0þ processors are both very suitable for

ultra-low power applications, and because the instruction set and programmer’s model are

relatively simple, and the architecture is very C-friendly, they are also very suitable for

beginners. For example, there is no need to learn a lot of tool chain-specific keywords or

data types to get the application to work on a Cortex-M microcontroller, unlike many 8-bit

or 16-bit architectures.

Table 1.2: The applications for various Cortex�-M Processors

Processor Applications

Cortex-M0, Cortex-M0+
processors

General data processing and I/O control tasks.
Ultra low power applications.
Upgrade/replacement for 8-bit/16-bit microcontrollers.
Low-cost ASICs, ASSPs

Cortex-M1 Field Programmable Gate Array(FPGA) applications with small to
medium data processing complexity. (For high-complexity data
processing there are FPGAs with built-in Cortex-A processors such as
Xilinx Zynq-7000 and some of the Altera Arria V SoCs and Cyclone V
SoCs).

Cortex-M3 Feature-rich/high-performance/low-power microcontrollers.
Light-weight DSP applications.

Cortex-M4 Feature-rich/high-performance/low-power microcontrollers.
DSP applications.
Applications with frequent single precision floating point operations.

Cortex-M7 Feature-rich/very high performance power microcontrollers.
DSP applications.
Applications with frequent single or double precision floating point
operations.

Introduction 11

1.2.5 Quick Glance on the ARM Cortex-M0 and Cortex-M0þ Processor

The Cortex-M0 and Cortex-M0þ Processors:

• Are 32-bit Reduced Instruction Set Computing (RISC) processor, based on an architec-

ture specification called ARMv6-M Architecture. The bus interface and internal data

paths are 32-bit width.

• Have 16 32-bit registers in the register bank (r0 to r15). However, some of these regis-

ters have special purposes (e.g., R15 is the Program Counter, R14 is a register called

Link Register, and R13 is the Stack Pointer).

• The instruction set is a subset of the Thumb Instruction Set Architecture. Most of the

instructions are 16 bit to provide very high code density.

• Support up to 4 GB of address space. The address space is architecturally divided into a

number of regions.

• Based on Von Neumann bus architecture (although arguably the Cortex-M0þ processor

have a hybrid bus architecture because of an optional separate bus interface for fast

peripheral register accesses, see section 4.3.2 Single Cycle I/O Interface in Chapter 4).

Table 1.3: An overview of the system level and debug features

for various Cortex�-M Processors

Features Cortex-M0 Cortex-M0þ Cortex-M1 Cortex-M3 Cortex-M4 Cortex-M7

Number of
interrupts

1e32 1e32 1, 8, 16, 32 1e240 1e240 1e240

Interrupt
priority levels

4 4 4 8e256 8e256 8e256

FPU - - - - Optional
(single
precision)

Optional (single
precision/single þ
double precision)

OS support Y Y Optional Y Y Y

Memory
Protection
unit

- Optional - Optional Optional Optional

Cache - - - - - Optional

Debug Optional Optional Optional Optional Optional Yes

Instruction
trace

- Optional
MTB

- Optional
ETM

Optional
ETM

Optional ETM

Other trace - - - Optional Optional Optional

Table 1.4: Performance of various Cortex�-M Processors with commonly used benchmarks

Features Cortex-M0 Cortex-M0þ Cortex-M3 Cortex-M4 Cortex-M7

Dhrystone 2.1 (per MHz) 0.9 0.95 1.25 1.25 2.14
CoreMark 1.0 (per MHz) 2.33 2.46 3.34 3.40 5.01

12 Chapter 1

• Designed for low-power applications, including architectural support for sleep modes

and have various low power features at the design/implementation level.

• Includes an interrupt controller called NVIC. The NVIC provides very flexible and

powerful interrupt management.

• The system bus interface is pipelined, based on a bus protocol called Advanced High-

performance Bus (AHB�) Lite. The bus interface supports transfers of 8-bit, 16-bit, and

32-bit data, and also allows wait states to be inserted. The Cortex-M0þ processor also

have an optional bus interface (Single Cycle I/O interface, see section 4.3.2) for high-

speed peripheral registers, which is separated from the main system bus.

• Support various features for the OS (Operating System) implementation such as a

system tick timer, shadowed stack pointer, and dedicated exceptions for OS operations.

• Includes various debug features to enable software developers to create applications

efficiently.

• Designed to be very easy to use. Almost everything can be programmed in C and in

most cases no need for special C language extension for data types or interrupt handling

support.

• Provide good performance in most general data processing and I/O control applications.

The Cortex-M0 and Cortex-M0þ processors do not include any memory and have only

got one built-in timer which is primarily for OS operations. Therefore a chip designer

needs to add additional components in the chip design themselves.

1.2.6 From Cortex-M0 Processor to Cortex-M0þ Processor

The ARM Cortex-M0 processor was released in 2009. It was a ground-breaking product

because it is the first product that demonstrated it is possible to cramp a 32-bit processor

into the silicon footprint similar to an 8-bit or 16-bit processors, while still able to make

the design usable and provide excellent energy efficiency and a decent performance for a

32-bit processor.

Although the Cortex-M0 processor is a lot smaller than the Cortex-M3 processor (which

was released in 2005), it maintains a number of key advantages as in Cortex-M3

processor:

• Flexible interrupt management using a built-in interrupt controller called NVIC

• OS support features including a timer hardware called SysTick (System Tick timer) and

exception types dedicated to OS operations

• High code density

• Low power support such as sleep modes

• Integrated debug support

• Easy to use (almost everything programmable in plain C language)

Introduction 13

The Cortex-M0 processor has been a very successful product, and was the fastest licensed

ARM processor in 2009.1 After the Cortex-M0 processor is released, the designers in

ARM have received additional feedback from customers, microcontroller users and chip

designers, and ARM decided that there is an opportunity for an enhanced version for the

Cortex-M0 processor, which was subsequently called the Cortex-M0þ processor.

The Cortex-M0þ processor supports all the features available in the Cortex-M0 processor,

but additional features were added to make it more powerful (these are all configurable by

the chip designers):

• Unprivileged execution level and Memory Protection Unit (MPU)dthis feature is

available in other ARM processors such as the Cortex-M3 processor. It allows an OS to

execute some of the application tasks with an unprivileged level so that the OS can

impose memory access restrictions. For example, the unprivileged software cannot

access critical system registers in the processors like NVIC registers, and memory

access permissions can be managed by the MPU. In this way, a system can be made

more robust because a misbehaving unprivileged task cannot corrupt critical data used

by the OS kernel and other tasks.

• Vector Table relocationdagain, this is a feature already existing in the Cortex-M3

processor. By default, the vector table is defined as the start of the memory (address

0x00000000). The Vector Table Offset Register allows the vector table to be defined in

other memory locations such as a different program memory location or in SRAM. This

is very useful for microcontroller devices, which might have separated vector table for

boot process and user applications.

• Single Cycle I/O interfacedthis is a separate bus interface specifically added to allow

frequently accessed I/O registers to be read/write in a single cycle. Without this feature,

a load/store operation needs to go through the pipelined system bus, which needs two

clock cycles per access. This feature enables microcontrollers or embedded system to

have higher I/O performance, as well as higher energy efficiency in I/O intensive

operations.

Internally to the processor design, there are also some significant changes. Instead of using

a three-stage pipeline as in the Cortex-M0 and Cortex-M3 processors, the Cortex-M0þ
processor is designed with a two-stage pipeline. This reduces the number of flip-flops in

the processor, and hence reduces the dynamic power, and provides slightly higher

performance at the same time because the branch penalty is reduced by one clock cycle.

In the Cortex-M0þ processor pipeline, as shown in Figure 1.5, a small part of the

instruction decoding operations is carried out as soon as the instruction enters the

1 Cortex-M0 ProcessordFastest Licensing ARM Processor (http://www.arm.com/about/newsroom/26419.php).

14 Chapter 1

http://www.arm.com/about/newsroom/26419.php

processor bus interface. The rest of the instruction decoding is combined with the

execution stage.

Adding decode logic to the instruction fetch stage do have some impact to the timing of

the design. However, the balance between predecode and main decode logic was selected

carefully to minimize the impact to the achievable maximum clock frequency. In addition,

most of the low-power microcontrollers run at fairly low clock frequency in comparison to

the maximum processor speed. Therefore this is not a problem to most of the silicon

designs.

In some cases, the power consumption of the processor is reduced by 30% when

comparing between Cortex-M0 processor and the Cortex-M0þ Processor. However, at the

system level, the difference would be much smaller because most of the power could be

consumed by the memory system.

In order to reduce system-level power, additional optimizations have been implemented to

reduce the program memory accesses:

First, by shortening the processor to a two-stage pipeline design, the branch shadow of the

processor is reduced. In a pipeline processor, when a branch instruction is executed, the

Program Memory
(e.g. flash memory)Address

Cortex-M0+
Processor

Pre-decode

Instruction Buffer

Control
Pipeline

Registers

Pipeline
stage

Main
instruction

decode

Address
generation

Execution
logic

Clock

Fetch ExecuteDecode

Fetch ExecuteDecode

Instruction #N

Instruction #N+1

Pipeline
stage

Pre-decode Main decode

Figure 1.5
Two-stage Pipeline in the ARM� Cortex�-M0þ Processor.

Introduction 15

instructions following the branch instruction would have been fetched by the processor.

These instructions fetched are called branch shadow (Figure 1.6), and they are discarded

by the processor and hence a long branch-shadow means wasting more energy.

Secondly, when a branch operation takes place and if the branch target instruction

occupies only the second half of a 32-bit memory space (as shown in Figure 1.7), the

instruction fetch is carried out as a 16-bit transfer. In this way, the program memory can

switch off half of the byte lanes to reduce power.

The amount of power reduction by these techniques depends on how often branch

operations are carried out in the application code.

Finally, in linear code execution, the program fetches are handled as 32-bit accesses. Since

most of the instructions are 16-bit, each instruction fetch can provide up to two

instructions. This means that the processor bus can be in idle state half of the time if there

Figure 1.7
Power wastage reduction by fetching branch target with minimum transfer size.

Image courtesy of ARM�.

Figure 1.6
Power wastage reduction by reducing branch shadow. Image courtesy of ARM�.

16 Chapter 1

is no data access instruction executed (Figure 1.8). Chip designers can utilize this

characteristic to reduce the power consumption in the program memory (e.g., flash

memory).

Another important enhancement in the Cortex-M0þ processor is the adding of a feature

called Micro Trace Buffer (MTB). This unit enables low-cost instruction trace, which is

very useful during software development, for example, helping to investigate the reason

for a software failure. The details of the MTB are covered in Chapter 13 and appendix E.

The Cortex-M0þ processor have additional enhancements when compared to the

Cortex-M0 processor in terms of chip design aspects (most of these are invisible to

microcontroller users). For example, a hardware interface was added to allow the startup

sequence of the processor to be delayed, which is useful for many SoC designs with

multiple processors.

Today, many microcontroller vendors already started offering microcontroller products

based on the Cortex-M0þ processors.

1.2.7 Applications of the Cortex-M0 and Cortex-M0þ Processor

The Cortex-M0 and Cortex-M0þ processors are used in a wide range of products.

Microcontrollers

The most common usage is microcontrollers. Many Cortex-M0 and Cortex-M0þ
microcontrollers are low-cost devices and are designed for low-power applications. They

can be used in applications including computer peripherals and accessories, toys, white

goods, industrial and HVAC (heating, ventilating, and air conditioning) controls, home

automation, etc.

When comparing the microcontrollers based on the Cortex-M0 and Cortex-M0þ
processors to traditional 8-bit and 16-bit microcontroller products, the Cortex-M

NSEQ

a4

IDLE NSEQ

a6

IDLE

i4 i5 i6 i7

i4 i5 i6i3

i4 i5i2 i3

AHB
access

CPU
pipeline

HTRANS

HADDR

HRDATA

Fetch

Execute

Figure 1.8
Program fetch power reduction by fetching up to two instructions at a time.

Image courtesy of ARM�.

Introduction 17

microcontrollers allow embedded products to be built with more features, more

sophisticated user interface, due to support of larger address space, powerful interrupt

control, and higher performance.

The better performance and small size also bring the benefit of higher energy efficiency.

For example, for the same processing task, you can finish the processing quicker and allow

the system to stay in sleep modes longer.

Another advantage of using ARM Cortex-M processors for microcontroller applications is

that they are very easy to use. Therefore it is very appealing to many microcontroller

vendors as product support and educating the users can be challenging for some other

processor architectures.

ASICs and ASSPs

Another important group of applications for the Cortex-M0 and Cortex-M0þ processors

are ASICs and ASSPs. For example, there are a number of touch screen controllers,

sensors, wireless controllers, Power Management ICs (PMIC), and smart battery

controllers designed based on the Cortex-M0 or Cortex-M0þ processors.

In these applications, the low gate count advantage of the Cortex-M0 and Cortex-M0þ
processors allow high performance processing capability to be included in chip designs

that traditionally only allow 8-bit or simple 16-bit processors to be used.

System on Chips

For complex SoC, the designs are often divided into a main application processor system

and a number of subsystems for: I/O controls, communication protocol processing, and

system management. In some cases, the Cortex-M0 and Cortex-M0þ processor can be

used in part of the subsystems to off-load some activities from the main application

processor, and to allow small amount of processing be carried out while the main

processor is in standby mode (e.g., in battery powered products). It might also be used as a

System Control Processor (SCP) for boot sequence management and power management.

1.3 What Is Inside a Microcontroller
1.3.1 Typical Elements Inside a Microcontroller

There can be many components inside a basic microcontroller. For example, a simplified

block diagram is shown in Figure 1.9:

In the diagram there are a lot of acronyms. They are explained in Table 1.5.

As shown in Figure 1.9, there can be a lot of components in a microcontroller (not to

mention other complex interfaces like Ethernet, USB, etc.). In some microcontrollers you

18 Chapter 1

Processor

Main System Bus infrastructure

Flash
Memory SRAM

Crystal
Oscillator(s)PLL

Bus
Bridge

GPIO

Timer

UART SPI I2C I2S

ADC

RTC

Power
Management

DAC

PWM

Manufacturing
Test support

Boot ROM

Voltage
regulator

Watchdog
Timer

System
Control

I/O Pads

Peripheral Bus Infrastructure

System analog
components

Digital Peripherals

Analogue / Mixed
Signal Peripherals

Digital logic

Memories

Figure 1.9
A simple microcontroller.

Table 1.5: Typical components in a microcontroller

Item Descriptions

ROM Read Only MemorydNonvolatile memory storage for program code.
Flash
memory

A special type of ROM, which can be reprogrammed many times, typically for storing
program code.

SRAM Static Random Access Memorydfor data storage (volatile)
PLL Phase Lock Loopda device to generate programmable clock frequency based on a

reference clock.
RTC Real Time Clockda low power timer for counting seconds (typically runs on a low power

oscillator), and in some cases also for minutes, hours and calendar functions.
GPIO General Purpose Input/Outputda peripheral with parallel data interface to control

external devices and to read back external signals status.
UART Universal Asynchronous Receiver/Transmitterda peripheral to handle data transfers in a

simple serial data protocol.
I2C Inter-Integrated Circuitda peripheral to handle data transfers in a serial data protocol.

Unlike UART, a clock signal is required and can provide higher data rate.
SPI Serial Peripheral Interfacedanother serial communication interface for off-chip

peripherals.
I2S Inter-IC Soundda serial data communication interface specifically for audio information.
PWM Pulse Width Modulatorda peripheral to output waveform with programmable duty cycle.
ADC Analog to Digital Converterda peripheral to convert analog signal-level information into

digital form.
DAC Digital to Analog Converterda peripheral to convert data values into analog signal level.
Watchdog
timer

A programmable timer device for ensuring the processor is running program. When
enabled, the program running needs to update the watchdog timer within a certain time
gap. If the program crashed, the watchdog timed out and this can be used to trigger a
reset or a critical interrupt event.

Introduction 19

may also find Direct Memory Access (DMA) controller and hardware accelerators for

cryptography functions.

One important thing to understand is that different microcontrollers are designed with

different peripherals, different memory maps, and different system level details even when

they are using the same processor. For example, the peripherals in a Cortex�-M0-based

microcontroller from chip vendor “A” can have completely different peripheral

programmer’s model (e.g., peripheral register definitions) from another Cortex-M0-based

microcontroller from chip vendor “B,” even though on paper they could have the same

peripheral features.

1.3.2 Characteristics of Processors for Microcontroller Applications

In general, different types of microcontrollers can have different technical requirements on

the processor. Obviously there are different performance requirements (that is why

different ARM� processors are developed), but there are a number of general requirements

that are common to many applications:

Low powerdmany microcontroller products are used in battery power applications. For

example, indoor cordless phones, remote controls, health monitoring devices, alarm

clocks, calculators, etc. Even for many other electronic products low power is becoming

an essential requirement. As a result, the processors used in many microcontroller products

need to be low power.

Fast interrupt responsedIn many applications it is required that the processor response

to hardware events very quickly. This is managed through the interrupt mechanism. When

an interrupt request (IRQ) is raised, for example, from a peripheral, the processor will

suspend the current task and execute an Interrupt Service Routine (ISR). Once the ISR is

completed, the processor can resume the interrupted task. The latency from the time the

hardware IRQ is raised to the time the ISR started executing is commonly known as

interrupt latency, typically measured in terms of number clock cycles. Ideally, the shorter

the interrupt latency the better, but a designer creating a system should also consider the

execution time required for the ISR to response to the request.

High code densitydA processor with high code density means that for the same

processing task, the size required for the program code is smaller. This enables an

application to be squeezed into a microcontroller with a small program memory (typically

flash memory) to reduce cost and power consumption. However, the exact code size also

depends on the compilation tool being used and the compilation options. When the code

compilation is optimized for high performance, the code size can increase substantially

because of optimization techniques like loop unrolling.

20 Chapter 1

DebugdDebug features are very important during software development. For example,

the program execution could go wrong and the debug features enable the software

developers to understand what had happened that caused the failure.

OS supportdMany applications require the use of embedded operating systems such as

Real Time OS. In order to enable these OS to run efficiently, it is highly desirable to have

built-in OS support in the processor.

Ease of usedAn easy-to-use processor enables software developers to create applications

quickly. Ideally, the processor architecture need to work efficiently with code generated by

high-level programming environment, and the software developers do not need to use a lot

of architecture-specific C language extensions to create the applications, which can take

time for a software developer to learn.

High software portability and reusabilitydAnother issue with architecture-specific C

language extensions is that they are not always portable. For example, whether it is

possible to port the application from a microcontroller from chip vendor “A” to a different

microcontroller from chip vendor “B” can potentially be an issue. It is also nice to be able

to reuse software source codes between different projects to save time.

Upgrade and downgrade pathdIn some cases, you might want to upgrade the

microcontroller to a different one when adding more features to creating a new products in

a product family. In this case, the ease of switching to a more power processor is beneficial.

The same approach can be used when creating a low cost variant of the product.

Tool chain supportdThis is highly desirable to have a wide range of development tools

available for the processor used in microcontroller products. This is because the

microcontrollers are used by large number of embedded software developers around the

world and they can have different preference on the tools.

Low costdAlthough the microcontroller devices are getting cheaper and cheaper, product

designers keep looking for the lowest cost microcontroller product that can meet the

technical requirements. So the processor used need to be small (to reduce silicon area),

which can help reduce the chip cost.

For many microcontroller vendors, the ARM Cortex-M processors satisfied most of these

requirements. Therefore the ARM Cortex-M processors have been very successful in the

modern microcontroller market. In 2014, the ARM market share in the microcontroller

market is 26%2 (data from ARM Q4 2014 Roadshow Slides), and more than 2.9 billions3

of Cortex-M-based devices are shipped in 2013.

2 Data from http://ir.arm.com/phoenix.zhtml?c¼197211&p¼irol-presentations.
3 Information from http://www.tomshardware.co.uk/m7-arm-cortex-m4-iot,news-48918.html.

Introduction 21

http://ir.arm.com/phoenix.zhtml?c%3D197211%26p%3Dirol-presentations
http://ir.arm.com/phoenix.zhtml?c%3D197211%26p%3Dirol-presentations
http://ir.arm.com/phoenix.zhtml?c%3D197211%26p%3Dirol-presentations
http://www.tomshardware.co.uk/m7-arm-cortex-m4-iot,news-48918.html

1.3.3 Silicon Technologies

Beside the components we already covered, we should also be aware that the silicon chips

are basically formed by many transistors (from millions to many billions) on the chips.

These transistors are connected in various ways to form logic gates, memories, and analog

circuits.

The transistor designs are dependent on the semiconductor technologies. Most of the

microcontrollers are designed with CMOS (Complementary Metal Oxide Semiconductor),

although some other technologies like Bi-polar CMOS could be used. There many

different types of CMOS processes, for example, you might have heard of 90 nm low

power (LP) process, 65 nm processes, etc. These classifications are based on the channel

length of the transistor geometry. The smaller the geometry value, the smaller the

transistor is and the faster it can switch. Although in general moving to smaller transistor

can reduce dynamic power, it can also significantly increase the leakage power.

Other challenges of moving to smaller transistor technologies are that there might not be

matching flash memories technologies available, and some of the analog block might not

be suitable for such advanced semiconductor processes. As a result, it is common for

microcontrollers to be lagging behind high-end SoC designs in terms of deploying latest

semiconductor technologies.

1.4 There is Something About ARM�.
1.4.1 Do ARM Make Chips?

This is possibly one of the most common questions from beginnersdwhere can I buy an

ARM microcontroller?

Sorry folks, ARM does not manufacture or sell chip products.4 In some occasions, ARM

do design test chips for R&D (for testing of latest low-power technologies) or for system-

level verification purposes. But ARM does not sell these chips as product.

ARM make money using a business model called Intellectual Properties (IP) licensing.

When a chip vendor wanted to create a chip, they need to license the processor design,

and pay a license fee to ARM. Then their chip designers can access to designs of the

ARM processors they have licensed, and integrate that into their chip designs. In most

cases, when the chip vendor starts selling the chip products, they need to pay ARM a

royal fee.

4 Apart from the canteen in ARM headquarter in Cambridge, which usually sell fish and chips on Friday
lunch time.

22 Chapter 1

1.4.2 What Else Does ARM Make?

In addition to the processor, ARM also provide various IP including the following:

• Bus infrastructure components based on AMBA� (Advanced Microcontroller Bus

Architecture) technology.

• Memory controller including DDR, static memory controllers (i.e., ARM CoreLink�

product range.

• Peripherals such as UART, SPI, GPIO, Timers, and system components such as DMA

controller.

• Graphic processors (e.g., Mali� GPU products), display processor, and video engine.

• Debug components for complex SoC (CoreSight� product range).

• Physical IP (Intellectual Properties) including cell libraries for many semiconductor

processes, memories and I/O pads (Artisan� product range).

• Software development tools including compilers, debugger, debug, and trace adopters.

• Development boards for ARM-based microcontroller (under Keil� brand) and FPGA

boards.

Some of the microcontrollers contain multiple ARM IP products such as processor, bus

infrastructure components, peripherals, memory controllers, and physical IP.

1.4.3 Why Do Not Chip Vendors Do Their Own Processor Designs?

The investment to develop a processor is quite large. This is particularly true for complex

processors, which requires huge amount of effort in verification. And for a microcontroller

product range to be successful, a microcontroller vendor will need to have multiple

processors to support different performance requirements in different applications.

In addition to the cost to create the processors, the microcontroller also need to have

development tools such as C compilers, debuggers, and middlewares like RTOS. Typically,

a chip design company will need to outsource part of these works because it is difficult to

build up multiple development teams to cover everything.

By using ARM processors, the microcontroller vendors can save a large fortune in the

development cost, and can rely on the ARM ecosystem to gain access to the development

tools from various providers. And since many software developers know about ARM

processors, they can gain customer base easily.

And when a microcontroller vendor needs to expand the product range by moving to a

higher performance microcontroller, they can license a higher performance processor from

ARM, and there is no need for them to do the R&D to create a new processor product for

the new market.

Introduction 23

There is a disadvantage of course: while a company can gain access to high-quality ARM

processors by licensing them, other companies can also license the same ARM processors

and built competitive products. So these companies need to work hard to make sure that

their products have high-quality peripherals, low-power designs, and comprehensive

software solutions in order to compete.

1.4.4 What is Special About the ARM Ecosystem?

What makes the ARM architecture special compared to proprietary architectures? Aside

from the processor technology, the ecosystem surrounding ARM product development

plays a very important role.

As well as working directly with the microcontroller vendors that offer ARM processor-

based devices, ARM works closely with vendors in the ecosystem that provide support for

those devices. These include vendors providing compilers, middleware, operating systems,

development tools vendors, training and design services companies, distributors, academic

researchers, and so on.

The ARM ecosystem allows a lot more choices. Apart from choice of microcontroller

devices from different vendors, you also have more choices on software tools. For

example, you can get development tools from Keil�, IAR Systems, TASKING,

Atollic, Rowley Associates, GNU C compiler, etc. As a result, software developers have

much better freedom in project development. Examples of using some of these compiler

products are covered in Chapters 14e18.

ARM also invests in various open-source projects to help open-source communities to

develop software on ARM platforms. The combined effort of all these parties not only

makes the ARM products better, it also results in a lot more choices of hardware and

software solutions.

The ARM ecosystem also enables better knowledge sharing, which helps developers

to build products on ARM microcontrollers quicker, and more effectively. Aside from

many Internet resources available, you can also find expert advices on Web-based

technical forums from ARM (some links are shown at the end of this chapter),

ARM microcontroller vendors and others. Regular ARM microcontroller training

courses are also organized by microcontroller vendors, distributors, or other training

service providers. The open nature of the ARM ecosystem also enables healthy

competitions. As a result users are getting high-quality products at competitive prices

(Figure 1.10).

24 Chapter 1

1.5 Resources on Using ARM� Processors and ARM Microcontrollers
1.5.1 On the ARM Web Pages

The main ARM Web page (www.arm.com) provides easy access to general product

information. Detail documentation can be found in a section of ARM Web page called

Info Center (http://infocenter.arm.com/). This page contains various specifications,

application notes, knowledge articles, etc. Table 1.6 lists some of the reference documents

about the details of the Cortex�-M0 and Cortex-M0þ processors.

The Info Center also has a number of application notes that can be useful for

microcontroller software developers (Table 1.7).

For readers who are interested in the details of integrating Cortex-M processors into SoC

designs or FPGA, the document listed in Table 1.8 might be useful.

One important part of the ARM Web site is the ARM Connected Community (http://

community.arm.com). The ARM Connected Community Web page (Figure 1.11) provides

wide range of resources, and is also contributed by a global network of companies aligned

to provide a complete solution, from design to manufacture and end use, for products

based on the ARM architecture. There is also user forums, and places for individuals to

post their articles and blogs about their views on ARM technologies.

ARM

Silicon
partners

EDA tool
vendors

Choices
More choices of microcontrollers
More choice on development tools
More development boards
More open source project support
More OS support
More middleware and software solutions

Knowledge sharing
Resources on the Internet
Large user community
Technical forums
Seminars and webinars (many free)
Strong supports

Development
tools vendors

Distributors

Software &
middleware
vendors

Open source
communities

Researchers,
academics

Design
services &
training

ARM ecosystem

Users

Figure 1.10
The ARM� ecosystem.

Introduction 25

http://www.arm.com
http://infocenter.arm.com/
http://community.arm.com
http://community.arm.com

Joining the ARM Connected Community is easy; details are on the ARM Web site

http://community.arm.com.

1.5.2 Resources from Microcontroller Vendors

The documentation and resources from the microcontroller vendors is essential in

embedded software development. Typically you can find the following:

• Reference manuals for the microcontroller chips. They provide the programmer’s model

of the peripherals, memory maps, and other information needed for software

development.

Table 1.6: Reference ARM� document on the Cortex�-M0 and Cortex-M0þ processors

Document Reference

ARMv6-M architecture reference manual
This is the specification of the architecture on which Cortex-M0 and Cortex-M0þ processors
are based. It contains detailed information about the instruction set, architecture-defined
behaviors, etc. This document can be accessed via the ARM Web site after a simple
registration process.

1

Cortex-M0 devices Generic user Guide
This is a user guide written for software developers using the Cortex-M0 processor. It provides
information on the programmer’s model, details on using core peripherals such as NVIC, and
general information about the instruction set.

2

Cortex-M0þ devices Generic user Guide
This is a user guide written for software developers using the Cortex-M0þ processor. It
provides information on the programmer’s model, details on using core peripherals such as
NVIC, and general information about the instruction set.

3

Cortex-M0 technical reference manual
This is a specification of the Cortex-M0 processor product. It contains implementation-
specific information such as instruction timing and some of the interface information (target
for silicon designers).

4

Cortex-M0þ technical reference manual
This is a specification of the Cortex-M0þ processor product. It contains implementation-
specific information such as instruction timing and some of the interface information (target
for silicon designers).

5

Procedure call Standard for the ARM architecture
This document specifies how software code should work in procedure calls. This information
is often needed for software projects with mixed assembly and C languages.

6

Table 1.7: ARM� Application Notes that can be useful for microcontroller software developers

Document Reference

AN237dMigrating from 8051 to Cortex microcontrollers 7
AN321dARM Cortex-M programming Guide to memory Barrier instructions 8

26 Chapter 1

http://community.arm.com

Table 1.8: ARM� document that can be useful for System-on-a-Chip (SoC) or Field

Programmable Gate Array (FPGA) designers

Document Reference

AMBA� 3 AHB-Lite protocol specification
This is the specification for the AHB (Advanced High-performance Bus) Lite protocol, an on-
chip bus protocol used on the bus interfaces of the Cortex�-M processors. AMBA (advanced
Microcontroller bus architecture) is a collection of on-chip bus protocols developed by ARM
and is used by many IC design companies.

11

AMBA 3 APB protocol specification
This is the specification for the APB (advanced Peripheral bus) Lite protocol, an on-chip bus
protocol used for connecting peripherals to the internal bus system, and to connect debug
components to the Cortex-M processors. APB is part of the AMBA specification.

12

CoreSight� technical introduction
An introductory guide for silicon/FPGA designers who want to understand the basics of the
CoreSight debug architecture. The debug system for the Cortex-M processors is based on the
CoreSight debug architecture.

13

Figure 1.11
The ARM� connected community home page.

Introduction 27

• Data sheets of the microcontrollers. They contain the information on package, pin

layout, operation conditions (e.g., temperature), voltage and current characteristics, and

other information you may need when designing the PCB.

• Application notes. These contain examples of using the peripherals or features on the

microcontrollers, or information on handling specific task (e.g., flash programming).

You might also find additional resources on development kits, and additional firmware

libraries.

1.5.3 Resources from Tool Vendors

Very often the software development tools vendors also provide lots of useful information.

In addition to tool chain manuals (e.g., compiler, linker), you can also find application

notes. For example, on the Keil� Web site (http://www.keil.com/appnotes/list/arm.htm),

you can find various tutorials of using Keil MDK-ARM with Cortex-M development kits,

as well as some application notes that cover some general programming information.

1.5.4 Other Resources

On social media web sites like YouTube (e.g., https://www.youtube.com/user/ARMflix),

you can also find various tutorials on using Cortex-M-based products such as an

introduction to microcontroller products and software tools.

There are plenty of software vendors that provide software products like RTOS for

Cortex-M processors. Often these companies also provide useful documentation on their

Web sites that shows how to use their products as well as general design guidelines.

Do not forget the distributor that provides you with the microcontroller chips can also be a

useful source of information.

28 Chapter 1

http://www.keil.com/appnotes/list/arm.htm
https://www.youtube.com/user/ARMflix

CHAPTER 2

Technical Overview

2.1 What are the Cortex®-M0 and Cortex-M0+ Processors?

The ARM� Cortex-M0 processor and Cortex-M0þ processors are both 32-bit processors.

Their internal registers in the register banks, data paths, and the bus interfaces are all 32

bit. Both of them have a single main system bus interface, therefore they are considered as

Von Neumann bus architecture.

The Cortex-M0þ processor has an optional single cycle I/O interface that is primarily for

faster peripheral I/O register accesses. Therefore, it is possible to say the Cortex-M0þ
processor has limited Harvard bus architecture capability as instruction access and I/O

register accesses could be carried out at the same time, but it is important to understand

that although there can be two bus interfaces, the memory space is shared (unified) and

therefore the extra bus interface does not bring additional addressable memory space.

The key characteristics of the Cortex-M0 and Cortex-M0þ processors are as follows:

Processor pipeline

• The Cortex-M0 processor has a three-stage pipeline (fetch, decode, and execute)

• The Cortex-M0þ processor has a two-stage pipeline (fetch þ predecode, decode þ
execute)

Instruction set

• The instruction set is based on Thumb� Instruction Set Architecture (ISA). Only a

subset of the Thumb ISA is used (56 of them). Most of the instructions are 16 bit in

size, only a few of them are 32 bit.

• In general, the Cortex-M processors are classified as Reduced Instruction Set

Computing although they have instructions of different sizes.

• Support optional single cycle 32 bit � 32 bit multiply, or a smaller multicycle multi-

plier for designs that need small silicon area.

Memory addressing

• 32-bit addressing supporting up to 4 GB of memory space

• The system bus interface is based on an on-chip bus protocol called AHB-Lite,

supporting 8-bit, 16-bit, and 32-bit data transfers

• The AHB-Lite protocol is pipelined, support high operation frequency for the system.

Peripherals can be connected to a simpler bus based on APB protocol (Advanced

Peripheral Bus) via an AHB to APB bus bridge.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00002-3

Copyright © 2015 Elsevier Inc. All rights reserved. 29

http://dx.doi.org/10.1016/B978-0-12-803277-0.00002-3

Interrupt Handling

• The processors include a built-in interrupt controller called the Nested Vectored Interrupt

Controller (NVIC). This unit handles interrupt prioritization and masking functions. It

supports up to 32 interrupt requests from various peripherals (chip design dependent), an

additional Non-Maskable Interrupt (NMI) input, and also support a number of system

exceptions.

• Each of the interrupts can be set to one of the four programmable priority levels. NMI

has a fixed priority level.

Operating Systems (OS) support

• Two system exception types (SVCall and PendSV) are included to support OS operations.

• An optional 24-bit hardware timer called SysTick (System Tick Timer) is also included

for periodic OS time keeping.

• The Cortex-M0þ processor support privileged and unprivileged execution level

(optional to chip designers). This allows OS to run some of the application tasks with

unprivileged execution level and impose memory access restrictions to these tasks.

• The Cortex-M0þ processor has an optional Memory Protection Unit (MPU) to allow

OS to define memory access permission for application tasks during run time.

Low Power support

• Architecturally two sleep modes are defined as normal sleep and deep sleep. The exact

behaviors in these sleep modes are device specific (depends on which chip you are

using). Chip designers can also add device specific power saving mode control registers

to expand the number of sleep modes or to allow the sleep mode behavior for each part

of the chip to be defined.

• Sleep mode can be entered using WFI (Wait for Interrupt) or WFE (Wait for Event)

instructions, or using a feature called Sleep-on-Exit to allow the processor to enter sleep

automatically.

• Additional hardware level supports to enable chip designers to create better power

reductions based on the sleep mode features, for example, the Wake-up Interrupt

Controller (WIC).

Debug

• The debug system is based on the ARM CoreSight� Debug Architecture. It is a scalable

debug architecture that can support simple-single processor designs to complex multi-

processor designs.

• A debug interface that can either be based on JTAG protocol (4 or five pins), or Serial

Wire Debug protocol (2 pins). The debug interface allows software developers to access

debug features of the processors.

• Support up to four hardware breakpoints, two data watchpoints, and unlimited software

breakpoint using BKPT (breakpoint) instruction.
• Support basic program execution profiling using a feature called Program Counter (PC)

Sampling via the debug connection.

30 Chapter 2

• The Cortex-M0þ Processor has an optional feature called Micro Trace Buffer (MTB),

this provide instruction trace.

The Cortex-M Processors are configurable designs. They are delivered to chip designers in

form of Verilog source code files with a number of parameters that chip designers can

select. In this way, chip designers can omit some of the features that are unnecessary for

their projects to save power and reduce silicon area. As a result, you can find

microcontrollers based on the Cortex-M0 and Cortex-M0þ processor with different number

of supported interrupts, and Cortex-M0þ processor with and without the optional MPU.

During the design process (Figure 2.1), the processor is integrated with the rest of the

system and converted to a design composed of logic gates and then transistors layout using

chip design tools. The timing characteristics like maximum clock frequency are defined at

these stages based on the semiconductor process selected for the project and various

design constraints. In addition, the exact maximum speed and power consumption of the

Cortex-M0 or Cortex-M0þ processor on different products can also be different from

each other.

2.2 Block Diagrams

A simplified block diagram of the Cortex�-M0 processor is shown in Figure 2.2.

The processor core contains the register banks, ALU, data path, and control logic. It is a

three-stage pipeline design with fetch stage, decode stage, and execution stage. The

register bank has sixteen 32-bit registers. A few of the registers in the register bank have

special usages (e.g., PC). The rest are available for general data processing.

The NVIC accepts up to 32 interrupt request signals and a NMI input. It contains the

functionality required for comparing priority between interrupt requests and current

priority level so that nested interrupts can be handled automatically. If an interrupt is

accepted, the NVIC communicates with the processor so that the processor can execute the

correct interrupt handler.

tuoyalrotsisnarTtsiltenetagcigoLedocgolireV

module mux (
 input wire A,
 input wire B,
 input wire Sel,
 output wire Y
)
assign Y = (Sel) ? B : A;
endmodule

Figure 2.1
Simplified chip design flow.

Technical Overview 31

The WIC is an optional unit. In low-power applications, the microcontroller can enter

standby state with most parts of the processor powered down. Under this situation, the

WIC can perform the function of interrupt masking while the NVIC and the processor

core are inactive. When an interrupt request is detected, the WIC informs the power

management to power up the system so that the NVIC and the processor core can then

handle the rest of the interrupt processing.

The debug subsystem contains various functional blocks to handle debug control, program

breakpoints, and data watchpoints. When a debug event occurs, it can put the processor

core in a halted state so that embedded developers can examine the status of the processor

at that point.

The internal bus system, data path in the processor core, and the AHB-Lite bus interface

are all 32-bit wide. AHB-Lite is an on-chip bus protocol used in many ARM� processors.

This bus protocol is part of the AMBA� (Advanced Microcontroller Bus Architecture)

specification, which is a bus architecture developed by ARM and widely used in the IC

design industry.

Nested
Vector

Interrupt
Controller

(NVIC)

Processor
core

Internal Bus System

Debug
subsystem

Bus Interface

Wakeup
Interrupt

Controller
(WIC)

Interrupt
requests and

NMI

JTAG /
Serial-Wire

Debug
Interface

Connection
to debugger

AHB LITE
bus interface

unit

Memory and
Peripherals

Cortex-M0
Processor

Power management interface

Processor
System

(Integration
layer)

Figure 2.2
A simplified block diagram of the Cortex�-M0 Processor.

32 Chapter 2

The JTAG or Serial Wire interface units provide access to the bus system and debugging

functionalities. The JTAG protocol is a popular 4-pin (5-pin if including a reset signal)

communication protocol commonly used for IC and PCB testing. The Serial Wire protocol

is a newer communication protocol that only requires two wires, but it can handle the same

debug functionalities as JTAG. As illustrated in the block diagrams (Figures 2.2 and 2.3),

the debug interface module is separated from the processor design. This is required in the

CoreSight� Debug Architecture where multiple processors can share the same debug

connections. There are a number of additional signals for multiprocessor debug support not

shown in the diagrams.

The Cortex-M0þ processor is very similar (as shown in Figure 2.3) to Cortex-M0

processor. The only addition is the adding of the optional MPU, single cycle I/O interface

bus and the interface for the MTB. The processor core internal design is also changed to a

two-stage pipeline arrangement.

Nested
Vector

Interrupt
Controller

(NVIC)

Processor core

Internal Bus System

Debug
subsystem

Bus Interface

Wakeup
Interrupt

Controller
(WIC)

Interrupt
requests and

NMI

JTAG /
Serial-Wire

Debug
Interface

Connection
to debugger

AHB LITE
bus interface

unit

Memory and
Peripherals

Cortex-M0+
Processor

Power
management

interface

Processor
System

(Integration
layer)

MPU

Single Cycle
I/O interface

Micro Trace
Buffer (MTB)

Trace
Interface

SRAMAHB

Single Cycle
I/O interface

unit

Fast peripherals

Figure 2.3
A simplified block diagram of the Cortex�-M0þ processor.

Technical Overview 33

The MPU is a programmable device used to define access permission of the memory map.

In some of the applications where an OS is used, application tasks can be executed with

an unprivileged execution level with restrict memory access defined by the MPU, which is

programmed by the OS.

The single cycle I/O interface provides another bus interface with faster access compared to

the AHB-Lite system bus (pipelined operation). The MTB is used to provide instruction trace.

In both Cortex-M0 and Cortex-M0þ processors, a number of components in the

processors are optional. For example, the debug support, MPU and the WIC are all

optional. Some other components like the NVIC are configurable: allowing chip designers

to define the features available, for example, the number of interrupt requests (IRQ).

2.3 Typical Systems

As you can see from the block diagrams, the Cortex�-M0 and Cortex-M0þ processors do

not contain memories and peripherals. Chip designers need to add these components to the

designs. As a result, different Cortex-M processor-based microcontrollers can have

different memory sizes, address map, peripherals, interrupt assignment, etc.

In a simple microcontroller design based on a Cortex-M processor, the design would

consist of the following:

• A memory for program code storage, usually a Read-Only-Memory (ROM) component,

or reprogrammable memory technologies such as flash memory.

• A readewrite memory for data (including variables, stack, etc.), usually based on Static

Random Access Memory (SRAM).

• Various types of peripherals.

• Bus infrastructure components for joining the processor to all the memories and

peripherals.

In some cases, there can also be a separate ROM device with boot code to boot up the

microcontroller before the program in the user flash is executed. This is typically called

boot ROM or boot loader.

For a simple design with Cortex-M0 processor, the design could look like the one shown

in Figure 2.4.

A typical design based on the Cortex-M0 processor might partition the bus system into

two parts, which are as follows:

• System bus connected to the memories including ROM, flash memory (for user program

storage), the SRAM, a few number of peripherals, and a bus bridge to the peripheral

bus system.

34 Chapter 2

• The peripherals are connected to the peripheral bus, which might have a different oper-

ating frequency compared to the system bus.

It is quite common for some of the peripherals to be connected to a separated peripheral

bus, which is linked to the main system bus via a bus bridge. This bus protocol for the

peripheral bus is typically based on APB, which is a bus protocol defined in the AMBA�.

The uses of a separated APB peripheral bus are as follows:

• Allows lower hardware cost because the APB protocol (non-pipelined operations) is

simpler than AHB-Lite (pipelined operations)

• Allows the peripheral bus to run at a different clock frequency than the main system bus

• Avoids large combinational logic in the bus infrastructure for the main system bus,

which could become the bottle neck in terms of getting to get high operating frequency.

Many peripherals might present in a microcontroller designs and the bus fabric for pe-

ripherals can become quite large.

Another group of important connections are the interruptsdA number of peripherals can

generate interrupt requests, including the General Purpose Input/Output (GPIO) modules.

In most microcontroller designs, external devices connected to certain GPIO pins can

generate interrupt request to the processor via some additional conditioning and

synchronization logic.

Processor

Flash
Memory SRAMBoot ROM

System bus (AHB Lite)

Bus
Bridge

Peripheral bus (APB)

UART SPI

High Speed
Peripherals
(e.g. GPIO)

Other
peripherals

Timers ADCDAC

Digital Peripherals

Analogue / Mixed
Signal Peripherals

Digital logic

Memories

Interrupts
(IRQs, NMI)

I/O pads

IRQs

IRQs

Figure 2.4
A simple system with the Cortex�-M0 Processor.

Technical Overview 35

For a system based on the Cortex-M0þ processor, the system design can be very similar,

like the one shown in Figure 2.5.

In this design, the high-speed peripherals are moved to the single cycle I/O interface bus

for faster I/O performance, and the MTB is added between the AHB-Lite system bus and

the SRAM for support instruction trace capture.

Potentially the processor might not be the only component in the system that can generate

bus transactions. In many microcontroller products, there is also a component called Direct

Memory Access (DMA) controller. Once programmed, the DMA controller can carry out

memory accesses on requests from peripherals without processor intervention (Figure 2.6)

The DMA controller can perform data transfers between memory and peripherals, or

between memories (e.g., to accelerate memory copy). This is commonly needed for

microcontrollers with high bandwidth communication interface like Ethernet or USB.

However, it can also benefit some low-power applications, for example, by avoiding

waking up the processor from sleep mode to collect small amount of data from

peripherals.

Processor

Flash
Memory

SRAM

Boot ROM

System bus (AHB Lite)

Bus
Bridge

Peripheral bus (APB)

UART SPI

High Speed
Peripherals
(e.g. GPIO)

Other
peripherals

Timers ADCDAC

Digital Peripherals

Analogue / Mixed
Signal Peripherals

Digital logic

Memories

Interrupts
(IRQs, NMI)

I/O pads

Single Cycle I/O
interface bus

MTB

Trace
interface

IRQs

IRQs

Figure 2.5
A simple system with the Cortex�-M0þ Processor.

36 Chapter 2

2.4 What Is ARMv6-M Architecture?

Both the Cortex�-M0 processor and Cortex-M0þ processor are based on the ARMv6-M

architecture. In ARM� processors, the term architecture can refer to the following two

areas:

• Architecture: ISA (Instruction Set Architecture), programmer’s model (what the soft-

ware sees) and debug methodology (what the debugger sees). The ARMv6-M is one of

the architectures available.

• Microarchitecture: implementation-specific details such as interface signals, instruction

execution timing, pipeline stages. Microarchitecture is processor design-specific. For

example, the Cortex-M0 processor has a three-stage pipeline microarchitecture.

Various versions of the ARM Architecture exist for different ARM processors released

over the years. For example, the Cortex-M3 and Cortex-M4 processors are both

implementations of ARMv7-M Architecture. An ISA can be implemented with various

implementations of microarchitecture, for example, different number of pipeline stages,

different type of bus interface protocol, etc.

Processor

Flash
Memory

SRAM

Boot ROM

System bus (AHB Lite)

Bus
Bridge

Peripheral bus (APB)

UART SPI

High Speed
Peripherals
(e.g. GPIO)

Other
peripherals

Timers ADCDAC

Digital Peripherals

Analogue / Mixed
Signal Peripherals

Digital logic

Memories

Interrupts
(IRQs, NMI)

I/O pads

Single Cycle I/O
interface bus

MTB

Trace
interface

DMA
Controller

Configuration
Registers

Figure 2.6
A system with the Cortex�-M0þ Processor and a DMA Controller.

Technical Overview 37

The details of the ARMv6-M architecture are documented in the ARMv6-M Architecture

Reference Manual (also known as ARMv6-M ARM). This document covers the

following:

• Instruction set details

• Programmer’s model

• Exception model

• Memory model

• Debug architecture

This document can be obtained from ARM after a simple registration process. However,

for general programming, it is not necessary to have the full architecture reference manual.

ARM provides alternate documents for software developers called Cortex-M0/M0þ/M3/

M4/M7 Devices Generic User Guides. This can be found in the ARM Web site:

http://infocenter.arm.com.

/ Cortex-M series processors

/ Cortex-M0/M0þ/M3/M4/M7

/ Revision number

/ Cortex-M0/M0þ/M3/M4/M7 Devices Generic User Guide

Some of the microarchitecture information such as instruction execution timing

information can be found in the Technical Reference Manuals of the Cortex-M processors,

which can be found on the ARM Web site. Other microarchitecture information like the

processor interface details are documented in other Cortex-M product documentation

which is normally accessible only by silicon chip designers.

Theoretically, a software developer does not necessarily need to know anything about the

microarchitecture to develop software for the Cortex-M products. But in some cases,

knowing some of the microarchitecture details could help. This is particularly true for

optimizing software or even C compilers for best performance.

2.5 Software Portability Between Cortex®-M Processors

The Cortex-M0, Cortex-M0þ, and Cortex-M1 Processors are based on the ARMv6-M

Architecture, whereas the Cortex-M3, Cortex-M4, and the Cortex-M7 Processors are based

on the ARMv7-M Architecture. As shown in Figure 1.4, they have different instruction set

support.

The Cortex-M0 and Cortex-M0þ Processors have the exact same instruction set and

similar programmer’s model (Cortex-M0þ Processor have optional support for

38 Chapter 2

http://infocenter.arm.com

unprivileged execution level and MPU, whereas Cortex-M0 processor does not). However,

they have different physical characteristics like instruction timing and have different

system features.

The Cortex-M3 and Cortex-M4 Processors are based on the ARMv7-M architecture and its

Thumb�-2 instruction set is a superset of the instruction set used in ARMv6-M. The

programmer’s model is also similar to ARMv6-M. As a result, in most cases software

developed for the Cortex-M0 and Cortex-M0þ can run on the Cortex-M3 and Cortex-M4

Processors without changes, assuming the system has same memory maps and peripherals.

The Cortex-M7 processor supports all instructions available in the Cortex-M4 processor,

and optionally supports double precision floating point instructions.

The similarity between the Cortex-M processors provides various benefits. First, it

provides better software portability. In most cases, C programs can be transferred between

these processors without changes. And binary images from Cortex-M0 or Cortex-M1

processors can run on a Cortex-M3 processor due to its upward compatibility

(Figure 2.7).

The second benefit is that the similarities between Cortex-M processors allow development

tool chains to support multiple processors easily. Apart from similarities on instruction set

and programmer’s model, the debug architecture is also similar.

The consistency of instruction set and programmer’s model also make it easier for

embedded programmers to migrate between different products and projects without facing

a sharp learning curve.

Cortex-M1

Cortex-M3

Cortex-M0+
Cortex-M0

ARMv6-M
Architecture

ARMv7-M
Architecture

FPGA
prototyping

ASIC
migration

Upward
compatible Cortex-M4

Upward
compatible

Easy
software
porting

Upward
compatible

Easy
software
porting

Cortex-M7

ARMv7E-M
Architecture

ARMv7E-M
Architecture

Excellent performance, full
feature microcontrollers with
DSP capability and single/

double precision floating point

High performance, low power
microcontrollers with DSP

capability and single
precision floating point

High performance, feature
rich and ultra low power

microcontrollers

FPGA optimized

Ultra low power and
low cost

microcontrollers,
mixed signal SoC

Figure 2.7
Compatibility between different Cortex�-M Processors.

Technical Overview 39

2.6 The Advantages of the ARM® Cortex®-M0
and Cortex-M0+ Processor

2.6.1 Low Power and Energy Efficiency

One of the key targets of the Cortex-M0 and Cortex-M0þ processors is low power. The

result is that the Cortex-M0 processor consumes only 12.5 mW/MHz with 90 nm

semiconductor process, or 66 mW/MHz with 180 nm semiconductor process. For the

Cortex-M0þ processor, the energy efficiency is even betterdonly 9.8 mW/MHz with

90 nm semiconductor process, or 50 mW/MHz with 180 nm semiconductor process. This is

very low-power consumption for a 32-bit processor. How was this target achieved?

In order to lower the power consumption, ARM had put a lot of effort into various areas to

ensure the Cortex-M0 and Cortex-M0þ processors could reach their low-power target.

These areas included the following:

• Small gate count

• High efficiency

• Low-power features (e.g., sleep modes)

• Logic cell enhancement

Let us take a look at these areas one by one.

Small Gate Count

The Cortex-M0/M0þ processor’s small gate count characteristic directly reduces the active

current and leakage current of the processor. During the development of these processors,

various design techniques, and optimizations were used to make the circuit size as small

as possible. Each part of the design was carefully developed and reviewed to ensure the

circuit size is small (it is just a bit like writing an application program in assembly to

achieve the best optimization). This allows the gate count to be 12k gates at minimum

configuration. In practice, the gate count would be higher when including more features.

This is about the same size or smaller than typical 16-bit microprocessors, while having

more than double the system performance.

High efficiency

By having a highly efficient architecture, embedded system designers can develop their

products so that they can operate at a lower clock frequency while still being able to

provide the required performance, reducing the active electric current of the products. This

advantage can be used in conjunction with the sleep mode features in the Cortex-M0/M0þ
processor so that an embedded system can stay in low-power mode more often to reduce

the average power consumption without losing performance.

40 Chapter 2

Sleep Modes and Low-Power Features

The Cortex-M processors have a number of low-power features to allow designers to

create very low-power applications. First, the processors have two architectural-defined

sleep modes “Sleep” and “Deep sleep.” In normal designs, the number of sleep modes can

be further expanded using device-specific power control registers.

The sleep modes can be entered using special instructionsd“WFE” and “WFI,” or via

“Sleep-on-Exit” feature, which causes the processor to run only when an interrupt service

require servicing.

Various hardware level features also allow chip designers to fully utilize their low-power

capability of the design. For example, the Cortex-M processors support a unique feature

called the WIC, which allows most parts of the processor system to be powered down

while still allowing interrupt events to be detected, and allow the systems to resume

operation almost instantaneously when required. This greatly reduces the leakage current

(static power consumption) of the system during sleep.

In addition, the design of the Cortex-M0 processor is also carefully developed so that some

parts of the processor like the debug system can be switched off when it is not required.

Logic Cell Enhancements

In recent years there have been enhancements in logic cell designs. Apart from pushing

logic gate designs to smaller transistor size, the Physical IP (Intellectual Property) division

in ARM has also been working hard to find innovative ways to reduce power consumption

in embedded systems. One of the major developments is the introduction of Ultra Low

Leakage (ULL) logic cell library. The first ULL cell library is developed with 0.18 um

process. Apart from reducing the leakage current, the new cell library also supports special

state retention cells that can hold state information while the rest of the system is powered

down. ARM also works with leading EDA tools vendors to allow chip vendors to make

use of these new technologies in their chip designs.

2.6.2 High Code Density

Since most of the instructions are only 16-bit in size, the Cortex-M processors have very

high code density. This enables an application to be squeezed into a microcontroller with a

smaller flash memory. By doing that a designer can use a cheaper microcontroller for the

application, and in some cases reduce the power consumption because the flash memory

required is smaller.

The smaller flash memory size requirement can also bring additional benefit such as lower

electromagnetic interference due to lower power, and smaller silicon package.

Technical Overview 41

2.6.3 Low Interrupt Latency and Deterministic Behavior

In many microcontroller applications, low interrupt latency is an essential requirement. The

interrupt latency of the Cortex-M0 processor is only 16 clock cycles and the Cortex-M0þ
processor has an interrupt latency of 15 cycles. These latency figures include the stacking

of a certain number of registers to the stack, so the Interrupt Service Routines (ISRs) can

start working immediately without additional software overhead to save register states.

The NVIC also automatically handle the prioritization and locating of the ISR starting

addresses via a vector table, so there is no software overhead for identifying which IRQ to

serve, or to branch to the correct ISR. When combining with good program execution

efficiency, the overall interrupt responsiveness is much better than many 8-bit and 16-bit

microcontrollers.

Another key characteristic in this aspect is the deterministic behavior; when an interrupt

arrive, the interrupt latency remain constant and is independent of what instruction the

processor is executing. The only factor that affects interrupt latency is the memory wait states.

2.6.4 Ease of Use

When compared to other processors, including many 32-bit processors, the ARM Cortex

microcontrollers are much easier to use. Most of the software code for the ARM Cortex

microcontrollers can be written in C, allowing shorter software development time as well as

improving software portability. Even if a software developer decided to use assembly code,

the instruction set is fairly easy to understand. Furthermore, since the programmer’s model

is very similar to ARM7TDMI�, for those people who are familiar with ARM processors

already, it will not take long for them to become familiar with the Cortex microcontrollers.

To make software development easier, ARM also defines a set of API (Application

Programming Interface) as part of the CMSIS-CORE (Cortex Microcontroller Software

Interface Standard) software framework. These APIs defines a consistent way to access the

processor peripherals including NVIC. The CMSIS projects also included a free DSP

library for all the Cortex-M Processors, a set of APIs for RTOS, and additional solutions

to make software development easier.

To make it even better, the Cortex-M-based microcontrollers and the CMSIS-CORE

software framework are supported by wide range of easy-to-use development suites.

2.6.5 System-Level Features and OS Support Features

The Cortex-M Processors are designed to support wide range of applications. As a result,

there is a range of system-level features including low-power support and flexible interrupt

management with NVIC. Some of the system-level features are at hardware level and

42 Chapter 2

invisible to software developers. For example, one of these important system-level features

is the optional single cycle I/O interface bus on the Cortex-M0þ processor. This provides

higher performance in I/O operations as well as enabling better energy efficiency in I/O

intensive applications.

Many of the system features are shared between multiple Cortex-M processors. For

example, the Cortex-M0þ processor allows the vector table to be relocated to allow better

flexibility in the memory map of the microcontroller devices. This feature is also available

in the Cortex-M3 and Cortex-M4 Processors.

In addition, the Cortex-M Processors are designed to support various types of embedded

OS efficiently. A number of features are included to support OS such as a system tick

timer called SysTick, and banked stack pointer for efficient process stack management.

These OS features are available in all the Cortex-M Processors.

2.6.6 Comprehensive Debug Features

A number of features are also available to make software development and troubleshooting

easier. In addition to standard debug features like halting, single stepping, reset,

breakpoints, and watchpoints, the Cortex-M Processors also allow the debugger to access

to the memory space even when the processor is running. In addition, the Serial Debug

protocol support enable all these debug features to be available with just two pins. For

those who prefer traditional JTAG protocol, such option is also available.

The Cortex-M0þ processor also support the optional MTB which provides instruction

trace feature. This is very powerful and is not available in many traditional 8-bit and

16-bit microcontrollers.

The debug systems on the Cortex-M Processors are also very scalable, making these

processors suitable for many multiprocessor designs.

2.6.7 Configurability, Flexibility, and Scalability

The Cortex-M Processors are very flexible. A number of configuration options are

available to the chip designers so that they can implement the chips with only the features

they need. For example, for system that does not require the MPU, the chip designer can

omit the MPU from the design by setting a parameter.

Although the instruction set supported by the Cortex-M0 and the Cortex-M0þ processors is

quite a simple instruction set, it is very efficient for most general data processing and can

handle majority of the microcontroller applications very well. The system-level features also

enable these processors to be used in wide range of applications, including many applications

that requires very deterministic responses and very flexible memory system designs.

Technical Overview 43

The Cortex-M0 and Cortex-M0þ processors are also very scalable; they can be used in

very small simple microcontroller designs to as a part of a much larger multiprocessor

system. The bus architecture (based on AMBA� AHB-Lite) support complex bus systems

with additional bus interconnect components, and the debug architecture also allows

multiple processors to be debugged using a single debug interface. There are also debug

synchronization interface to allow debug events to be shared between multiple processors,

and enable the debugger to control multiple processors at the same time.

2.6.8 Software Portability and Reusability

One of the key advantages of using the Cortex-M processors is that almost everything can

be written in C/Cþþ or other high-level programming languages. As a result, the software

can be very portable because there is no need to use much assembly code or tool chain-

specific keywords, which are not portable.

With the help of the CMSIS projects, the software portability is even higher than

traditional microcontrollers. You can port an application from one Cortex-M-based

microcontroller to another fairly easily. And many middleware developed for the Cortex-M

Processors can be used on wide range of microcontrollers.

You can even port a number of source code files from PC (Personal Computer)

environment and compile it with an ARM microcontroller development suite, add device

driver code and get things running.

Such portability also means that you can reuse many of your program codes easily

(reusable) and provides higher Return of Investment.

2.6.9 Wide Range of Product Choices

In 2014, there are more than 3000 microcontroller devices based on the ARM Cortex-M

Processors. For the microcontrollers based on Cortex-M0 and Cortex-M0þ processors,

they are available from Freescale, NXP, Nuvoton, ST Microelectronics, Infineon, Silicon

Labs, Atmel, Nordic Semiconductor, Cypress Semiconductor, Sonix Semiconductor, etc.

There are also specialized ASSPs based on the Cortex-M0/M0þ Processors including wireless

communication chips (e.g., Zipbee, Bluetooth products), sensors, touch screen sensors, etc.

In addition to the chip products based on the Cortex-M processors, there are also wide

range of the following:

• Compiler tool chains available for ARM (e.g., ARM/Keil�, mbed�.org, IAR Systems,

Green Hill Systems, Atollic Truestudio, Rowley Associates Crosswork for ARM,

Raisonance ride7, Mentor Graphics Sourcery CodeBench, Tasking VX-Toolset, mikroC

44 Chapter 2

Pro for ARM, ImageCraft ICCV8 for ARM Cortex, Cosmic ARM/Cortex-M Cross

Development tools, Atmel Studio, Cypress PSoC Creator, Infineon DAVE, gcc, Coocox).

• Debug tools (e.g., Segger, Lauterbach, iSystem, and many of the companies that

provide compiler tool chains).

• Wide range of embedded OS.

• Java platforms (Oracle Java ME, IS2T MicroEJ).

• Middleware (e.g., communication protocol stack, GUI library).

• Hardware development boards.

As a result, it is easy to find product development solutions based on ARM Cortex-M

architecture.

2.6.10 Wide Ecosystem Support

A broad ecosystem is one of the key factors of ARM’s success. In addition to working

closely with various silicon partners, ARM also works closely with EDA companies,

software solution providers, open source communities, and so on. For example, ARM has

been investing in improving gcc (GNU Compiler Collection) for ARM Cortex processors,

so that various companies can create high quality and successful microcontroller tool

chains with gcc.

ARM is also working with a number of academic organizations including a number of

universities to help these organizations teaching microcontrollers and processor architecture

subjects. For example, in February 2014, ARM University Program and Partners launched

“Lab-in-a-Box” for Participating Universities Worldwide. There are also various companies

that provide technical trainings, design services, consultancy services, etc.

Since the technical details of the ARM Cortex-M Processors are very open and easy to

access, you can find various design solutions (e.g., example codes, tutorials, books) for

microcontroller based on ARM Cortex-M Processors easily.

2.7 Applications of the Cortex®-M0 and Cortex-M0+ Processors
2.7.1 Microcontrollers

The most obvious applications of the Cortex-M0 and Cortex-M0þ Processors are

microcontrollers. Today, there are already a wide range of microcontroller products based

on these two processors. For those who have used microcontroller products for a while,

you would know that there are different types of microcontroller products, and the

Cortex-M0 and Cortex-M0þ processors are particularly suitable for the following markets:

Ultra low-power microcontrollersdSince the Cortex-M0 and Cortex-M0þ processors

are optimized for low-power applications (e.g., small area, supports various low-power

Technical Overview 45

sleep modes, support for low-power chip design technologies, high code density, etc.),

they are very successful in the ultra low-power microcontroller market segment.

Low cost microcontroller productsdIn many applications, however, cost is the key

focus. Since the Cortex-M0 and Cortex-M0þ processors are very small, and provide

very good code density, microcontroller devices based on these two processors can have

very small silicon areas, hence the production cost is reduced.

Mixed signal microcontrollersdIn some specialized microcontrollers that comes with

various types of analog circuits, the gate count of the processor need to be very small

due to the larger transistor geometry. In such applications, the Cortex-M0 and Cortex-

M0þ processors are very attractive because they have very low gate count figures.

Wireless communication microcontrollersdIn some wireless applications where the

data rate is fairly low, an ultra low-power processor is highly desirable because a lower

power processor can help reducing the electromagnetic interference and hence provides

better wireless communication performance. Also, many of these products are used in

cost-sensitive applications and therefore small silicon size helps too.

2.7.2 Sensors

There are many types of sensors modern electronics systems. For example, a mobile

phone can have touch screen sensors, temperature sensors, accelerometers, gyroscopes,

sensors inside the batteries, etc. In order to save power, a lot of these sensors need to

operate and alert the main processor only when certain events occurred, and as a result,

many of these sensors need to have built-in data processing capabilities and are therefore

are called Smart Sensors, which contains a processor system and can handle data

processing on its own.

The adding of a processor system brings additional advantages to many of these sensors. For

example, self test, self calibrations, temperature compensation, and various adaptive filtering

operations can now be carried out in software. The sensors can also utilize many of the

low-power strategies for microcontrollers like sleep modes to further enhance battery life.

The low-power nature of the Cortex-M0 and Cortex-M0þ processors makes them well

suitable for these usages. The sleep mode support of the processors can also be utilized

when designing low-power support in these sensors.

For example, the Cortex-M0 and Cortex-M0þ processors are used in a number of touch

screen controllers, accelerometers, and so on. While the data processing performance of

the Cortex-M0 and Cortex-M0þ processors is not as high as the Cortex-M3 and

Cortex-M4 processors, many sensors do not need high data processing bandwidth (due to

low sampling rate) so that a small processor like the Cortex-M0 or Cortex-M0þ processor

is sufficient.

46 Chapter 2

2.7.3 Sensor Hubs

In some devices, like some of the mobile phone and tablets, a sensor hub device is used to

handle processing of data from various sensors and sometimes combine the data to provide

additional information. Some of these sensor hubs can be based on the Cortex-M0/Cortex-

M0þ processors (e.g., Kionix’s KX23H).

2.7.4 Power Management IC

In many mobile phones and tablets, you might see that there is an IC called PMIC (Power

Management IC). This chip controls the power supply to the main application processor,

manages battery charging, and might also handle some audio functions. The Cortex-M

processors are used on a number of PMIC products.

In complex SoC designs, the chips can require a number of voltage supplies. When the

SoC is being use in different situations, the power management software inside the OS

switches between different power profiles based on the current work load. During the

switching, the multiple supply voltages and the clock systems need to be adjusted

accordingly with appropriate stepping sequences. The use of a processor in PMIC enables

these switching sequences to be controlled by software, allowing high flexibility and the

design can be adapted to product requirements.

2.7.5 ASSPs, ASICs

There is a wide range of ASSPs and ASICs designed using the Cortex-M Processors,

including wireless communication IC (e.g., Nordic Semiconductor nRF51 series), smart

meter controller (e.g., Toshiba TMPM061), MEMS (e.g., LIS331EB accelerometer from

ST Microelectronics), power controllers (e.g., Active-semi PAC� series).

2.7.6 Subsystems in System on Chips

The Cortex-M processors are often used inside many complex SoC for the following:

• Power management

• Boot sequence control

• I/O processing offloading and peripheral monitoring

Using a Cortex-M for I/O processing subsystems allows the main application processor(s)

to stay in sleep modes as much as possible to reduce power. This also allows faster

response time to I/O events because context switching in application processors can take

sometime.

Technical Overview 47

2.8 Why Using a 32-Bit Processor for Microcontroller Applications?
2.8.1 Performance

One of the most significant benefits of the Cortex�-M0 and Cortex-M0þ processors over

other traditional 8-bit and 16-bit processors is its energy efficiency. The size of the Cortex-

M0 processor is about the same as typical 16-bit processors and slightly bigger than some

of the 8-bit processors (Note: total silicon size can still be lower because of the higher

code density in Thumb� instruction set). However, it has much better performance than

typical 16-bit and 8-bit architectures. As a result, you can put the processor system

(including memory) into sleep mode for more portion of the time to reduce power to a

minimum, while still be able to get the processing task done with a similar silicon and

active power foot print.

Typically benchmark programs are used to determine the performance of processors.

However, performance of a processor is often debatable for several reasons:

• Benchmark codes might not reflect the processing requirements of real-world

applications.

• All C-language-based benchmarks depend on the quality of the C compiler being used.

• Some benchmark results can be greatly affected by the compiler optimizations.

• Typical benchmarks cannot cover every aspects of processor requirements in real-world

applications (e.g., interrupt processing).

Nevertheless, we can still use some of the benchmark result to get an estimation of the

relative performance.

Today, the CoreMark� is one of the more reliable benchmark for microcontroller

performance measurements. CoreMark is developed by Embedded Microprocessor

Benchmark Consortium (EEMBC), it is open access and many CoreMark scores are

posted on the EEMBC Website (www.eembc.org/coremark/). The CoreMark results for the

Cortex-M0 and Cortex-M0þ processors are shown in Table 2.1.

For reference, the Dhrystone 2.1 performances of the Cortex-M0 and Cortex-M0þ
Processors are shown in Table 2.2.

The official figures are generated with inline and multifile compilation disabled, as

recommended in the original Dhrystone benchmark. The results with maximum

optimizations are also quotes as some microcontroller vendors quote the Dhrystone results

based on maximum optimization.

Typically the microcontrollers based on Cortex-M0 and Cortex-M0þ processors have

maximum frequency range of less than 100 MHz, with many of them at round 50 MHz.

Technically, the clock frequency can go much higher depending on the silicon process, but

48 Chapter 2

http://www.eembc.org/coremark/

very often the speed of the flash memory limited to the maximum throughput. It is possible

to build faster microcontrollers with Cortex-M0 and Cortex-M0þ processors by adding flash

access accelerators or cache to compensate for the flash memory speed limitations. But for

applications that need high performance, it is more likely to use Cortex-M3, Cortex-M4, or

Cortex-M7 processors as the richer instruction set can help enhancing performance.

2.8.2 Code Density

It is a common misunderstanding that 32-bit processor has much larger code size than

8-bit and 16-bit processors. Some people thought that 8-bit processor has 8-bit

instructions, 16-bit processors have 16-bit instructions, etc. This is incorrect (Figure 2.8).

In reality, many instructions in 8-bit microcontrollers are 16-bit, 24-bits, or other sizes

larger than 8-bit, for example, the PIC18 instruction size is 16-bit.

Even for the antiquated 8051 architecture, although some instructions are 1-byte long,

many others are 2 or 3 bytes long. The same generally applies to 16-bit architectures, for

example, some MSP430 instructions take 6 bytes (or even 8 bytes for the MSP430X).

Table 2.1: CoreMark per MHz results on Embedded Microprocessor Benchmark Consortium

(EEMBC) web site

Processor CoreMark/MHz

Cortex�-M0þ processor 2.49
Cortex-M0 processor 2.33
Atmel AT89C51RE2 (8051-based design with 6 oscillator
cycle per CPU cycle)

0.11 (oscillator cycle)

Atmel ATmega644 0.54
Altera NIOS II 1.60
Microchip dsPIC33 (2 oscillator cycles per CPU cycle) 1.89 (machine cycle)/0.9 (oscillator clock)
Microchip PIC24 (2 oscillator cycles per CPU cycle) 1.88 (machine cycle)/0.9 (oscillator clock)
Microchip PIC18 0.04
Renesas RL78/G14 0.89
TI MSP430 1.11

Data from EEMBC Web sitedwww.eembc.org/coremark.

Table 2.2: Dhrystone per MHz results

Official figure Maximum optimization

Cortex�-M0 0.87 DMIPS/MHz 1.27 DMIPS/MHz
Cortex-M0þ 0.95 DMIPS/MHz 1.36 DMIPS/MHz

Data from ARM� Web sitedwww.arm.com.

Technical Overview 49

http://www.eembc.org/coremark
http://www.arm.com

Most of the instructions in Cortex-M0 and Cortex-M0þ processors are 16 bit, and only a

few instructions are 32 bit. Being a load-store architecture (data need to be loaded from

memory before being processed, and need to write back to memory after the processing is

done), the Cortex-M processor might take more number of instructions, but the overall

code size can still be lower due to overall instruction efficiency.

For example, ARM processors support stack operations (PUSH/POP) of multiple registers

in a single instruction. This feature is not available in most other architectures. Also, the

various address modes also made accessing of local variables, for both signed and unsigned

data, very easy (e.g., sign extension for signed data can be done on the fly during a data

load). Finally, in 8-bit microcontrollers, integers are still 16-bit and hence each integer data

operation requires a sequence of instructions, thus results in much larger code size.

The code density factor has a significant impact to the power consumption because a

significant area of the microcontroller chip is occupied by the flash memory (Figure 2.9).

For a given application, by moving from an 8-bit processor to ARM Cortex-M processor

you could select a chip with much smaller flash memory, possibly by a factor of half the

flash size. As a result, you could use a chip with smaller silicon size, possibly a smaller

chip package, lower power, and having higher performance at the same time.

Since the processor is only a small part of the silicon chip, at the system level, you can

find that the ARM Cortex-M-based microcontrollers have similar range of active power

compare to other 8-bit and 16-bit microcontrollers. And when including the code density

and performance factors, it is common to see that the energy efficiency of ARM Cortex-

M-based microcontrollers is significantly better than many 8-bit and 16-bit microcontroller

products. For example, an interrupt-driven application scenario is shown in Figure 2.10,

demonstrating Cortex-M-based microcontrollers can have much lower average power.

Instruction size

8051
Min

Max

Number of
bytes in a
instruction

PIC18 MSP430 /
MSP430X

ARM

Min

Max

PIC24

2

4

6

8

Min

Max
(MSP430)

Max
(MSP430X)

Figure 2.8
Instruction size of commonly used microcontrollers.

50 Chapter 2

When running other applications that are not interrupt driven, the clock frequency for the

Cortex-M0 processor can be reduced significantly compared to 8-bit/16-bit processors to

lower the power consumption, as illustrated in Figure 2.11. In this diagram, it is assumed

that the Cortex-M0/M0þ microcontroller has slightly higher peak current than 16-bit and

8-bit microcontrollers. In reality, many of the Cortex-M0/Cortex-M0þ microcontrollers

have lower peak current than many legacy 8-bit and 16-bit microcontrollers.

Although there are various other 32-bit microcontrollers available with higher

performance than the Cortex-M0 and Cortex-M0þ processors, their processor sizes are

often significantly larger than the Cortex-M0/M0þ processor. As a result, the average

power consumptions of these microcontrollers are higher than the Cortex-M0- and

Cortex-M0þ-based products.

Electric
Current

Time
Average current for

Cortex-M microcontrollers
Average current for

16-bit microcontrollers
Average current for
8-bit microcontroller

Interrupt events

Microcontroller current on different architectures executing the same interrupt task

Interrupt events Interrupt events

Figure 2.10
At chip level, the energy efficiency of Cortex�-M-based microcontrollers can be significantly

better.

8-bit
CPU Flash memory

SRAM

I/O
pad

SRAM
Peripherals

I/O pad

Flash
memory

Larger die area due to
larger code size

High code density allows
smaller flash to be used

Cortex-M
processor

Peripherals

Migrate to
ARM MCU

Bus

Bu
s

8-bit MCU : consume more
power due to larger

memory requirement

ARM MCU : smaller memory
requirement, lower power

Figure 2.9
High code density in ARM� Cortex�-M processors enables lower power and smaller designs.

Technical Overview 51

2.8.3 Other Benefits of ARM Architectures

Often in 8-bit and 16-bit architectures there are a range of limitations. Apart from the

obvious data size limitation, address size can also be an issue. For example, many of these

architectures cannot handle more than 64 KB memory size, or when over 64 KB memory

space is needed, memory banking is needed which results in significant software overhead.

Memory banking also increases difficulties in software development. On the other hand,

ARM-based microcontrollers use 32-bit addressing, enabling a much larger address space

(up to 4 GB, but a small portion of the spaces are assigned to the processor’s internal

peripherals) and therefore allow easier software development in large projects.

Unlike many 8-bit architecture, the stack of the ARM processors is placed in the main

memory address space. Many 8-bit architecture like 8051 requires the stack memory to be

placed in specific memory range which have very limited size, which create a severe

limitation to the software.

Another limitation of 8-bit microcontroller architectures is the limited instruction sets and

fixed register usages for certain instructions. For example, 8051 heavily relies on the

Frequency

Frequency

Performance

Required
performance

Cortex-M0/M0+

16-bit
processor

8-bit
processor

Microcontroller
power

consumption Cortex-M0/M0+

16-bit processor

8-bit processor

Average current for Cortex-M0/M0+

Average current for 16-bit processor

Average current for 8-bit processor

Figure 2.11
Cortex�-M-based microcontrollers can provide lower power consumption by running at lower

clock frequencies, even if the electric current could be slightly larger.

52 Chapter 2

accumulator register and data pointer registers to handle data processing and memory

transfers. This increases the code size because it needs to keep transferring data into the

accumulator and taking it out before and after operations. For instance, when processing

integer (16-bt) multiplications on an 8051, a lot of data transfer is required to move data

in and out of ACC (Accumulator) register and B register. In Cortex-M processors, the

register usages have fewer restrictions.

For applications that require multitasking, the OS support in ARM Cortex-M processor

series is also much superior. For example, the banked stack pointers in ARM Cortex-M

processors enable efficient context switching and smaller stack size usages.

2.8.4 Software Reusability

For proprietary architectures, quite often program code requires a range of compiler-

specific language extensions, which make it difficult to learn and reuse program code. This

is not the same in the ARM Cortex-M programming. Since almost everything can be

programmed in C/Cþþ on ARM Cortex-M processors, and there is little dependency on

tool chain-specific features, this enables much better software reuse and made learning of

programming easier.

Technical Overview 53

CHAPTER 3

Introduction to Embedded Software
Development

3.1 Welcome to Embedded System Programming

If you have never program a microcontroller before, do not worry, it is not that hard. In

fact, the ARM� Cortex�-M processors are very easy to use. While there can be fair

amount of details about the processor architecture covered in this book, you do not need to

know every topics or be an expert to create applications. As long as you have a basic

understanding of the C programming language, you will very soon be able to develop

simple applications on the Cortex-M0 and Cortex-M0þ processors.

If you have been using other microcontrollers, you will find that programming with

Cortex-M-based microcontrollers is very straight forward. Almost everything can be

programmed in C/Cþþ because most registers (e.g., peripherals) are memory mapped,

and even interrupt handlers can be programmed fully in C/Cþþ. Also, in most normal

applications there is no need to use compiler-specific language extensions, as required

some other processor architectures.

If you only have experience of developing programs for personal computers, you might

find the software development for microcontrollers very different. Many embedded

systems do not have any operating systems (sometimes these systems are referred as bare

metal targets) and do not have the same user interface as a personal computer.

3.2 Some Basic Concepts

If this is the first time you use a microcontroller, read on. For readers who are already

experienced in microcontroller programming, you can skip this part and move to

Section 3.3.

First we need to introduce some basic concepts:

3.2.1 Reset

A microcontroller needs to be reset to get to a known state before program execution.

Reset is typically generated by hardware signal from external sources, for example, you

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00003-5

Copyright © 2015 Elsevier Inc. All rights reserved. 55

http://dx.doi.org/10.1016/B978-0-12-803277-0.00003-5

might find a reset button on the development board (Figure 3.1). Most microcontroller

devices have an input pin for reset.

On ARM�-based microcontrollers, the reset can also be triggered by a debugger connected

to the microcontroller boards. This allows software developers to reset the microcontroller

via the IDE (Integrated Development Environment). Some debugger adaptors can generate

a reset using a dedicated pin on their debug connectors, and on ARM Cortex-M

Processors, the debugger can also trigger by a reset request via the debug connection.

After the reset is released, internally the microcontroller hardware might still need to wait a

little bit (e.g., wait until internal clock oscillator to become stabilized) before the processor

can start executing programs. The delay is usually very short and unnoticeable by users.

3.2.2 Clocks

Almost all processors and digital circuits need clock signals to operate. Microcontrollers

typically support external crystal for reference clock generation. Some microcontrollers

also have internal oscillators (however, the output frequency of some of the

implementations like R-C oscillators can be fairly inaccurate).

Many modern microcontrollers allow software to control which clock source to be used,

and have programmable Phase Lock Loops (PLL) and clock dividers to generate various

operation frequencies required. As a result, you might have a microcontroller circuit with

an external crystal of just 12MHz, with the processor system running at a much higher

clock speed (e.g., well over 100 MHz), and some of the peripherals running at a divided

clock speed.

+ve

Microcontroller

V SS

VDD

Push
Bu�on
(Reset)

RESET

0.1uF

Pull up
resistor

Reset from
debug adaptor

(op�onal)

From power
supply

module

From power
supply

module -ve

Figure 3.1
Example reset connection in low-cost microcontroller board (assumed that the reset pin is

active low).

56 Chapter 3

In order to save power, many microcontrollers also allow software to turn on/off individual

oscillators and PLL, and also turn off the clock signal to each of the peripherals to save

power.

3.2.3 Voltage Level

All microcontrollers need power to run, so you will find power supply pins on a

microcontroller. Most modern microcontrollers need a very low voltage like 3 V. Some of

them can even operate with supply voltage of less than 1.5 V.

If you are going to create your own microcontroller development board, or prototyping

circuits, you need to check the datasheet of the microcontroller you are using and the

voltage levels of the components the microcontroller connected to. For example, some

external interface like a relay switch might require 5 V signaling, which would not work

with a 3-V-output signal from a microcontroller with 3 V.

If you are creating your own development board, you should also make sure that the

voltage supply is regulated. Many mains to DC adaptors have unregulated voltage output

which means the voltage level can go up and down all the time, which is not suitable for

microcontroller circuits unless a voltage regulator is added.

3.2.4 Inputs and Outputs

Unlike personal computers, most embedded systems have no display, no keyboard, and

mouse. The available inputs and outputs can be limited to simple electronic interfaces like

digital and analog inputs and outputs (I/Os), UARTs, I2C, SPI, etc. Many microcontrollers

also offer USB, Ethernet, CAN, graphics LCD, and SD card interfaces. These interfaces

are handled by peripherals in the microcontrollers.

On ARM-based microcontrollers, peripherals are controlled by memory-mapped registers

(examples of accessing peripherals are covered in Section 3.3.2 in this chapter). Some of

these peripherals are more sophisticated than peripherals available on 8-bit and 16-bit

microcontrollers and there might have more registers to program during peripheral setup.

Typically, the initialization process for peripherals may consist of the following:

1. Programming the clock control circuitry to enable the clock signal connected to the

peripheral and the corresponding I/O pins, if necessary. In many low-power

microcontrollers, the clock signals reaching different parts of the chip can be

individually turned on or off for power saving. Typically, by default most of the clock

signals are turned off and need to be enabled before the peripherals are programmed.

In some cases, you also need to enable the clock signals for the part of the bus system.

Introduction to Embedded Software Development 57

2. Programming of I/O configurations. Most microcontrollers multiplex its I/O pins for

multiple usages. In order for a peripheral interface to work correctly, the I/O pin assign-

ments (e.g., configuration registers for multiplexers) might need to be programmed. In

addition, some microcontrollers also offer configurable electrical characteristics for the

I/O pins. This can result in additional steps in I/O configurations.

3. Peripheral configuration. Most interface peripherals contain a number of programmable

registers to control their operations and therefore a programming sequence is usually

needed in order to allow the peripheral to work correctly.

4. Interrupt configuration. If a peripheral operation requires interrupt processing, addi-

tional steps are required for the interrupt controller (e.g., the NVIC in the Cortex�-M

processors).

Most microcontroller vendors provide peripheral/device driver libraries to simplify

software development. Even though device driver libraries are available, there might still

be fair amount of low-level programming work depending on the applications. For

example, if a user interface is needed, you might need to develop your own user interface

functions to design a user friendly stand-alone embedded system. (Note: There are also

commercial middleware available for creating GUIs.) However, the device driver libraries

provided by the microcontroller vendors certainly make the development of embedded

applications much easier.

For the development of most deeply embedded systems, it is not necessary to have a rich

user interface. However, basic interfaces like LEDs, DIP switches, and push buttons can

deliver only a limited amount of information. In order to help debugging software, a

simple text input/output console can be very useful. This can be handled by a simple RS-

232 connection through a UART interface on the microcontroller to a UART interface on a

personal computer (or via a USB adaptor). This arrangement allows us to transfer and

display text messages from the microcontroller applications and to enter user inputs using

a terminal application (See Figure 3.2). Details of creating such message communication

are covered in Chapter 17 (for mbed development platform) and Chapter 18 (for other

development platforms).

3.2.5 Introduction to Embedded Software Program Flows

There are many different ways to structure the flow of the application processing. Here we

will cover a few fundamental concepts. Please note that unlike programming on a personal

computer; most embedded applications do not have an end of the program flow.

Polling

For simple applications, polling (sometimes also called super loop, see Figure 3.3) is easy

to set up and works fairly well for simple tasks.

58 Chapter 3

However, when the application gets complicated and demands higher processing

performance, polling is not suitable. For example, if one of the processes takes long time,

other peripherals will not get any service for some time. Another disadvantage of using the

polling method is that the processor has to run the polling program all the time even if it

requires no processing; thus reducing energy efficiency.

RS-232 serial
cable

Microcontroller with
ARM Cortex-M0

Level shifter

Personal
computer

Terminal / console
application

Development board

Figure 3.2
Using UART interface for user input and output.

Start

Initialization

Peripheral A requires
processing? Y

Process A

Peripheral B requires
processing? Y

Process B
N

N

Peripheral C requires
processing? Y

Process C
N

Figure 3.3
Polling method for simple application processing.

Introduction to Embedded Software Development 59

Interrupt Driven

In applications that require lower power, processing can be carried out in interrupt service

routines so that the processor can enter sleep mode when no processing is required.

Interrupts are usually generated by external sources or by on-chip peripherals to wake up

the processor.

In interrupt-driven (Figure 3.4) applications, the interrupts from different devices can be

set at different priorities. In this way, a high-priority interrupt request can get serviced

even when a lower priority interrupt service is running, which will be temporarily stopped.

As a result, the latency for higher priority interrupt is reduced.

Combination of Polling and Interrupt Driven

In many cases, applications can use a combination of polling and interrupt methods. By

using software variables, information can be transferred between interrupt service routines

and the application processes (Figure 3.5).

By dividing a peripheral processing task into an interrupt service routine and a process

running in the main program, we can reduce the duration of interrupt services so that even

lower priority interrupt services can get a better chance of getting serviced. At the same

time, the system can still enter sleep mode when no processing task is required. In

Figure 3.5, the application is partitioned into processes A, B, and C, but in some cases, an

Start

Initialization

Enter sleep mode

Interrupt Service Routine A

Process A

Interrupt Service Routine B

Process B

Interrupt Service Routine C

Process C

Interrupt

Figure 3.4
Interrupt-driven application.

60 Chapter 3

application task might not be able to be partitioned into individual parts easily, which

would need to be written as a large process. Even so, that does not stop the peripheral

interrupts from being processed.

Handling Concurrent Processes

In some cases, an application process could take a significant amount of time to complete

and therefore it is undesirable to handle it in a big loop as shown in Figure 3.5. If process

A takes too long to complete, processes B and C will not be able to respond to peripheral

requests fast enough, resulting in system failure. Common solutions are as follows:

1. Breaking down a long processing task to a sequence of states. Each time the process is

processed, only one state is executed.

2. Using a Real-Time Operating System (RTOS) to manage multiple tasks.

Start

Initialization

Enter sleep mode

Interrupt
Service

Routine A

Interrupt
Service

Routine B

Interrupt
Service

Routine C

Peripheral A requires
processing? Y

Process A

Peripheral B requires
processing? Y

Process B
N

N

Peripheral C requires
processing? Y

Process C
N

Any more processing
required? Y

N

Software
variables

Software
variables

Software
variables

Interrupt

Figure 3.5
Combination of polling and interrupt-driven application.

Introduction to Embedded Software Development 61

For method 1 (Figure 3.6), a process is divided into a number of parts and software

variables, which are used to track the state of the process. Each time the process is

executed, the state information is updated so that next time the process is executed again,

the processing can resume correctly.

Since the execution path of the process is shortened, other processes in the main loop can

be reached quicker inside the big loop. Although the total processing time required for the

processing remains unchanged (or increased slightly due to overhead of state saving and

restoring), the system is more responsive. However, when the application tasks get more

complex, partitioning the application task manually can become impractical.

For more complex applications, an RTOS can be used (Figure 3.7). An RTOS allows

multiple application processes to be executed by dividing processor execution time into time

slots, and allocate the time slots to each task. To use an RTOS, a timer is needed to generate

periodic interrupt requests. When each time slot ends, the timer generates an interrupt that

triggers the RTOS task scheduler, which determines if context switching should be carried

out. If context switching should be carried out, the task scheduler suspends the current

executing task and then switched to the next task that is ready to be executed.

Restore state
information

Process
A1

Process
A2

Process
A3

Process
A4

Process A

state = 4state = 3state = 2state = 1

state = 2 state = 3 state = 4 state = 1

Process B, C, etc

Figure 3.6
Partitioning a process into multiple parts in application loop.

62 Chapter 3

Using an RTOS improves the responsiveness of a system by ensuring that all tasks will be

reached within a certain amount of time. Examples of using an RTOS are covered in

Chapter 20.

3.2.6 Programming Language Choices

In most projects, the Cortex-M processors can be programmed using C/Cþþ language,

assembly language, or a mix of both. The Cortex-M processors are designed to be C

friendly, so you do not need to learn assembly language to use the microcontrollers based

on the Cortex-M processors. Today, you can also use other high level languages such as

Java and Matlab/Simulink.

For beginners, C/Cþþ language is usually the best choice as it is easier to learn and most

modern C compilers are very good at generating efficient code for the Cortex

microcontrollers. Table 3.1 summarizes the comparisons of using C language and

Assembly language.

You can mix C and assembly code together in a project. This allows most parts of the

program to be written in C, and some parts that cannot be handled in C can be written in

Assembly.

More details in this area are covered in Chapter 21.

Process A

Process B

Process C

OS task
scheduler

OS
initialization

Start

Figure 3.7
Using an real-time operating system to handle multiple concurrent application processes.

Introduction to Embedded Software Development 63

3.3 Introduction to ARM� Cortex�-M Programming
3.3.1 C ProgrammingdData Types

The C language supports a number of “standard” data types. However, the implementation

of data type can be processor architecture dependent and C compiler dependent. In ARM

processors including the Cortex�-M0 and Cortex-M0þ processors, the following data type

implementations are supported by all C compilers (Table 3.2).

Table 3.1: Comparison between C programming and assembly language programming

Language Pros and cons

C/C++ Pros:
• easy to learn
• portable
• easy handling of complex data structures
Cons:
• limited/no direct access to core register and stack
• no direct control over instruction sequence generate
• no direct control over stack usage

Assembly Pros:
• allows direct control to each instruction step and all memory operations
• allows direct access to instructions that cannot be generated with C
Cons:
• takes longer time to learn
• difficult to manage data structure
• less portable (syntax of assembly language in different tool chains can be different)

Table 3.2: Size of data types in Cortex�-M processors

C and C99 (stdint.h) data type Number of bits Range (Signed) Range (Unsigned)

char, int8_t, uint8_t 8 �128 to 127 0 to 255
short, int16_t, uint16_t 16 �32768 to 32767 0 to 65535
int, int32_t, uint32_t 32 �2147483648 to 2147483647 0 to 4294967295
long 32 �2147483648 to 2147483647 0 to 4294967295
long long, int64_t, uint64_t 64 �(2^63) to (2^63�1) 0 to (2^64�1)
float 32 �3.4028234 � 1038 to 3.4028234 � 1038

double 64 �1.7976931348623157 � 10308 to
1.7976931348623157 � 10308

long double 64 �1.7976931348623157 � 10308 to
1.7976931348623157 � 10308

pointers 32 0x0 to 0xFFFFFFFF
enum 8/16/32 Smallest possible data type, except when overridden

by compiler option
bool (C++ only), _Bool (C only) 8 True or false
wchar_t 16 0 to 65535

64 Chapter 3

When porting applications from other processor architectures to ARM processors, if the

data types have different sizes, it might be necessary to modify the C program code in

order to ensure the program operates correctly. More details on porting software from 8-bit

and 16-bit architecture are covered in Chapter 22.

In Cortex-M0 and Cortex-M0þ programming, the data variables stored in memory need to

be stored at an address location which is a multiple of its size. More details on this area

are covered in Chapter 7 (Section 7.9.1 Data alignment).

In ARM programming, we also refer data size as word, half word, and byte (Table 3.3).

These terms are commonly found in ARM documentation, such as in the instruction set

details.

3.3.2 Accessing Peripherals in C

In ARM Cortex-M microcontrollers, peripheral registers are memory mapped and can be

accessed by data pointers. In most cases, you can use the device drivers provided by the

microcontroller vendors to simplify the software development task and make it easier to

port software between different microcontrollers. If it is necessary to access the peripheral

registers directly, the following methods can be used.

In simple cases of accessing a few registers, you can define each peripheral register as a

pointer:

Example registers definition for a UART using pointers and accessing the registers

#define UART_BASE 0x40003000 // Base of ARM Primecell PL011
#define UART_DATA (*((volatile unsigned long *)(UART_BASE + 0x00)))
#define UART_RSR (*((volatile unsigned long *)(UART_BASE + 0x04)))
#define UART_FLAG (*((volatile unsigned long *)(UART_BASE + 0x18)))
#define UART_LPR (*((volatile unsigned long *)(UART_BASE + 0x20)))
#define UART_IBRD (*((volatile unsigned long *)(UART_BASE + 0x24)))
#define UART_FBRD (*((volatile unsigned long *)(UART_BASE + 0x28)))
#define UART_LCR_H (*((volatile unsigned long *)(UART_BASE + 0x2C)))
#define UART_CR (*((volatile unsigned long *)(UART_BASE + 0x30)))
#define UART_IFLS (*((volatile unsigned long *)(UART_BASE + 0x34)))

Continued

Table 3.3: Data size definition in ARM� processors

Terms Size

Byte 8-bit
Half word 16-bit
Word 32-bit
Double word 64-bit

Introduction to Embedded Software Development 65

#define UART_MSC (*((volatile unsigned long *)(UART_BASE + 0x38)))
#define UART_RIS (*((volatile unsigned long *)(UART_BASE + 0x3C)))
#define UART_MIS (*((volatile unsigned long *)(UART_BASE + 0x40)))
#define UART_ICR (*((volatile unsigned long *)(UART_BASE + 0x44)))
#define UART_DMACR (*((volatile unsigned long *)(UART_BASE + 0x48)))
/* ----- UART Initialization ---- */
void uartinit(void) // Simple initialization for ARM Primecell PL011
{
UART_IBRD = 40; // ibrd : 25MHz/38400/16 = 40
UART_FBRD = 11; // fbrd : 25MHz/38400 - 16*ibrd = 11.04
UART_LCR_H = 0x60; // Line control : 8N1
UART_CR = 0x301; // cr : Enable TX and RX, UART enable
UART_RSR = 0xA; // Clear buffer overrun if any

}
/* ----- Transmit a character ---- */
int sendchar(int ch)
{
while (UART_FLAG & 0x20); // Busy, wait
UART_DATA = ch; // write character
return ch;

}
/* ----- Receive a character ---- */
int getkey(void)
{
while ((UART_FLAG & 0x40)==0); // No data, wait
return UART_DATA; // read character

}

This solution is fine for simple applications. However, when there are multiple units of the

same peripherals available in the system, it will require defining registers for each of these

peripherals which can make code maintenance difficult. In addition, defining each register

as a separated pointer might result in larger program size as each register access requires a

32-bit address constant to be stored in the program flash memory.

To simplify the code, we can define the peripheral register set as a data structure, and

define the peripheral as memory pointer to this data structure.

Example registers definition for a UART using data structure and accessing the registers
using pointer of structure

typedef struct { // Base on ARM Primecell PL011
volatile unsigned long DATA; // 0x00
volatile unsigned long RSR; // 0x04

unsigned long RESERVED0[4];// 0x08 e 0x14
volatile unsigned long FLAG; // 0x18

unsigned long RESERVED1; // 0x1C

66 Chapter 3

volatile unsigned long LPR; // 0x20
volatile unsigned long IBRD; // 0x24
volatile unsigned long FBRD; // 0x28
volatile unsigned long LCR_H; // 0x2C
volatile unsigned long CR; // 0x30
volatile unsigned long IFLS; // 0x34
volatile unsigned long MSC; // 0x38
volatile unsigned long RIS; // 0x3C
volatile unsigned long MIS; // 0x40
volatile unsigned long ICR; // 0x44
volatile unsigned long DMACR; // 0x48

} UART_TypeDef;
#define Uart0 ((UART_TypeDef *) 0x40003000)
#define Uart1 ((UART_TypeDef *) 0x40004000)
#define Uart2 ((UART_TypeDef *) 0x40005000)

/* ----- UART Initialization ---- */
void uartinit(void) // Simple initialization for Primecell PL011
{
Uart0->IBRD = 40; //ibrd : 25MHz/38400/16 = 40
Uart0->FBRD = 11; //fbrd : 25MHz/38400 - 16*ibrd = 11.04
Uart0->LCR_H = 0x60; // Line control : 8N1
Uart0->CR = 0x301; // cr : Enable TX and RX, UART enable
Uart0->RSR = 0xA; // Clear buffer overrun if any

}
/* ----- Transmit a character ---- */
int sendchar(int ch)
{
while (Uart0->FLAG & 0x20); // Busy, wait
Uart0->DATA = ch; // write character
return ch;

}
/* ----- Receive a character ---- */
int getkey(void)
{
while ((Uart0->FLAG & 0x40)==0); // No data, wait
return Uart0->DATA; // read character

}

In this example, the IBRD (Integer Baud Rate Divider) register for UART #0 is accessed

by the symbol Uart0->IBRD, and the same register for UART #1 is accessed by Uart1-

>IBRD.

With this arrangement, the same register data structure for the peripheral can be shared

between multiple instantiations, making code maintenance easier. In addition, the

compiled code could be smaller due to the reduced requirement of immediate data storage.

Introduction to Embedded Software Development 67

With further modification, a function developed for the peripherals can be shared between

multiple units by passing the base pointer to the function:

Example registers definition for a UART and driver code which support multiple UART using
pointer passing

typedef struct { // Base on ARM Primecell PL011
volatile unsigned long DATA; // 0x00
Volatile unsigned long RSR; // 0x04

unsigned long RESERVED0[4];// 0x08 e 0x14
volatile unsigned long FLAG; // 0x18

unsigned long RESERVED1; // 0x1C
volatile unsigned long LPR; // 0x20
volatile unsigned long IBRD; // 0x24
volatile unsigned long FBRD; // 0x28
volatile unsigned long LCR_H; // 0x2C
volatile unsigned long CR; // 0x30
volatile unsigned long IFLS; // 0x34
volatile unsigned long MSC; // 0x38
volatile unsigned long RIS; // 0x3C
volatile unsigned long MIS; // 0x40
volatile unsigned long ICR; // 0x44
volatile unsigned long DMACR; // 0x48

} UART_TypeDef;
#define Uart0 ((UART_TypeDef *) 0x40003000)
#define Uart1 ((UART_TypeDef *) 0x40004000)
#define Uart2 ((UART_TypeDef *) 0x40005000)

/* ----- UART Initialization ---- */
void uartinit(UART_Typedef *uartptr) //
{
uartptr->IBRD = 40; // ibrd : 25MHz/38400/16 = 40
uartptr->FBRD = 11; // fbrd : 25MHz/38400 - 16*ibrd = 11.04
uartptr->LCR_H = 0x60; // Line control : 8N1
uartptr->CR = 0x301; // cr : Enable TX and RX, UART enable
uartptr->RSR = 0xA; // Clear buffer overrun if any

}
/* ----- Transmit a character ---- */
int sendchar(UART_Typedef *uartptr, int ch)
{
while (uartptr->FLAG & 0x20); // Busy, wait
uartptr->DATA = ch; // write character
return ch;

}
/* ----- Receive a character ---- */
int getkey(UART_Typedef *uartptr)
{
while ((uartptr ->FLAG & 0x40)==0); // No data, wait
return uartptr ->DATA; // read character

}

68 Chapter 3

In most cases, peripheral registers are defined as 32-bit words. This is because most

peripherals are connected to peripheral bus (using APB protocol, see Section 2.3 in

Chapter 2) that handles all transfers as 32-bit. Some peripherals might be connected to the

processor’s system bus (with AHB protocol that supports various transfer sizes, also see

Section 2.3 in Chapter 2). In such cases, the registers might be accessed in other transfer

sizes. Please refer to the user manual of the microcontroller to determine the supported

transfer size for each peripheral.

Note that when defining memory pointers for peripheral accesses, the “volatile” keyword

should be used in the register definitions. This ensures the compiler to generate the access

correctly.

3.3.3 What Is Inside a Program Image?

In addition to the program code you created, there are a range of software components

inside a program image:

• Vector table

• Reset handler/startup code

• C startup code

• Application code

• C runtime library functions

• Other data

In this section, we are going to introduce briefly what these components are.

Vector Table

In ARM Cortex-M processors, the vector table contains the starting addresses of each

exception and interrupt. For Cortex-M0 and Cortex-M0þ processors, after reset, the vector

table is defined at the start of the memory space (address 0x00000000). The first word in

the vector table also defines the starting value of the Main Stack Pointer, which will be

introduced in the next chapter (Section 4.2 Programmer’s Model). The vector table is

device-specific (depends on what exceptions are supported), and is typically merged into

the startup code.

Reset Handler/Startup Code

The reset handler is optional. If reset handler is omitted, the C startup code is executed

directly instead. The reset handler contains program code that is executed as soon as the

processor exits from reset. In some cases, it contains some hardware initialization. In

typical projects using CMSIS-CORE (a software framework for Cortex-M processors,

which will be covered in a later part of this Chapter), the reset handler executes the

“SystemInit()” function which sets up the clocks and PLL, before branching to the C

startup code.

Introduction to Embedded Software Development 69

The startup code is typically provided by the microcontroller vendors, and often also

bundled inside tool chains. They can be in form of either assembly code or C code.

C Startup Code

If you are programming in C/Cþþ, or many other high level languages, the processor will

need to execute some program code to set up the program execution environment (e.g.,

setup initial data values in SRAM, such as global variables). It also zero initializes part of

the data memory for variables that are uninitialized at load time. For applications which

use C functions like malloc(), the C startup code also needs to initialize the data variables

controlling the heap memory. After this initialization, the C startup code branches to the

beginning of the “main()” program.

The C startup code is inserted by the tool chain automatically and is tool chain specific,

and might not be present if you are writing a program purely in assembly. For ARM

compilers, the C startup code is labeled as “__main,” while the startup code generated by

GNU C compilers is normally labeled as “_start.”

Application Code

Typically application code starts at the beginning of main(). It contains the instructions

generated from your application program code carry out the tasks you specified. Apart

from the instruction sequence, there are also various types of data:

• Initial values of variables. Local variables in functions or subroutines need to be initial-

ized and these initial values are set up during program execution.

• Constants in program code. Constant data are used in application codes in many ways:

data values, addresses of peripheral registers, constant strings, etc. These data are often

called literal data. These data are sometimes grouped together within the program

images as a number of data blocks called literal pools.

• Some applications can also contain additional constant data like lookup tables, graphics

image data (e.g., bit map) that are merged into the program images.

C Library Code

C library code is injected into the program image by the linker when certain C/Cþþ
functions are used. In addition, C library code can also be included due to data processing

tasks such as floating point operations and divide. The Cortex-M0 and Cortex-M0þ
processors do not have a divide instruction and the divide operations typically need to be

carried out by a C library divide function.

Some development tools offer various versions of C libraries for different purposes. For

example, in Keil� MDK or ARM Development Studio� 5 (DS-5) there is an option to use

a special version of C library called Microlib. The Microlib is targeted for microcontrollers,

70 Chapter 3

and is very small, but does not offer all features of the standard C library. In embedded

applications that do not require high data processing capability and have tight program

memory requirement, the Microlib is a good way to reduce code size.

Depending on the application, C library code might not be present in simple C

applications (no C library function calls) or pure assembly language projects.

Apart from the vector table which must be placed at the beginning of the memory

map, there are no other constraints on the placement of the rest of the elements inside

a program image. In some cases, if the layout of the items in the program memory is

important, the layout of the program image can be controlled by a linker script.

Other Data

The program image also contains additional data such as the initial values for global or

static variables.

3.3.4 Data in SRAM

The SRAM in the processor system are used in a number of ways:

DatadData stored in the bottom of RAM usually contains global and static

variables. (Note: Local variables can be stored in registers in the processor, or can be

spilled onto the stack to reduce RAM usage. Local variables belong to a function that

is not in use do not take up memory space)

StackdThe role of stack memory includes temporary data storage (normal stack PUSH

and POP operations), memory space for local variables, parameter passing in function

calls, register saving during an exception sequence, etc. The Thumb� instruction set is

very efficient in handling data accesses that use a Stack Pointer-related (SP) addressing

mode and allows such data in the stack memory to be accessed with very low instruc-

tion overhead.

HeapdThe heap memory is optional. It is used by C functions that dynamically reserve

memory space, like “alloc(),” “malloc(),” and other function calls that uses these func-

tions. In order to allow these functions to allocate memory correctly, the C startup code

needs to initialize the heap memory and its control variables.

ARM processors also allow program code to be copied into memory and executed from

there. But in most microcontroller applications, the program codes are executed directly

from nonvolatile memories like flash memories.

There are various approaches in terms of how these data are placed in the SRAM. This is

often tool chain specific. In simple applications without any OS, the memory layout in

SRAM could be like the illustration as shown in Figure 3.8. In ARM architecture, the

Introduction to Embedded Software Development 71

stack pointer is initialized to the top of the stack memory space, and decrement as data are

placed in the stack by stack PUSH operations, and increment as the data are removed

using POP operations.

For microcontroller systems with an embedded OS (e.g., mClinux) or RTOS (e.g., Keil

RTX), the stacks for each task are separate. Many OS allow software developers to define

stack size for each task/thread. Some OS might divide the RAM into a number of

segments and each segment is assigned to a task, each containing individual data, stack,

and heap regions (Figure 3.9).

0x20000000

Memory Address Stack
(grow downwards)

Heap
(grow upwards)

Data

Example RAM usage in systems without OS

Figure 3.8
Example RAM usage in single task systems (without OS).

0x20000000

Memory Address

Example RAM usage in a simple embedded OS

0x20000000

Memory Address

OS & IRQ stack
OS heap
OS data

Alternate RAM usage in multiple
task system with an embedded OS

Task X stack

Task X heap

Task X data

Task Y stack

Task Y heap

Task Y data

Task Z stack
Task Z heap
Task Z data

Memory for OS
and Exception /

Interrupt handlers

Memory for
Task X

Memory for
Task Y

Memory for
Task Z

OS & IRQ stack

Heap (shared between
tasks)

Data (shared between
tasks)

Task X stack

Task Y stack

Task Z stack

Figure 3.9
Example RAM usage in multiple task systems (with an OS).

72 Chapter 3

In most systems with RTOS, the data layout in the left hand side of Figure 3.9 would be

used, where global and static variables and the heap memory are shared.

3.3.5 What Happens When a Microcontroller Starts?

Most modern microcontrollers have on-chip flash memory to hold the compiled program.

The flash memory hold the program in binary machine code format and therefore

programs written in C must be compiled before programmed to the flash memory. Some

of these microcontrollers might also have a separate boot ROM which contains a small

boot loader program that gets executed when the microcontroller starts before executing

the user program in the flash memory. In most cases, only the program code in the flash

memory can be changed and the program code in boot loader is fixed by the manufacturer.

After the flash memory (or other types of program memory) is programmed, the program

is then accessible by the processor. After the processor is reset, it carries out the reset

sequence (Figure 3.10).

In the reset sequence, the processor obtains the initial stack pointer value and reset vector

(starting address for execution) from the vector table, and then executes the reset handler

in the startup code. Optionally, the reset handler can also handle some hardware

initialization.

For applications developed in C, the C startup code is executed before entering the main

application code (Figure 3.11). The C startup code initializes variables and memory used

by the application, and is inserted to the program image by the C development suite.

After the C startup code is executed, the application is started (Figure 3.12). The

application program often contains the following:

• Initialization of hardware (e.g., peripherals).

• The processing part of the application

• Interrupt service routines

Reset Reset
handler

C startup
code

Application (main)

System
initialization
(optional)

Hardware
initialization Processing

Interrupt
Serivce

Routines

Runtime
libraries

Reset
sequence Boot

Loader

(optional,
depends on the
microcontroller

design)

Figure 3.10
What happen when a microcontroller startsdreset handler.

Introduction to Embedded Software Development 73

In addition, the application might also use C library functions. In such case, the C

compiler/linker will include the required library functions into the compiled program

image.

The hardware initialization might involve a number of peripherals, some system control

registers as well as interrupt control registers inside the Cortex-M0/M0þ processors. The

initialization of the system clock control and the PLL might also take place if this was not

carried out in the reset handler. After the peripherals are initialized, the program execution

can then proceed to the application processing part.

3.4 Software Development Flow

There are many development tool chains available for ARM� microcontrollers. Majority

of them support C/Cþþ and assembly language. In most cases, the program generation

flow can be summarized in a diagram as shown in Figure 3.13.

Reset Reset
handler

C startup
code

Application (main)

System
initialization
(optional)

Hardware
initialization Processing

Interrupt
Serivce

Routines

Runtime
libraries

Reset
sequence

Figure 3.11
What happen when a microcontroller startsdC startup code.

Reset Reset
handler

C startup
code

Application (main)

System
initialization
(optional)

Hardware
initialization Processing

Interrupt
Serivce

Routines

Runtime
libraries

Reset
sequence

Figure 3.12
What happens when a microcontroller startsdapplication code.

74 Chapter 3

In most simple applications, the programs can be completely written in the C language.

The C compiler compiles the C program code into object files, and then generates the

executable program image file using the linker. For the case of GNU C compilers, the

compile and linking stages are often merged into one single step.

Projects that require assembly programming use the assembler to generate object code

from assembly source code. The object files can then be linked together with other object

files in the project to produce an executable image.

Beside from the program code, the object files and the executable image may also contain

various debug information.

Depending on the development tools, it is possible to specify the memory layout for the

linker using command line options. However, in projects using GNU C compilers, a linker

script is normally required to specify the memory layout. A linker script is also required

for other development tools when the memory layout gets complicated. In ARM

development tools, the linker scripts are often called scatter-loading files. If you are using

Keil� Microcontroller Development Kit (MDK), the scatter-loading file can be generated

automatically from the memory layout window. You can use your own scatter-loading file

if you prefer.

After the executable image is generated, we can test it by downloading it to the flash

memory or internal RAM of the microcontroller and test it. The whole process can be quite

Assembler

C Compiler

.c
.cpp

.s Linker

C source
code

Assembly
source code

.o

.o

Object files

Object files

.elf

Executable
image

Linker script /

.ld

.scat

Scatter-loading file

.out

.axf

Instruction Set
Simulator

Flash
programmer

Cortex-M based
Microcontroller

Flash

Debugger

Testing by
simulation

Testing using
real hardware

Run time library functions,
precompiled libraries

.lib
.a

Figure 3.13
Typical program generation flow.

Introduction to Embedded Software Development 75

easy; most development suites come with a user friendly IDE. When working together with

an in-circuit debugger (sometimes referred to as an In-Circuit Emulator (ICE), debug probe,

or USB-JTAG adaptor), you can create a project, build your application, and download your

embedded application to the microcontroller in a few steps (Figure 3.14).

In many cases an in-circuit debugger is needed to connect the debug host (personal

computer) to the target board. The Keil� ULINK2 (Figure 3.15) is one of these products

available and can be used with Keil Microcontroller Development Kit.

Create a
project

Add program
code &

Device Driver
Library

Select device
and specify

project
options

Compile
(program

generation flow)

Download
to flash

Debug
your

application

Update
your

application

2

Microcontroller with
ARM Cortex-M

processor
Development board

flash

JTAG / Serial-wire
connectionUSB

connection

(require in-circuit debugger)

ULINK2, an example of
USB in-circuit debugger

Figure 3.14
An example of development flow.

Figure 3.15
ULINK 2 USB-JTAG adaptor.

76 Chapter 3

The flash programming function can be carried out by the debugger software in the

development suite, or in some cases by a flash programming utility downloadable

from microcontroller vendor Web site. The program can then be tested by running on

the microcontroller, and by connecting the debugger to the microcontroller, the

program execution can be controlled and the operations can be observed. All these

can be carried out via the debug interface of the Cortex�-M processor (see

Figure 3.16).

For simple program codes, we can also test the program using a simulator. This allows us

to have full visibility to the program execution sequence, and allows testing without actual

hardware. Some development suites provide simulators that can also simulate peripheral

behavior. For example, Keil MDK provides device simulation for many microcontrollers

based on the ARM Cortex-M processors.

Apart from the fact that different C Compilers perform differently, different

development suites also provide different C language extension features, as well as

different syntax and directives in assembly programming. Chapters 5, 6, and 21 of this

book provide assembly syntax information for ARM development tools (including

ARM Development Studio 5 and Keil MDK) and GNU compiler. In addition, different

development suites also provide different features in debug, utilities and different

support for debug hardware.

Cortex-M based
Microcontroller

Flash programming
utility from MCU

vendors

Cortex-M
Processor

Peripherals

SRAM

Flash

Manufacturing
Testing Tester

Development Suite
Flash

programming
algorithm

Debugger

In-Circuit
debugger / USB-

JTAG adaptor

Figure 3.16
Various usages of the debug interface on the Cortex�-M processors.

Introduction to Embedded Software Development 77

3.5 Cortex� Microcontroller Software Interface Standard
3.5.1 Introduction of CMSIS

As the complexity of embedded systems increase, the compatibility and reusability of

software code becomes more important. Having reusable software often helps to reduce

development time for subsequent projects and hence allows faster time-to-market.

Software compatibility helps the use of third-parties software components. For example,

an embedded system project might involve the following software components:

• Software developed by in-house software developers.

• Software reused from other projects.

• Device driver libraries from microcontroller vendors.

• Embedded OS/RTOS

• Other third-party software products like a communication protocol stack and codec

(compressor/decompressor).

With all these software components being used in one project, compatibility of these

components is becoming critical for many large-scale software projects. Also, system

developers also want to be able to reuse the software they have developed in future

projects, even they could be using different processors.

In order to allow a high level of compatibility between these software products and

improve software portability and reusability, ARM� worked with various microcontroller

vendors and software solution providers to develop the CMSIS-CORE, a common

software framework covering most Cortex-M processors and Cortex-M microcontroller

products.

The CMSIS-CORE is implemented as part of device driver library available from

microcontroller vendors. It provides a standardized software interface to the processor

features like interrupt control and system control functions (Figure 3.17). Many of these

processor feature access functions, which are available across all Cortex-M processors

allowing easy software porting between these microcontrollers based on these processors.

The CMSIS-CORE is standardized across multiple microcontroller vendors, and also

supported by multiple C compiler vendors. For example, it can be used with Keil� MDK,

ARM Development Studio 5 (DS-5), IAR Embedded Workbench, TASKING compiler,

and various GNU-based C compiler suites such as Atollic TrueStudio.

The CMSIS-CORE is the first part of the CMSIS project, and has evolved continuously to

cover additional processors and integrated various improvements and additional tool chain

support. Over the years, the CMSIS has expanded into multiple projects (Table 3.4).

The interactions between various CMSIS projects are shown in Figure 3.18.

78 Chapter 3

Table 3.4: List of existing CMSIS projects

CMSIS project Descriptions

CMSIS-CORE Software framework including Application Programming Interface (API) for processor
features, register definitions. Providing the same look and feel for device driver libraries.

CMSIS-DSP A free DSP software library available for all Cortex�-M processors.
CMSIS-RTOS An API specification for interface between application codes and RTOS products. This

enables middleware to be developed to work with multiple RTOS.
CMSIS-PACK A software package mechanism to enable software vendors (including microcontroller

vendors that deliver device driver libraries) to deliver software packages, which can be
integrated into development suite easily.

CMSIS-Driver A device driver API for middleware to access commonly used device driver functions.
CMSIS-SVD System View Descriptions (SVD) is a standard for XML-based files, which describes the

peripheral registers inside a microcontroller device. The CMSIS-SVD files are created by
microcontroller vendors, and debuggers supporting CMSIS-SVD can then import these
files and able to visualize the peripheral registers.

CMSIS-DAP A reference design for USB to debug connection adaptor. This enables a standard
interface for debuggers in development suites to communicate with the USB debug
adaptors, so that microcontroller vendors can create low-cost debug adaptors that
work with multiple tool chains.

CMSIS-Core

Microcontroller Device Driver Libraries

Peripherals drivers
Peripherals drivers

Peripheral Access Functions

Microcontroller

Cortex-M processorPeripherals

Embedded OSThird parties softwareApplication code

Software

Figure 3.17
CMSIS-CORE provides standardized access functions for processor features.

Introduction to Embedded Software Development 79

3.5.2 What Are Standardized in CMSIS-CORE?

The CMSIS-CORE standardized the following areas for embedded software:

• Standardized access functions/Application Programming Interface (API) for accessing

processor’s internal peripherals (e.g., NVIC, System Control Block (SCB) and System

Tick timer (SysTick)) such as interrupt control and SysTick initialization. These

functions will be covered in various chapters of this book and in the Appendix

CdCMSIS-CORE Quick Reference.

• Standardized register definitions for processor’s internal peripherals. For best software

portability, we should use the standardized access functions. However, in some cases

we need to directly access these registers. In such cases, the standardized register

definitions help the software to be more portable.

• Standardized functions for accessing special instructions in Cortex-M microcontrollers.

Some instructions on the Cortex-M processors cannot be generated by normal C code.

If they are needed, they can be generated by these functions provided. Otherwise, users

Application code

DebuggerCMSIS-DSP
DSP library

CMSIS-RTOS
API specification

CMSIS-CORE
Core Access Functions, Intrinsic functions, Peripherals and Interrupt

Definitions

RealTime OS
(ARM / 3rd party)

CMSIS-Driver
API specification

Device specific
HAL (Hardware

Abstraction Layer)
(Silicon vendor)

Other
Peripherals

Cortex-M processor

NVIC
Nested Vectored

Interrupt
Controller

SysTick
RTOS Kernel

Timer

Debug/Trace
Interface

Processor
Core

Middleware
(ARM / 3rd party)

CMSIS-SVDCMSIS-DAP

Figure 3.18
Interactions between different CMSIS projects.

80 Chapter 3

will have to use intrinsic functions provided by the C compiler or embedded/inline

assembly language which are tool chain specific and less portable.

• Standardized names for system exceptions handlers. System exceptions are often

required by an embedded OS. By having standardized system exception handler names,

supporting different device driver libraries in an embedded OS is much easier.

• Standardized name for the system initialization function. The common system initializa-

tion function “void SystemInit(void)” makes it easier for software developers to set up

their system with minimum effort.

• A standardized software variable called “SystemCoreClock”1 to determine the processor

clock frequency.

• The CMSIS-CORE also provides a common platform for device driver librariesdeach

device driver library has the same look and feel, making it easier for beginners to learn

and make it easier for software porting.

The CMSIS is developed to ensure compatibility for the basic operations. Microcontroller

vendors can add additional functions in their driver drivers to enhance their software

solution so that CMSIS does not restrict the functionality and the capability of the

embedded products.

3.5.3 Organization of the CMSIS-CORE

A CMSIS compliant device driver contains the following:

• Core Peripheral Access LayerdName definitions, address definitions, and helper functions

to access core registers and core internal peripherals like the NVIC and SysTick timer.

• Device Peripheral Access Layer (MCU specific)dRegister name definitions, address

definitions, and device driver code to access peripherals.

• Access Functions for Peripherals (MCU specific)dOptional helper functions for periph-

erals. Note that another CMSIS project called CMSIS-Driver is ongoing to create a

common peripheral API to enable application code and middleware to be developed for

multiple microcontroller platforms.

The role of these layers is illustrated in Figure 3.19.

3.5.4 Using CMSIS-CORE

The CMSIS-CORE is an integrated part of the device driver package provided by the

microcontroller vendors. If you are using the device driver libraries for software

development, you are already using the CMSIS-CORE. If you are not using device driver

libraries from microcontroller vendors, you can still use CMSIS-CORE by downloading

1 In CMSIS v1.00-v1.20 it was called “SystemFreq.”

Introduction to Embedded Software Development 81

the CMSIS package from ARM Web site (www.arm.com/cmsis), unpack the files, and add

the required files for your project.

For C program code, normally you only need to include just one header file provided in

the device driver library from your microcontroller vendor. This header file then pulls in

all the required header files for CMSIS-CORE features as well as peripheral drivers.

You also need to include the CMSIS compliant startup code, which can be either in C or

assembly code. CMSIS-CORE provides various templates of startup code customized for

different tool chains.

Figure 3.20 shows a simple project setup using the CMSIS-CORE package. The names of

some of the files depends on the actual microcontroller device name (indicated as

<device> in Figure 3.20). When you use the header file provided in the device driver

library, it automatically includes the other required header files for you (Table 3.5).

Figure 3.21 shows a simple example of using CMSIS compliant driver in a simple project.

Typically information and examples of using CMSIS compliant device driver library can be

found in the libraries package from your microcontroller vendor. There are also some simple

examples of using the CMSIS in the CMSIS package on the ARMWeb site (www.arm.com/

cmsis). Details of latest CMSIS projects can be found in http://www.keil.com/CMSIS/.

User Application code

Real-Time
KernelRTOS Middleware

Components

CMSIS-
Core

Peripheral Registers and Interrupt/Exception Vector Definitions

Core Peripheral Functions Device Peripheral
Functions

MCU Other
Peripherals

Cortex-M processor

NVIC
Nested

Vectored
Interrupt

Controller

SysTick
RTOS Kernel

Timer

Debug/Trace
Interface

Processor
Core

Figure 3.19
CMSIS structure.

82 Chapter 3

http://www.arm.com/cmsis
http://www.arm.com/cmsis
http://www.arm.com/cmsis
http://www.keil.com/CMSIS/

3.5.5 Benefits of CMSIS

For most users, CMSIS bring the following key advantages:

Software portability and reusabilitydPorting of applications from one Cortex-

M-based microcontroller to another one is much easier. For example, most of the inter-

rupt control functions are available across all Cortex-M processors (only a few func-

tions for Cortex-M3/M4 processor are not available for Cortex-M0/M0þ due to extra

functionality of the Cortex-M3/M4 processors, see Chapter 22, Section 22.5). This

makes it much straight forward to reuse the same application codes for a different

project. You can migrate a Cortex-M3 project to Cortex-M0/M0þ device for lower cost,

or move a Cortex-M0/M0þ project to Cortex-M3 device if higher performance is

required.

Easy to learning programming of new devicesdLearning to use a new Cortex-

M-based microcontroller is made easier. Once you have used one Cortex-M-based mi-

crocontroller, you can start using another quickly because all CMSIS compliant device

driver libraries have the same core functions and similar look and feel.

Project
Start up code
(including the
vector table)

Application code

Peripheral driver
files

#include <device>.h

int main(void)
{

<device>.h

Core peripheral access
layer

core_cm0.h /
core_cm0plus.h

system_<device>.h

system_<device>.c

Other header files

Interrupt number and
peripheral registers
definitions

System functions including
initialization

Device peripheral access
layer and additional access
functions

Multiple startup files
for different tool

chains

Peripheral driver
code

system_<device>.c

CMSIS compliant device driver library

core_cmFunc.h Header for special registers
access functions

core_cmInstr.h Header for special instruction
access functions

Figure 3.20
Using device driver software package with CMSIS-CORE in a project.

Introduction to Embedded Software Development 83

Table 3.5: Files in an example project with CMSIS-CORE

Files Descriptions

<device>.h A file provided by the microcontroller vendor that includes other header files,
provides definitions for a number of constants required by CMSIS, definitions of
device-specific exception types, peripheral register definitions, and peripheral address
definitions.

core_cm0.h/
core_cm0plus.h

The file core_cm0.h contains the definitions of the registers for processor
peripherals like NVIC, System Tick Timer and System Control Block (SCB). It also
provides the core access functions like interrupt control and system control.

core_cmFunc.h Provides core register access functions.
core_cmInstr.h Provide intrinsic functions.
Startup code Multiple versions of the startup code can be found in CMSIS-CORE because it is

tools specific. The startup code contains a vector table, dummy definitions for a
number of system exceptions handler, and from version 1.30 of the CMSIS, the reset
handler also execute the system initialization function “void SystemInit(void)” before
branches to the C startup code.

system_<device>.h This is a header file for functions implemented in system_<device>.c
system_<device>.c This file contains the implementation of the system initialization function “void

SystemInit(void),” the definition of the variable “SystemCoreClock” (processor clock
speed) and a function called “void SystemCoreClockUpdate(void)” that is used after
clock frequency changes to update “SystemCoreClock.” The “SystemCoreClock”
variable and the “SystemCoreClockUpdate” are available from CMSIS version 1.3.

Other files There are also additional files for peripheral control code and other helper
functions. These files provide the device peripheral access layer of the CMSIS.

#include “vendor_device.h”

void main(void) {
…
NVIC_SetPriority(UART1_IRQn, 0x0);
NVIC_EnableIRQ(UART1_IRQn);
…

}
void UART1_IRQHandler {
...

}

void SysTick_Handler(void) {
…
}

Interrupt numbers defined in
<vendor_device>.h

NVIC setup by core access
functions

System exception handler
names are common to all
Cortex-M microcontrollers

Peripheral interrupt names are
device specific, defined in

device specific startup code

Figure 3.21
Example application based on CMSIS-CORE.

84 Chapter 3

Software component compatibilitydThe CMSIS also lowers the risk of in-

compatibility when integrating third-party software components. Since middleware and

an embedded RTOS will be based on the same core peripheral register definitions, and

core access functions in CMSIS files, this reduces the chance of conflicting code. This

can happen when multiple software components carry their own core access functions

and register definitions. Without CMSIS-CORE, you might possibly find that different

third-party software contain unique driver functions. This could lead to register name

clashes, confusion due to multiple functions with similar names, and a waste of code

space due to duplicated functions (Figure 3.22).

Future proofdCMSIS makes your software code future proof. Future Cortex-M pro-

cessors and Cortex-M-based microcontrollers will also have CMSIS support, so you can

reuse your application code in future products.

QualitydThe CMSIS core access functions have a small memory foot print. It is also

tested by multiple parties and this helps reduce your software testing time. The CMSIS

is MISRA (Motor Industry Software Reliability Association) compliant.

For companies developing an embedded OS or middleware products, the advantage of

CMSIS is significant. Since CMSIS supports multiple compiler suites and is supported by

multiple microcontroller vendors, the embedded OS or middleware developed with CMSIS

can work on multiple complier products and can be used on multiple microcontroller

families. Using CMSIS also means that these companies do not have to develop their own

portable device drivers, which saves development time and verification efforts.

3.6 Other Information on Software Development

Most C compilers provide work-arounds to allow assembly code to be used within C

program code. For example, ARM� Compiler provide an Embedded Assembler and Inline

Driver library from
OS / middleware

vendor

Driver Library from
Microcontroller

vendors

Embedded OS /
middlewareApplication

Peripherals Processor
core

Embedded
OS /

middleware
Application

Peripherals Processor
core

Driver Library from
Microcontroller vendors with

CMSIS

Without CMSIS, an embedded OS or
middleware needs to include processor

core access functions, and might need to
include a few peripheral drivers.

With CMSIS, an embedded OS or
middleware can use standardized core
access functions from a driver library

Figure 3.22
CMSIS-CORE avoids overlapping of driver code.

Introduction to Embedded Software Development 85

Assembler so that assembly functions can be included in C program code easily. However,

the assembly syntax for using an Embedded Assembler and Inline Assembler are tool

chain specific (not portable). (Note: In ARM Compiler, Inline Assembler for Thumb�

instruction is supported from version 5.012.)

Some C compilers, including ARM C compilers in Development Studio 5 (DS-5) and

Keil� MDK, also provide intrinsic functions to allow special instructions to be inserted

because these instructions cannot be generated using normal C code. Intrinsic functions

are normally tool dependent. However, a tool independent version of similar functions for

Cortex�-M processors is also available via the CMSIS-CORE. This will be covered later

in this Chapter 21, Section 21.9 Accessing special instructions.

You can mix C, Cþþ, and assembly code together in a project. This allows most parts of

the program to be written in C/Cþþ, and some parts that cannot be handled in C can be

written in assembly. To handle this, the interface between functions must be handled in a

consistent manner to allow input parameters and returned results to be transferred

correctly. In ARM software development, the interface between functions is specified by a

specification document called the ARM Architecture Procedure Call Standard (AAPCS,

reference 6). The AAPCS is part of the Embedded Application Binary Interface (EABI).

When using Embedded Assembler, you should follow the guidelines set by the AAPCS.

The AAPCS document and the EABI document can be downloaded from the ARM Web

site.

More details in this area are covered in Chapter 21.

2 Release notes: http://infocenter.arm.com/help/topic/com.arm.doc.arn0005c/index.html.

86 Chapter 3

http://infocenter.arm.com/help/topic/com.arm.doc.arn0005c/index.html

CHAPTER 4

Architecture

4.1 Overview of ARMv6-M Architecture
4.1.1 What Architecture Means

The ARM� Cortex�-M0 and Cortex-M0þ Processors are both based on the ARMv6-M

architecture. As covered in Section 2.4, the term architecture can refer to the following

two areas:

• Architecture: defines how the program execution should behave and how the debuggers

interact with the processor

• Microarchitecture: the exact implementation details of the processor, for example, how

many pipeline stages, instruction cycles, what type of bus interface used, etc.

Not everything in the ARMv6-M architecture definition is fixed, for example:

• Some of the features defined in the architecture can be optional. For example, the

Memory Protection Unit (MPU) is optional and the number of interrupt sources

supported in a device can be configured by chip designers.

• Some areas of the architecture can be implementation defined. For example, the number

of clock cycle for an instruction to execute is processor design specific. Similarly, a

number of identification (ID) registers can be architecturally defined to be needed, but

the exact value is processor specific.

• Some of the features on the processor are not essentially architectural features. For

example, the single cycle I/O interface on the Cortex-M0þ processor is not a part of the

ARMv6-M Architecture specification, but can be very valuable to various applications.

As a result, you can have the Cortex-M0 and Cortex-M0þ processors both based on the

ARMv6-M architecture, with different pipeline implementations, and with different feature

set. However, when executing a certain program code sequence, you will get the same data

processing results, although the timing (i.e., number of clock cycle required) can be different.

4.1.2 Background of the ARMv6-M Architecture

The first ARM processor based on the ARMv6-M architecture is actually a processor called

the Cortex-M1 processor. This processor is designed for FPGA applications. The Cortex-M0

processor and then the Cortex-M0þ Processor were developed afterward. There is a little bit

of interesting history about this.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00004-7

Copyright © 2015 Elsevier Inc. All rights reserved. 87

http://dx.doi.org/10.1016/B978-0-12-803277-0.00004-7

After the success of the Cortex-M3 processor in microcontroller applications, ARM had

been looking into expanding into FPGA applications. After some investigations, the ARM

processor engineering team found that while the Cortex-M3 processor can work fine in

FPGA, it is not well optimized for FPGA hardware and therefore the maximum clock

frequency is a bit slow. Also, the Cortex-M3 processor has multiple bus interface (based

on AHB-Lite protocol) which need to be connected to memory blocks, making it slightly

more work for FPGA designers to integrate the processor into their FPGA projects.

When looking into the details of the design requirements, many FPGA applications only

need a simple processor for control, and complex data processing could be done in FPGA

hardware. On the other hand, the exception handling and system features of the Cortex-M3

processor is very attractive for many FPGA system designers, so ARM decided that there is a

need to have a new processor architecture and a new processor based on these requirements.

As a result, the ARMv6-M architecture and the Cortex-M1 processor were formed. The

programmer’s model of the Cortex-M1 processor and the exception model is based on the

Cortex-M3 processor, while the instruction set is based on the Thumb instruction set found

in ARMv6 architecture, plus additional system instructions required for the Cortex-M

processor (e.g., special register accesses), as shown in Figure 4.1.

After the Cortex-M1 processor was developed, a number of ARM customers were very

interested to create microcontroller products based on the ARMv6-M architecture.

According to my colleagues the idea was formed when some of the microcontroller vendor’s

management team was chatting with ARM product marketing team in an English pub in an

eveningdThere are a wide range of microcontroller and ASSP/ASIC applications that

requires a simple processor with a small instruction set, while still need to have very capable

interrupt handling capability. While the Cortex-M1 processor is optimized for FPGA

ARM7TDMI,
920T, 922T

Architecture
v4 / v4T

Architecture
v5 / v5E

ARM926EJ-S,
946E, 966E

Architecture v6

ARM1136,
ARM1176,

ARM1156T-2

Architecture v7 ARMv7-A
E.g. Cortex-A9

ARMv7-R
E.g. Cortex-R4

ARMv7-M
E.g. Cortex-M3

Examples

ARMv6-M
Cortex-M1,
Cortex-M0,
Cortex-M0+

Figure 4.1
Evolution of the ARMv6-M architecture.

88 Chapter 4

designs, it was not optimized for low-power applications so that it is not suitable for these

applications. As a result, ARM decided to design a new processor based on the ARMv6-M

architecture, and optimized it for low-power designs and low-cost microcontrollers.

The outcome was the Cortex-M0 processor, and it had become the quickest licensed

processor product in ARM history. At a minimum gate count of just 12K gates, it was a

ground-breaking product at the time as it enabled many ultra-low power designs to

integrate a high performance (related to 8-bit and 16-bit processors) processor, together

with sensors, wireless communication chipset, smart analog components, etc.

Over the year, the ARMv6-M architecture expanded further to add additional system

features including MPU support (which was not available for Cortex-M0 and Cortex-M1

processors). In addition to the Cortex-M1, Cortex-M0, and Cortex-M0þ processors, the

ARMv6-M architecture is also used in SC000, one of the SecurCore� processor products

developed for SmartCards and other security products.

4.2 Programmer’s Model
4.2.1 Operation Modes and States

The ARMv6-M architecture has two operation modes and two states. In addition, it can have

privileged and unprivileged access levels. These are shown in Figure 4.2. The privileged

access level can access to all resources in the processor, while unprivileged access level

means some memory regions can be inaccessible, and a few operations cannot be used.

Unprivileged access level is not available in the Cortex�-M0 processor, and is optional

(device-specific) in the Cortex-M0þ processor.

Debug State
(The processor stop

executing instruction)

Thumb State

Debug operation - Only
possible when debugger is

connected.

Normal operation – the processor is
running Thumb/Thumb-2 instructions

Thread Mode
Executing normal
code in Privileged

access level

Handler Mode
Executing exception

handler

Exception
request

Exception
return

Debug
activities

Start

Thread Mode
Executing normal

code in Unprivileged
access level

Exception
request

Software
switch

Optional in the Cortex-M0+
processor, and not available in

Cortex-M0 processor

Figure 4.2
Processor modes and state in ARMv6-M architecture.

Architecture 89

When the processor is running a program, it is in the Thumb state. In this state, it can be

either in the Thread mode or the Handler mode. In the ARMv6-M architecture, the

programmer’s model of Thread mode and Handler mode are almost completely the same.

The only difference is that Thread mode can use a shadowed stack pointer (Figure 4.8) by

configuring a special register called CONTROL. Details of stack pointer selection will be

covered later in this chapter (Section 4.4).

Architecturally, Thread Mode can be configured as:

• Privileged, or

• Unprivileged (with restriction to certain memory spaces, and cannot access to certain

core internal registers). This is defined as an optional feature in the architecture.

In the Cortex-M0þ processor, a program running in privileged state can switch itself into

unprivileged access level (if unprivileged level is implemented) by programming the

CONTROL register, but cannot switch itself back to privileged state. To get back to

privileged state, it must go through an exception sequence. This mechanism prevents an

untrusted application task from gaining privileged accesses without going through Operating

System (OS) services.

In the Cortex-M0 processor, the processor always executes in privileged state.

Unprivileged Thread mode is not available.

The Debug state is active when the processor is halted, for example, by a debugger via a

debug connection. This is used for debugging operation only. This state allows the

debugger to access or change the processor register values. The debugger can access

system memory locations in both Thumb state or Debug state.

When the processor is powered up, it starts with running code in Thumb state and Thread

mode, with privileged access level by default.

4.2.2 Registers and Special Registers

In order to perform data processing and controls, a number of registers are required inside

the processor core. If data from memory is to be processed, it has to be loaded from the

memory to a register in the register bank, processed inside the processor, and then written

back to the memory if needed, or kept in the register bank for another operation. This is

commonly called “load-store architecture.” By having a sufficient number of registers in

the register bank, this mechanism is easy to use, and is C-friendly. It is easy for C

compilers to compile a C program into machine code with good performance.

The Cortex-M0 and Cortex-M0þ processor provides a register bank of 16 32-bit registers

(most are general purposed, R13eR15 has special purposes), and a number of special

registers (Figure 4.3).

90 Chapter 4

The detailed descriptions for these registers are as follows:

R0eR12

Registers R0eR12 are for general uses. Due to the limited space in the 16-bit Thumb�

instructions, many of the Thumb instructions can only access R0eR7, which are also

called the low registers. While some instructions, like MOV (move), can be used on all

registers. When using these registers with ARM� development tools such as the ARM

assembler, you can use either upper case (e.g., R0) or lower case (e.g., r0) to specify the

register to be used. The initial values of R0eR12 at reset are undefined.

R13, Stack Pointer

R13 is the Stack Pointer. It is used for accessing the stack memory via PUSH and POP

operations. There are physically two different stack pointers in Cortex-M0 and Cortex-

M0þ Processors.

• The Main Stack Pointer (MSP, or SP_main in ARM documentation) is the default Stack

Pointer after reset, and is used when running exception handlers.

• The Process Stack Pointer (PSP, or SP_process in ARM documentation) can only be

used in Thread mode (when not handling exceptions).

The stack pointer selection is determined by the CONTROL register, one of the special

registers which will be introduced later (CONTROLdSpecial Register).

Register bank

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (banked)
R14
R15

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

General Purpose Register

Link Register (LR)

Program Counter (PC)

Stack Pointer (SP)

Low Registers

High Registers

Special Registers

Program Status RegistersxPSR

MSP
PSP

Main Stack Pointer

Processs Stack Pointer

CONTROL

PRIMASK

Stack definition

Interrupt Mask Register

APSR EPSR IPSR
Application

PSR
Execution

PSR
Interrupt

PSR

Figure 4.3
Registers in the Cortex�-M0 and Cortex-M0þ processors.

Architecture 91

When using ARM development tools, you can access the stack pointer using either “R13”

or “SP.” Both upper case and lower case (e.g., “r13” or “sp”) can be used. Only one of the

stack pointers is visible at a given time. However, you can access to the MSP or PSP

directly when using the special register access instructions MRS and MSR. In such cases,

the register names “MSP” or “PSP” should be used.

The lowest 2 bits of the stack pointers are always zero and writes to these 2 bits are ignored.

In ARM processors, PUSH and POP are always 32-bit accesses because the registers are

32-bit, and the transfers in stack operations must be aligned to a 32-bit word boundary. The

initial value of MSP is loaded from the first 32-bit word of the vector table from the program

memory during the start-up sequence. The initial value of PSP is undefined.

It is not necessary to use the PSP. In many applications, the system can completely rely on

the MSP. The PSP is normally used in designs with an OS, where the stack memory for

OS Kernel and the thread-level application codes must be separated.

R14, Link Register

R14 is the Link Register (LR). The LR is used for storing the return address of a subroutine

or function call. When BL or BLX is executed, the return address is stored in LR. At the end

of the subroutine or function, the return address stored in LR is loaded into the program

counter (PC) so that the execution of the calling program can be resumed. In the case where

an exception occurs, the LR also provides a special code value which is used by the

exception return mechanism. When using ARM development tools, you can access to the

LR using either “R14” or “LR.” Both upper and lower case (e.g., “r14” or “lr”) can be used.

Although the return address in the Cortex-M0/M0þ processor is always an even address

(bit[0] is zero because smallest instruction are 16-bit and must be half-word aligned), bit

zero of LR is readable and writeable. In the ARMv6-M architecture, some instructions

require bit zero of a function address set to 1 to indicate Thumb state.

R15, Program Counter

R15 is the PC. It is readable and writeable. A read returns the current instruction address

plus four (this is caused by the pipeline nature of the design). Writing to R15 will cause a

branch to take place (but unlike a function call, the LR does not get updated).

In the ARM assembler, you can access the PC using either “R15” or “PC,” in either upper

or lower case (e.g., “r15” or “pc”). Instruction addresses in the Cortex-M0/M0þ processor

must be aligned to half-word address, which means the actual bit zero of the PC should be

zero all the time. However, when attempting to carry out a branch using the branch

instructions (BX or BLX), the LSB of the PC should be set to1.1 This is to indicate that

1 Not required when a move (MOV) or add (ADD) instruction is used to modify the PC.

92 Chapter 4

the branch target is a Thumb program region. Otherwise, it can imply an attempt to switch

the processor to ARM state (depending on the instruction used), which is not supported

and will cause a fault exception.

xPSR, Combined Program Status Register

The combined Program Status Register (PSR) provides information about program

execution and the ALU flags. It consists of the following three PSRs (Figure 4.4):

• Application PSR (APSR),

• Interrupt PSR (IPSR), and

• Execution PSR (EPSR)

The APSR contains the ALU flags: N (negative flag), Z (zero flag), C (carry or borrow

flag), and V (overflow flag). These bits are at the top 4 bits of the APSR. The common use

of these flags is to control conditional branches.

The IPSR contains the current executing ISR (Interrupt Service Routine) number. Each

exception on the Cortex-M0/M0þ processor has a unique associated ISR number (exception

type). This is useful for identifying the current interrupt type during debugging and allows an

exception handler that is shared by several exceptions to know which exception it is serving.

The EPSR on the Cortex-M0/M0þ processor contains the T bit which indicates that the

processor is in the Thumb state. On the Cortex-M0/M0þ processor, this bit is normally set

to 1 because the Cortex-M processors only support Thumb state. If this bit is cleared, a

HardFault exception will be generated in the next instruction execution.

These three registers can be accessed as one register called xPSR. For example, when an

interrupt takes place, the xPSR is one of the registers that is stored on to the stack memory

automatically and restored automatically after returning from an exception. During the

stack store and restore, the xPSR is treated as one register (Figure 4.5).

N Z C V Reserved

031 28 24 16 8

APSR

T

ISR Number

031 24 16 8

IPSR

5

Reserved

031 24 16 8

EPSR Reserved Reserved

bitbit

Figure 4.4
Application PSR (APSR), Interrupt PSR (IPSR), and Execution PSR (EPSR).

Architecture 93

Direct access to the PSRs is only possible through special register access instructions.

However, the value of the APSR can affect conditional branches and the carry flag in the

APSR can also be used in some data processing instructions.

PRIMASKdInterrupt Mask Special Register

The PRIMASK register is a 1-bit wide interrupt mask register. When set, it blocks all

interrupts apart from the Non-Maskable Interrupt (NMI) and the HardFault exception.

Effectively it raises the current interrupt priority level to 0 which is the highest value for a

programmable exception (Figure 4.6).

The PRIMASK register can be accessed using special register access instructions (MSR,

MRS) as well as using an instruction called CPS. This is commonly used for handling

time critical routines.

CONTROLdSpecial Register

As mentioned earlier, there are two stack pointers in the Cortex-M0 and Cortex-M0þ
processors. The stack pointer selection is determined by the processor mode as well as the

configuration of the CONTROL register (bit 1dSPSEL). The Thread mode of the

Cortex-M0þ processor can either be privileged or unprivileged, and this is also controlled

by CONTROL (bit 0dnPRIV) (Figure 4.7).

N Z C V

031 28 24 16 8

xPSR T ISR Number

5

ReservedReserved

bitbit

Figure 4.5
xPSR.

031

Reserved

PRIMASK

1

PRIMASK

bitbit

Figure 4.6
PRIMASK.

031

Reserved

1

CONTROL

bit bit

SPSEL (Stack definition)
nPRIV (not Privileged) / Reserved

Figure 4.7
CONTROL.

94 Chapter 4

After reset, the MSP is used, but can be switched to the PSP in Thread mode (when not

running an exception handler) by setting bit[1] in the CONTROL register. During running

of an exception handler (when the processor is in handler mode), only the MSP is used,

and the CONTROL register reads as zero. The bit[1] of CONTROL register can only be

changed in Thread mode, or via the exception entrance and return mechanism

(Figure 4.8).

Bit[0] of the CONTROL register is for selecting between Privileged and Unprivileged

states during Thread mode. Some of the Cortex-M0þ devices and all Cortex-M0

processor-based devices do not support unprivileged state and therefore this bit is always

zero (Figure 4.9).

Thumb State

Thread Mode
Executing normal code

Handler Mode
Executing exception handler

Exception
request

Exception
return

Start
CONTROL[1] = 0 CONTROL[1] = 1

CONTROL[1] = 0
MSP selected

MSP selected PSP selected

Figure 4.8
Stack pointer selection.

Thumb State

Thread Mode
Executing normal code

Handler Mode
Executing exception handler

Exception
request

Exception
return

Start
CONTROL[0] = 0 CONTROL[0] = 1

Always Privileged

Privileged Unprivileged

Figure 4.9
Privileged state selection.

Architecture 95

Access of Registers and Special Registers

In C/Cþþ programming or any other high level languages, the registers in the register

bank (R0eR12) can be utilized by the compiler automatically. In most cases, you do not

need to worry about which registers being used, unless you are interfacing assembly code

and C/Cþþ code (such mixed language development will be cover in Chapter 21).

The other special registers need to be accessed using some special instructions (MRS and

MSR). The CMSIS-CORE provides a number of APIs for such usages. However, please note

that some of these special registers cannot be accessed or changed by software (Table 4.1).

4.2.3 Behaviors of the APSR

Data processing instructions can affect destination registers as well as the APSR which is

commonly known as ALU status flags in other processor architectures. The APSR is

essential for controlling conditional branches. In addition, one of the APSR flags, the C

(Carry) bit, can also be used in add and subtract operations.

There are four APSR flags in the Cortex-M0 ad Cortex-M0þ processors (Table 4.2).

A few examples of the ALU flag results are as given in Table 4.3.

Table 4.1: Access limitations to special registers

Privileged Unprivileged

APSR R/W R/W
EPSR No access (T bit read as zero) No access (T bit read as zero)
IPSR Read only Read only
PRIMASK R/W Read only
CONTROL R/W Read only

Table 4.2: ALU flags on the Cortex®-M0 and Cortex-M0+ processors

Flag Descriptions

N (bit 31) Set to bit[31] of the result of the executed instruction. When it is “1,” the result has a
negative value (when interpreted as a signed integer). When it is “0,” the result has a
positive value or equal zero.

Z (bit 30) Set to “1” if the result of the executed instruction is zero. It can also be set to “1” after a
compare instruction is executed if the two values are the same.

C (bit 29) Carry flag of the result. For unsigned addition, this bit is set to “1” if an unsigned
overflow occurred. For unsigned subtract operations, this bit is the inverse of the borrow
output status.

V (bit 28) Overflow of the result. For signed addition or subtraction, this bit is set to “1” if a signed
overflow occurred.

96 Chapter 4

In the Cortex-M0 and Cortex-M0þ processors, almost all of the data processing instructions

modify the APSR; however, some of these instructions do not update the V flag or the C flag.

For example, the MULS (multiply) instruction only changes the N flag and the Z flag.

The ALU flags can be used for handling data that is larger than 32-bits. For example, we

can perform a 64-bit addition by splitting the operation into two 32-bit additions. The

pseudo form of the operation can be written as follows:

// Calculating Z = X + Y, where X, Y and Z are all 64-bit
Z[31:0] = X[31:0] + Y[31:0]; // Calculate lower word addition,

// carry flag get updated
Z[63:32] = X[63:32] + Y[63:32] + Carry; // Calculate upper word addition.

An example of carry out such 64-bit add operation in assembly code can be found in

Chapter 6 (Section 6.5.1).

The other common usage of APSR flag is to control branching. More on this will be covered

in Chapter 5 (Section 5.4.8), where the details of the condition branch instruction will be

covered.

4.3 Memory System
4.3.1 Overview

All ARM� Cortex�-M processors have a 4 GB of memory address space. The memory

space is architecturally defined into a number of regions, with each region having a

recommended usage to help software porting between different devices (Figure 4.10).

The Cortex-M0 and Cortex-M0þ processors contain a number of built-in components like

the NVIC (the interrupt controller) and a number of debug components. These are located in

fixed memory locations within the system region of the memory map. As a result, all the

devices based on the Cortex-M processors have the same programming model for interrupt

control and debug. This makes it convenient for software porting as well as helping debug

Table 4.3: ALU flags operation examples

Operation Results, flags

0x70000000 + 0x70000000 Result ¼ 0xE0000000, N ¼ 1, Z ¼ 0, C ¼ 0, V ¼ 1
0x90000000 + 0x90000000 Result ¼ 0x20000000, N ¼ 0, Z ¼ 0, C ¼ 1, V ¼ 1
0x80000000 + 0x80000000 Result ¼ 0x00000000, N ¼ 0, Z ¼ 1, C ¼ 1, V ¼ 1
0x00001234-- 0x00001000 Result ¼ 0x00000234, N ¼ 0, Z ¼ 0, C ¼ 1, V ¼ 0
0x00000004-- 0x00000005 Result ¼ 0xFFFFFFFF, N ¼ 1, Z ¼ 0, C ¼ 0, V ¼ 0
0xFFFFFFFF-- 0xFFFFFFFC Result ¼ 0x00000003, N ¼ 0, Z ¼ 0, C ¼ 1, V ¼ 0
0x80000005-- 0x80000004 Result ¼ 0x00000001, N ¼ 0, Z ¼ 0, C ¼ 1, V ¼ 0
0x70000000-- 0xF0000000 Result ¼ 0x80000000, N ¼ 1, Z ¼ 0, C ¼ 0, V ¼ 1
0xA0000000-- 0xA0000000 Result ¼ 0x00000000, N ¼ 0, Z ¼ 1, C ¼ 1, V ¼ 0

Architecture 97

tool vendors to develop debug solutions for the Cortex-M0-based microcontroller or System-

on-Chip (SoC) products.

The memory space is shared between instruction memory, data memory, peripherals

processor’s built-in peripherals (e.g., the interrupt controller), and processor’s debug

components. However, the debug components are not visible to the software running on

the processor (from architecture point of view this is implementation defined, and existing

Cortex-M0 and Cortex-M0þ processors are designed to make the debug components to be

visible only from debugger). This is different from Cortex-M3, Cortex-M4, and Cortex-M7

processors, where privileged codes can access the debug components.

In most cases, the memories connected to the Cortex-M processors are 32-bits, but it is also

possible to connect memory of different data widths to a Cortex-M processor with suitable

memory interface hardware. The memory system in Cortex-M processors supports memory

transfers of different sizes such as byte (8-bit), half word (16-bit), and word (32-bit). The

Cortex-M0 and Cortex-M0þ processor designs can be configured to support either little

endian or big endian memory systems, but cannot switch from one to another in an

implemented design.

Since the memory system and peripherals connected to the Cortex-M0 or Cortex-M0þ
processors are developed by microcontroller vendors or SoC designers, different memory

sizes and memory types can be found in different Cortex-M0/M0þ-based products.

CODE

SRAM

External RAM

External Device

Peripherals

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0x40000000

0x5FFFFFFF

0x60000000

0x9FFFFFFF

System

0xA0000000

0xDFFFFFFF

0xE0000000

0xFFFFFFFF

Mainly used for program
code. Also used for default
exception vector table

Mainly used for data memory
(e.g. static RAM.)

Mainly used for peripherals.

Mainly used for external
memory.

Mainly used for external
peripherals.

Private peripherals including
built-in interrupt controller
(NVIC) and debug
components

Private
Peripheral Bus

(PPB)

0xE0000000

0xE00FFFFF

System Control
Space (SCS)

0xE000E000

0xE000EFFF

0.5GB

0.5GB

0.5GB

1GB

1GB

Private Peripheral Bus

Figure 4.10
Memory map.

98 Chapter 4

4.3.2 Single Cycle I/O Interface

The Cortex-M0þ Processor has an optional feature, which allows chip designer to add a

separated bus interface (in addition to the main system bus), which allows certain

peripheral registers to be accessed in a single clock cycle. This enables the microcontroller

product to provide better performance in I/O operations, as well as improve energy

efficiency in I/O intensive applications.

When this feature is implemented, the address space connect to the single cycle I/O

interface appears as a part of the main memory space, so from software point of view the

peripheral registers in the single cycle I/O bus works in the same way as registers on the

AHB-Lite system bus. However, this interface can only be used for data accesses and does

not support instruction accesses (Figure 4.11).

The single cycle I/O interface is intended for connecting small number of peripherals, which

need faster access speed (e.g., GPIO). Peripherals like UART and timers are normally

connected via the AHB-Lite system bus because the associated operations typically do not

have short-latency requirement and do not occur frequently.

4.3.3 Memory Protection Unit

Another optional feature in the Cortex-M0þ processor is the MPU (MPU). This is a

programmable unit and is to be used with the privilegedeunprivileged states of the

Processor

System bus
(Pipelined operation,
AHB Lite protocol)

ROM RAM Peripherals

Fast
Peripherals

Address
decoder to define
fast I/O memory

space.

AHB interconnect

Single Cycle I/O interface

Data Transfers in memory
space allocated for fast I/O

are handled on this bus.

System Bus

Data Transfers not belong
to fast I/O space and
instruction fetches.

Figure 4.11
Optional single Cycle I/O Interface on the Cortex�-M0þ Processor.

Architecture 99

processor. The MPU provides up to eight programmable regions, and each region can be

defined with different starting addresses, sizes, and memory access permissions.

In a multitasking system, an OS can run some of the application tasks in unprivileged state

and the OS can program the optional MPU each time it switches between tasks, so each of

the unprivileged application tasks run in their own permitted memory space and can only

access to memory locations allocated to them.

The configuration registers of the MPU is privileged access only so that an unprivileged

task cannot change the access permission to bypass the MPU.

More information about the MPU is covered in Chapter 12.

4.4 Stack Memory Operations

Stack memory is a memory usage mechanism that allows the system memory to be used as

temporary data storage that behaves as a first-in-last-out buffer. One of the essential elements

of stack memory operation is a register called the Stack Pointer. The stack pointer indicates

where the current stack memory location is, and is adjusted automatically each time a stack

operation is carried out.

In the Cortex�-M processors, the Stack Pointer is register R13 in the register bank.

Physically there are two stack pointers in the Cortex-M processors, but only one of them

is used at a time, depending on the current value of the CONTROL register and the state

of the processor (see Figure 4.8).

In common terms, storing data to the stack is called pushing (using the PUSH instruction)

and restoring data from the stack is called popping (using the POP instruction). Depending

on processor architecture, some processors perform storing of new data to stack memory

using incremental address indexing and some use decrement address indexing. In the

Cortex-M processors, the stack operation is based on a “full-descending” stack model.

This means the stack pointer always points to the last filled data in the stack memory, and

the stack pointer predecrements for each new data store (PUSH) (Figure 4.12).

PUSH and POP are commonly used at the beginning and at the end of a function or

subroutine. At the beginning of a function, the current contents of the registers used by the

calling program are stored onto the stack memory using PUSH operations, and at the end of

the function, the data on the stack memory is restored to the registers using POP operations.

Typically, each register PUSH operation should have a corresponding register POP operation;

otherwise the stack pointer will not be able to restore registers to their original values. This

can result in unpredictable behaviors, for example, function return to incorrect addresses.

The minimum data size to be transferred for each push and pop operations is one word

(32-bit) and multiple registers can be pushed or popped in one instruction. The stack

100 Chapter 4

memory accesses in the Cortex-M processors are designed to be always word aligned

(address values must be a multiple of 4, for example, 0x0, 0x4, 0x8,.) as this gives the

best efficiency for minimum design complexity. For this reason, bit [1:0] of both stack

pointers in the Cortex-M processors are hardwired to zeros and read as zeros.

In programming, the stack pointer can be accessed as either R13 or SP in the program codes.

Depending on the processor state and the CONTROL register value, the stack pointer

accessed can either be the MSP or the PSP. In many simple applications, only one stack

pointer is needed and by default the MSP is used. The PSP is usually only required when an

OS is used in the embedded application.

In a typical embedded application with an OS, the OS kernel uses the MSP and the

application processes use the PSP. This allows the stack for the kernel to be separate from

stack memory for the application processes. This allows the OS to carry out context

switching quickly (switching from execution of one application process to another). Also,

since exception handlers only use main stack, each of the stack spaces allocated to

application tasks do not need to reserve space needed for exception handler, thus allow

better memory usage efficiency.

Even though the OS kernel only uses the MSP as its stack pointer, it can still access the

value in PSP by using special register access instructions (MRS and MSR) (Table 4.4).

Since the stack grows downward (full-descending), it is common for the initial value of

the stack pointer to be set to the upper boundary of SRAM. For example, if the SRAM

memory range is from 0x20000000 to 0x20007FFF, we can start the stack pointer at

Data Processing
(Original register

contents destroyed)

SP

Memory

1234

Register
contents

PUSH operation

Memory

POP operation

1234
Register

contents restored

Stack PUSH operation to back
up register contents

Stack POP operation to restore
register contents

SP

Memory

1234

SP

Stack pointer
decremented

Stack pointer
incremented

1234

Address

Figure 4.12
Stack PUSH and POP in the Cortex�-M processors.

Architecture 101

0x20008000. In this case, the first stack PUSH will take place at address 0x20007FFC, the

top word of the SRAM (see Figure 4.13).

The initial value of MSP is stored at the beginning of the program memory. Here we will

find the exception vector table, which is introduced in the next section. The initial value of

PSP is undefined, and therefore the PSP must be initialized by software before using it.

In many software development environments, the stack pointer can be set up again during

the C start-up code (before entering “main()”). This two-stage stack initialization sequence

enables a system to boot up the system with the stack pointing to a small internal SRAM

inside the chip, and then change the stack definition to a larger external memory space

after the external memory controller has been initialized.

4.5 Exceptions and Interrupts

Exceptions are events that cause changes to program control: when an exception occurred,

instead of continuing program execution, the processor suspends the current executing task

and executes a part of the program code called the exception handler. After the exception

handler is completed, it will then resume the normal program execution.

There are various types of exceptions, and interrupts are a subset of exceptions.

The Cortex�-M0 and Cortex-M0þ processors supports up to 32 external interrupts

(commonly referred as IRQ), and an additional special interrupt called the NMI

SP initial value 0x20008000
0x20007FFC

SRAM

0x20000000

First memory
location used

for stack

Memory
Address

Figure 4.13
Example of stack pointer initial value.

Table 4.4: Stack pointer usage definition

Processor state CONTROL[1] [0 (default setting) CONTROL[1] [1 (OS has started)

Thread mode Use MSP (R13 is MSP) Use PSP (R13 is PSP)
Handler mode Use MSP (R13 is MSP) Use MSP (R13 is MSP)

102 Chapter 4

(Non-Maskable Interrupt). The exception handlers for interrupt events are commonly

known as ISRs (Interrupt Service Routines). Interrupts are usually generated by on-chip

peripherals, or by external input through I/O ports. The exact number of available

interrupts on the Cortex-M0/M0þ processor depends on the microcontroller product you

use. In systems with more peripherals, it is possible for multiple interrupt sources to share

one interrupt connection.

In addition to the NMI and IRQs, there are a number of system exceptions in the Cortex-M0/

M0þ processors primarily for OS use and fault handling, which are as given in Table 4.5.

Each exception has an exception number. This number is reflected in various registers

including the IPSR, and is used to define the exception vector addresses. Note that

exception number is separated from interrupt numbers used in device driver libraries. In

most device driver libraries, system exceptions are defined using negative numbers, and

interrupts are defined as positive numbers from 0 to 31.

Reset is a special type of exception. When the Cortex-M0/M0þ processor exits from a

reset, it executes the reset handler in thread mode (no need to return from handler to

thread). Also, the exception number of 1 is not visible in the IPSR.

Apart from NMI, HardFault and reset, all other exceptions have a programmable priority

level. The priority level for NMI and HardFault are fixed and both have a higher priority

than the rest of the exceptions. More details will be covered in Chapter 8 of this book.

Table 4.5: Exception types

Exception type

Exception

number Description

Reset 1 Power on reset or system reset.
NMI 2 Non-Maskable interruptdhighest priority exception that cannot

be disabled. For safety critical events.
HardFault 3 For fault handlingdactivated when a system error is detected.
SVCall 11 Supervisor calldactivated when SVC instruction is executed.

Primarily for OS applications.
PendSV 14 Pendable service (system) calldactivate by writing to an

interrupt control and status register. Primarily for OS
applications.

SysTick 15 System Tick timer exception e typically used by an OS for a
regular system tick exception. The system tick timer (SysTick) is
an optionala timer unit inside the Cortex�-M processor.

IRQ0 to IRQ31b 16e47 Interruptsdcan be from external sources or from on-chip
peripherals.

aSysTick is optional in ARMv6-M architecture, and mandatory in ARMv7-M architecture.
bARMv6-M architecture limited the design to 32 IRQs. ARMv7-M architecture allows up to 480, but the Cortex-M3,
Cortex-M4 and Cortex-M7 processors limited this to 240.

Architecture 103

4.6 Nested Vectored Interrupt Controller

In order to prioritize the interrupt requests and handle other exceptions, the Cortex�-M

processors have a built-in interrupt controller called the NVIC. The interrupt management

function is controlled by a number of programmable registers in the NVIC. These registers

are memory mapped, with the addresses located within the System Control Space (SCS) as

illustrated in Figure 4.10.

The NVIC supports a number of features:

• Flexible interrupt management

• Nested interrupt support

• Vectored exception entry

• Interrupt masking

4.6.1 Flexible Interrupt Management

In the Cortex-M processors, each external interrupt can be enabled, disabled, and can have

its pending status set or clear by software. It can also accept exception requests at signal

level (interrupt request from a peripheral remain asserted until the ISR clears the interrupt

request), as well as an exception request pulse (minimum 1 clock cycle). This allows the

interrupt controller to be used with any interrupt source.

4.6.2 Nested Interrupt Support

In the Cortex-M processors, each exception has a priority level. The priority level can be

fixed or programmable (all interrupts has programmable priority levels). When an exception

occurs such as an external interrupt, the NVIC will compare the priority of this exception to

the current level. If the new exception has a higher priority, the current running task will be

suspended. Some of the registers will be stored on to the stack memory and the processor

will start executing the exception handler of the new exception. This process is called

“preemption.” When the higher priority exception handler is completes, it is terminated with

an exception return operation and the processor automatically restores the registers from the

stack and resumes the task that was running previously. This mechanism allows nesting of

exception services without any software overhead.

4.6.3 Vectored Exception Entry

When an exception occurs, the processor will need to locate the starting point of the

corresponding exception handler. Traditionally, in ARM� processors such as the ARM7TDMI,

this is done by software. The Cortex-M processors automatically locate the starting point of

the exception handler from a vector table in the memory. As a result, the delay from the

occurrence of the exception to the execution of the exception handlers is reduced.

104 Chapter 4

4.6.4 Interrupt Masking

The NVIC in the Cortex-M processors provides an interrupt masking feature via the

PRIMASK special register. This can disable all exceptions except HardFault and NMI.

This masking is useful for operations that should not be interrupted such as time critical

control tasks or real time multimedia codecs. (Note: Processors based on ARMv7-M have

additional interrupt masking registers, see Section 22.5 in Chapter 22.)

These NVIC features help makes the Cortex-M processors easier to use, provides better

response times and reduces program code size by managing the exceptions in the NVIC

hardware.

4.7 System Control Block

Apart from the NVIC, the SCS also contains a number of other registers for system

management. This is called the System Control Block. It contains registers for sleep mode

features, system exception configurations as well as a register containing the processor

identification code (which can be used by in circuit debuggers for detection of the

processor type).

4.8 Debug System

Although being currently the smallest processors in the ARM� processor family, the

Cortex�-M0 and Cortex-M0þ processors support a range of debug features. The processor

core provides halt mode debug, stepping, register accesses, and memory accesses for

debugger, and additional debug blocks provide debug features like the Breakpoint Unit

(BPU) and Data Watchpoint (DWT) units. The BPU supports up to four hardware

breakpoints, and the DWT supports up to two watchpoints.

In order to allow a debugger to control the aforementioned debug components and carry

out debug operations, the Cortex-M processors provide a debug interface unit. This debug

interface unit can either use the JTAG protocol or the Serial Wire Debug (SWD) protocol

(Figure 4.14). In some Cortex-M-based products, the microcontroller vendors can also

choose to use a debug interface unit which supports both JTAG and SWD protocol.

However, typical Cortex-M0 and Cortex-M0þ implementations are likely to support only

one protocol with SWD probably being preferred due to fewer pins required.

The SWD protocol is a new standard developed by ARM� and can reduce the number

debug connection pins to just two signals. It can handle all the same debug features as

JTAG without any loss of performance. The SWD interface shares the same connector as

JTAG: the Serial clock signal is shared with JTAG TCK signal, and the Serial Wire data is

shared with the JTAG TMS signal. There are many debug emulators for ARM

Architecture 105

microcontrollers including ULINK2 (from Keil�), and JLink (from SEGGER) that support

the SWD protocol.

4.9 Program Image and Start-up Sequence

To understand the start-up sequence of the Cortex�-M processors, we need to have a quick

overview on the program image first. Normally, the program image for the Cortex-M0/

M0þ processor is located from address 0x00000000.

The beginning of the program image contains the vector table. It contains the starting

addresses (vectors) of exceptions. Each vector is located in address of “Exception_Number

x 4.” For example, external IRQ #0 is exception type #16, therefore the address of the

vector for IRQ#0 is in 16x4 ¼ 0x40. These vectors have LSB set to 1 to indicate that the

exceptions handlers are to be executed with Thumb instructions. The size of the vector

table depends on how many interrupts are implemented.

The vector table also defines the initial value of the MSP. This is stored in the first word of

the vector table, as shown in Figure 4.15.

When the processor exits from reset, it will first read the first two word addresses in the

vector table, as shown in Figure 4.16. The first word is the initial MSP value, and the

second word is the reset vector which determines the starting of the program execution

address (reset handler).

For example, if we have boot code starting from address 0x000000C0, we need to put this

address value in the reset vector location with the LSB set to one to indicate that it is

ARM
Cortex-M0/
Cortex-M0+

R
un

C
om

U
SB

IDC
connector

Flat cableULINK2

USB

KEIL
Microcontroller

Development Kit

nTRST

TCK

TDI

TMS

TDO

not used

Serial-Wire clock

Serial-Wire data

JTAG connection Serial-Wire connection

not used

not used

KEIL
An ARM Company

In-Circuit Debugger

Figure 4.14
Debug interface connections can be JTAG or the Serial Wire debug protocol.

106 Chapter 4

Thumb code. Therefore, the value in address 0x00000004 is set to 0x000000C1, as shown

in Figure 4.17. After the reset vector is fetched by the processor, it will start executing

program code from the address found there. This behavior is different from traditional

ARM� processors (e.g., ARM7TDMI), where the processor executes the program starting

from address 0x00000000, and the vectors in the vector table are instructions as opposed

to address values in the Cortex-M processors.

The reset sequence also initializes the MSP. Assume we have SRAM located from

0x20000000 to 0x20007FFF, and we want to put the main stack at the top of the SRAM, we

can set this up by putting 0x20008000 in address 0x00000000 (also shown in Figure 4.17).

Since the Cortex-M processor will first decrement the stack pointer before pushing the

data on to the stack, the first stacked item will be located in 0x200007FFC, which is just

at the top of the SRAM. While the second stacked item will be in 0x20007FF8, below the

first stacked item.

Program
image

0x00000000

Program
memory

Program
code

Vector table
Initial MSP value

Reset vector

NMI vector

Hard fault vector

Interrupt vectors

SVC vector

PendSV vector

SysTick vector

reserved

reserved

0x00000040

0x0000003C

0x00000038

0x00000000

0x00000004

0x00000008

0x0000000C

0x0000002C

Figure 4.15
Vector table in a program image.

Reset
Fetch reset

vector

Read address
0x00000000

1st instruction
fetch

Time

Fetch initial
value for MSP

Read address
0x00000004

Read address
indicated by
reset vector

Subsequent
instruction fetches

Figure 4.16
Reset sequence.

Architecture 107

This behavior is different from traditional ARM processors and many other

microcontroller architectures where the stack pointer has to be initialized by software code

rather than a value in a fixed address.

If the PSP is to be used, it must be initialized by software code before writing to the

CONTROL register to switch the stack pointer. The reset sequence only initializes the

MSP and not the PSP.

Different software development tools have different ways of specifying the initial stack

pointer value and the values for the reset and exception vectors. Most of the development

tools come with code examples demonstrating how this can be done with their

development flow. In most compilation tools, the vector table can be defined completely

using C codes.

Other vectors

0x200080000x00000000
0x000000C10x00000004

Program code

Boot code

1st stacked item
2nd stacked item

0x20007FFC
0x20007FF8
0x20007FF4

0x000000C0
Reset
vector

0x20008000

Initial MSP
value

Stack
memory

SRAM0x20000000

Stack grow
downwards

Program
execution

Figure 4.17
Example of MSP and PC initialization.

108 Chapter 4

CHAPTER 5

Instruction Set
5.1 What Is Instruction Set

All processors carry out their require operations by executing sequences of instructions.

Each instruction defines a simple operation, for example, simple ALU operation, data

access to the memory system, program branch operation, etc.

For the processor, it takes instructions in form of binary code and decodes them in internal

hardware (instruction decoder), then passes on the information about the decoded

instruction to the execution stage. In simple processor designs, for minimum the following

types of instructions are required:

• Data processing (arithmetic operations like “add”/“subtract,” logic operations like

“AND”/“OR”)

• Memory access instructions (read memory, write memory)

• Program flow control instructions (branches, conditional branches, function calls)

In addition, the ARM� Cortex�-M0 and Cortex-M0þ processors also have instructions for

• Exception and OS support

• Accesses to special registers

• Sleep operations

• Memory barriers

The instruction set supported by the ARM Cortex-M Processors is called Thumb�, with

the Cortex-M0 and Cortex-M0þ Processors supporting only a subset of the defined

instructions (56 of them). Most of these instructions are 16 bit in size with only six of

them are 32 bit.

Table 5.1 shows the base 16-bit Thumb instructions supported in the Cortex-M0/M0þ
Processors.

The Cortex-M0/M0þ processors also support a number of 32-bit Thumb instructions from

Thumb-2 technology (Table 5.2).

• MRS and MSR special register access instructions

• ISB, DSB, and DMB memory synchronization instructions

• BL instruction (BL was supported in traditional Thumb instruction set but the bit field

definition was extended in Thumb-2)

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00005-9

Copyright © 2015 Elsevier Inc. All rights reserved. 109

http://dx.doi.org/10.1016/B978-0-12-803277-0.00005-9

With such a small instruction set, the Cortex-M0 and Cortex-M0þ processors are not

designed for heavy duty number crunching tasks. The Cortex-M3, Cortex-M4, and

Cortex-M7 processors are better for those applications as they have a much richer

instruction set. The Cortex-M0 and Cortex-M0þ Processors are designed for handling

general data processing and I/O control tasks, and ultra low power and low-cost systems

where the silicon size need to be tiny.

One of the key characteristics of the instruction set for the Cortex-M Processors is

upward compatibility. As shown in Figures 1.4 and 2.7, the instruction set supported by the

Cortex-M0 and Cortex-M0þ Processors is supported by Cortex-M3, Cortex-M4,

and Cortex-M7 processors. So the program code developed for Cortex-M0 and Cortex-M0þ
processors can often run on the Cortex-M3, Cortex-M4, and Cortex-M7 processors without

changes.

Moving an application from a higher performance processor to a smaller processor can be

done easily too. If a software developer needs to port an application from the Cortex-M3

to the Cortex-M0þ processor, often he/she only needs to replace the device driver in the

project and recompile the application. The programmer’s models of these processors are

very similar to each other, so often there is no need to change the C source code.

5.2 Background of ARM� and Thumb� Instruction Set

The early ARM processors use a 32-bit instruction set called the ARM instructions. The

32-bit ARM instruction set is powerful and provides good performance, but at the same

time, often requires larger program memory when compared to 8-bit and 16-bit processors.

Table 5.2: 32-bit Thumb� instructions supported on the Cortex�-M0

and Cortex-M0þ processor

32-bit Thumb instructions supported on Cortex-M0/M0þ processors

BL DSB DMB ISB MRS MSR

Table 5.1: 16-bit Thumb� instructions supported on the Cortex�-M0

and Cortex-M0þ processor

16-bit Thumb instructions supported on Cortex-M0/M0þ processors

ADC ADD ADR AND ASR B BIC BLX BKPT BX
CMN CMP CPS EOR LDM LDR LDRH LDRSH LDRB LDRSB
LSL LSR MOV MVN MUL NOP ORR POP PUSH REV
REV16 REVSH ROR RSB SBC SEV STM STR STRH STRB
SUB SVC SXTB SXTH TST UXTB UXTH WFE WFI YIELD

110 Chapter 5

This was and still is an issue as memory is expensive and could consume a considerable

amount of power.

In 1995, ARM introduced the ARM7TDMI(R) processor, adding a new 16-bit instruction

set called the Thumb instruction set. The ARM7TDMI supports both ARM instructions

and Thumb instructions, and a state switching mechanism is used to allow the processor to

decide which instruction decode scheme should be used (Figure 5.1). The Thumb

instruction set provides a subset of the ARM instructions. By itself it can perform most of

the normal functions, but interrupt entry sequence and boot code must still be in ARM

state. Nevertheless, most processing can be carried out using Thumb instructions and

interrupt handlers could also switch themselves to use Thumb state, so the ARM7TDMI

processor provides excellent code density when compared to other 32-bit RISC

architectures.

Thumb code provides a code size reduction of approximately 30% compared to the

equivalent ARM code. However, it has some impact to the performance and can reduce

the performance by 20%. On the other hand, in many applications, the reduction of

program memory size, the low-power nature of the ARM7TDMI processor made it

extremely popular with portable electronic devices like mobile phones and

microcontrollers.

In 2003, ARM introduced Thumb-2 Technology. This technology provides a number of

32-bit Thumb instructions as well as the original 16-bit Thumb instructions. The new

32-bit Thumb instructions can carry out most operations that previously could only be

done with the ARM instruction set. As a result, program code compiled for Thumb-2 is

typically 74% of the size of the same code compiled for ARM, while maintaining similar

performance.

The Cortex�-M3 processor is the first ARM processor that supports only Thumb-2

instructions (no ARM instruction support). It can deliver up to 1.25 DMIPS per MHz

Incoming
Instructions

Thumb remap
to ARM

ARM
instruction
decoder

Execution
stage

T bit (0 = ARM,
1 = Thumb)

0

1

Instruction decode
format selection

Figure 5.1
ARM7TDMI design supports both ARM� and Thumb� instruction set.

Instruction Set 111

(measured with Dhrystone 2.1) and many microcontroller vendors are already shipping

microcontroller products based on the Cortex-M3 processor. By implementing only just

one instruction set, the software development is made simpler and at the same time

improves the energy efficiency as only one instruction decoder is required (see Figure 5.2).

On the high-end processor side, there are also continuous developments of new instruction

set features. For example, some of the ARM application processors (e.g., Cortex-A

Processor family) introduced NEON� Advanced SIMD instructions to help multimedia

data processing (Figure 5.3).

The details of the instruction set are defined in the Architecture Reference Manuals. For the

ARMv6-M architecture used in the Cortex-M0 and Cortex-M0þ Processors, in order to

reduce the circuit size to a minimum, only the 16-bit Thumb instructions and a minimum

subset of 32-bit Thumb instructions are supported. These 32-bit Thumb instructions are

essential because the ARMv6-M architecture use a number of features in ARMv7-M

Incoming
Instructions

Thumb-2
instruction
decoder

Execution
stage

Figure 5.2
Cortex�-M Processors do not have to remap instructions from Thumb� to ARM�.

ARM
instructions
(32-bit)

ARM
instructions
(32-bit)

Thumb
instructions
(16-bit)

+

ARM
instructions
(32-bit)

Thumb
instructions
(16-bit)

+

DSP

ARM
instructions
(32-bit)

Thumb
instructions
(16-bit)

+

DSP, SIMD

Floating
point (VFP)

Thumb- 2
(16-bit + 32-bit)

ARM instructions
(32-bit)

DSP, SIMD

Floating
point (VFP)

NEON
advanced
SIMD

DSP, SIMD

Floating
point (VFP)

+

ARMv4T
(e.g. ARM7TDMI)

ARMv5TE
(e.g. ARM926)

ARMv6
(e.g. ARM1136)

ARMv7
(e.g. Cortex-A9)

NEON
advanced
SIMD

A32 + T32 (AArch32)
Instruction Sets

A64 (AArch64)
Instruction Set for
64-bit systems

Crypto
NEON

advanced
SIMD

+

ARMv8-A
(e.g. Cortex-A57)

Crypto
NEON

advanced
SIMD

Key ARMv7-A features

Key ARMv7-A features

Figure 5.3
Latest development of the instruction set in ARM� processors supports 64-bit architecture.

112 Chapter 5

architecture, which requires these instructions. For example, the accesses to the special

registers require the MSR and MRS instructions. In addition, the Thumb-2 version of BL

(Branch and Link instruction) is also included to provide a larger branch range.

5.3 Assembly Basics

In this chapter the instruction set of the Cortex�-M0/M0þ Processors is introduced. In

most situations, application codes can be written entirely in C language and therefore it is

not necessary to know the details of the instruction set. However, it is still useful to know

what instructions are available and their usages; for example, this information might be

needed during debugging.

The complete details of each instruction are documented in the ARMv6-M Architecture

Reference Manual (reference 1). In here the basic syntax and usage are introduced. First of

all, in order to help understanding the assembly instructions covered in this chapter, some

of the basics information about assembly syntax is introduced here.

5.3.1 Quick Glance at Assembly Syntax

Most of the assembly examples in this book are written for the ARM� assembler

(armasm). Assembly tools from different vendors (e.g., GNU tool chain) have different

assembly syntax. In most cases, the mnemonics of the assembly instructions are the same,

but compile directives, definitions (defines), labeling, and comment syntax can be different.

For ARM assembly (applies to ARM Development Studio 5 and Keil� Microcontroller

Development Kit), the following instruction formatting is used:

label
mnemonic operand1, operand2,. ; Comments

The “label” is used as a reference to an address location. It is optional; some instructions

might have a label in front of them, so that the address of the instruction can be obtained

using the label, for example, allowing the instruction address to be used as a branch target.

Labels can also be used to reference data addresses. For example, you can put a label for a

lookup table inside the program.

After the “label” you can find the “mnemonic,” which is the name (mnemonic) of the

instruction, followed by a number of operands:

• For data processing instructions written for the ARM assembler, the first operand is the

destination of the operation.

• For a memory read instruction (except multiple load instructions), the first operand is

the register which data is loaded into.

Instruction Set 113

• For a memory write instruction (except multiple store instructions), the first operand is

the register that holds the data to be written to memory.

Please note instructions that handle multiple loads and stores have a different syntax which

will be covered in Section 5.4.2.

The number of operands for each instruction depends on the instruction type. Some

instructions do not need any operand and some might need just one operand.

Note that some mnemonics can use with different types of operands, which can result in

different instruction encodings. For example, the MOV (move) instruction can be used to

transfer data between two registers, or can be used to put an immediate constant value into

a register.

The number of operands in an instruction depends on what type of instruction it is, and

the syntax format can also be different. For example, immediate data are usually prefixed

with “#”:

MOVS R0, #0x12 ; Set R0 = 0x12 (hexadecimal)
MOVS R1, #ʹAʹ ; Set R1 = ASCII character A

The text after each semicolon “;” is a comment. Comments do not affect the program

operation, but should make programs easier for humans to understand.

With GNU tool chain (i.e., gas, the GNU assembler), the common assembly syntax is:

label:
mnemonic operand1, operand2,. /* Comments */

The opcode and operands are the same as the ARM assembler syntax, but the syntax

for label and comments are different. For the same instructions as above, the GNU

version is:

MOVS R0, #0x12 /* Set R0 = 0x12 (hexadecimal) */
MOVS R1, #ʹAʹ /* Set R1 = ASCII character A */

An alternate way to insert comments in GNU assembler is to make use of the inline

comment character “@”. For example,

MOVS R0, #0x12 @ Set R0 = 0x12 (hexadecimal)
MOVS R1, #ʹAʹ @ Set R1 = ASCII character A

One of the commonly required features in assembly code is constant definitions. By using

constant definitions, the program code can be more readable and can make code

maintenance much easier. In ARM assembly, an example of defining a constant is:

NVIC_IRQ_SETEN EQU 0xE000E100
NVIC_IRQ0_ENABLE EQU 0x1

114 Chapter 5

.

LDR R0,=NVIC_IRQ_SETEN
; Put 0xE000E100 into R0
; LDR here is a pseudo instruction that will be converted
; to a PC relative literal data load by the assembler

MOVS R1, #NVIC_IRQ0_ENABLE
; Put immediate data (0x1) into
; register R1

STR R1, [R0]
; Store 0x1 to 0xE000E100, this enable external
; interrupt IRQ#0

Similarly, the same code can be written with GNU tool chain assembler syntax:

.equ NVIC_IRQ_SETEN, 0xE000E100

.equ NVIC_IRQ0_ENABLE, 0x1

.

LDR R0,=NVIC_IRQ_SETEN /* Put 0xE000E100 into R0
LDR here is a pseudo instruction that will be
converted to a PC relative load by the assembler */

MOVS R1, #NVIC_IRQ0_ENABLE /* Put immediate data (0x1) into
register R1 */

STR R1, [R0] /* Store 0x1 to 0xE000E100, this enable
external interrupt IRQ#0 */

Another typical feature in most assembly tools is allowing data to be inserted inside

program. For example, we can define data in a certain location in the program memory

and access it with memory read instructions. In ARM assembler, an example is:

LDR R3,=MY_NUMBER ; Get the memory location of MY_NUMBER
LDR R4, [R3] ; Read the value 0x12345678 into R4
.

LDR R0,=HELLO_TEXT ; Get the starting address of HELLO_TEXT
BL PrintText ; Call a function called PrintText to

; display string
.

ALIGN 4
MY_NUMBER DCD 0x12345678
HELLO_TEXT DCB "Hello\n", 0 ; Null terminated string

In the above example, “DCD” is used to insert a word-sized data, and “DCB” is used to

insert byte-size data into the program. When inserting word-size data in program, we

should use the “ALIGN” directive before the data. The number after the ALIGN directive

determines the alignment size, in this case, the value is 4, which forces the following data

to be aligned to a word boundary. Unaligned accesses are not supported in the Cortex-M0

and Cortex-M0þ processors. By ensuring the data following (MY_NUMBER) is word

aligned, the program will be able to access the data correctly, avoiding any potential

alignment faults.

Instruction Set 115

Again, this example can be rewritten into GNU tool chain assembler syntax:

LDR R3,=MY_NUMBER /* Get the memory location of MY_NUMBER */
LDR R4, [R3] /* Read the value 0x12345678 into R4 */
.

LDR R0,=HELLO_TEXT /* Get the starting address of
HELLO_TEXT */

BL PrintText /* Call a function called PrintText to
display string */

.

.align 4
MY_NUMBER:

.word 0x12345678
HELLO_TEXT:

.asciz "Hello\n" /* Null terminated string */

A number of different directives are available in both ARM assembler and GNU assembler

for inserting data into a program. Table 5.3 shows a few commonly used examples.

There are a number of other useful directives that are often used in assembly language

programming. For example, some of the following ARM assembler directives (Table 5.4)

are commonly used and some of these are used in the examples in this book.

Table 5.3: Commonly used directives for inserting data into a program

Type of data to insert

ARM� assembler (e.g., Keil�

MDK-ARM) GNU assembler

Byte DCB .byte
e.g., DCB 0x12 e.g., .byte 0x012

Half word DCW .hword/.2byte
e.g., DCW 0x1234 e.g., .hword 0x01234

Word DCD .word/.4byte
e.g., DCD 0x01234567 e.g., .word 0x01234567

Double word DCQ .quad/.octa
e.g., DCQ 0x12345678FF0055AA e.g., .quad 0x12345678FF0055AA

Floating point
(Single precision)

DCFS .float
e.g., DCFS 1E3 e.g., .float 1E3

Floating point
(Double precision)

DCFD .double
e.g., DCFD 3.14159 e.g., .double 3f14159

String DCB .ascii/.asciz (with NULL termination)
e.g., DCB “Hello\n”, 0 e.g., .ascii “Hello\n”

.byte 0/*add NULL character */
e.g., .asciz “Hello\n”

Instruction DCI .inst/.inst.w
e.g., DCI 0xBE00 ; Breakpoint
(BKPT 0)

e.g., .inst 0xbe00
/*Breakpoint (BKPT 0) */

116 Chapter 5

Additional information about directives in ARM assembler can be found in the “ARM

Compiler armasm User Guide,” [Reference 16, Chapter 13, Directives Reference1].

5.3.2 Use of a Suffix

In assembler for ARM processors, some instructions can be followed by suffixes. For

Cortex-M0 and Cortex-M0þ Processors, the available suffixes are shown in Table 5.5.

For the Cortex-M0 and Cortex-M0þ processors, most of the data processing instructions

always update the Application Program Status Register (APSR) (flags), only a few of the

data operations do not update the APSR. For example, when moving a data from one

register to another, it is possible to use:

MOVS R0, R1 ; Move R1 into R0 and update APSR

Table 5.4: Commonly used directives

Directive

(GNU assembler equivalent) ARM� assembler

THUMB
(.syntax unified
.thumb)

Specify assembly code as Thumb� instruction in
Unified Assembly Language (UAL) format.

CODE16
(.code 16)

Specify assembly code as Thumb instruction in legacy
pre-UAL syntax.

AREA<section_name>{,<attr>}{,attr}.
(.section <section_name>)

Instructs the assembler to assemble a new code or
data section. Sections are independent, named,
indivisible chunks of code or data that are
manipulated by the linker.

SPACE <num of bytes>
(.zero <num of bytes>)

Reserves a block of memory and fills it with zeros

FILL <num of bytes>{, <value>{, <value_sizes>}}
(.fill < num of bytes>{, <value>{, <value_sizes>}})

Reserves a block of memory and fills it with the
specified value. The size of the value can be byte, half
word, or word, specified by value_sizes (1/2/4).

ALIGN {<expr>{,<offset>{,<pad>{,<padsize>}}}}
(.align <alignment>{,<fill>{,<max}}})

Aligns the current location to a specified boundary by
padding with zeros or NOP instructions. For example,
ALIGN 8 ; make sure the next instruction or

; data is aligned to 8 byte boundary
EXPORT <symbol>
(.global <symbol>)

Declare a symbol that can be used by the linker to
resolve symbol references in separate object or library
files.

IMPORT <symbol> Declare a symbol reference in separate object or
library files that is to be resolved by linker.

LTORG (.pool) Instructs the assembler to assemble the current literal
pool immediately. Literal pool contains data such as
constant values for LDR pseudo instruction.

1 http://infocenter.arm.com/help/topic/com.arm.doc.dui0473k/dom1361290000455.html.

Instruction Set 117

http://infocenter.arm.com/help/topic/com.arm.doc.dui0473k/dom1361290000455.html

Or

MOV R0, R1 ; Move R1 into R0

The second group of suffixes in Table 5.5 is for conditional execution of instructions. In

the Cortex-M0 and Cortex-M0þ Processors the only instruction that can be conditionally

executed is a conditional branch. By updating the APSR using data operations, or using

instructions like test (TST) or compare (CMP), the program flow can be controlled with

conditional branches. More details of the conditional branch instruction will be covered in

later part of this chapter (Section 5.4.8).

5.3.3 Unified Assembler Language (UAL)

The syntax for assembly code has changed over the years. Today, assembly codes are

written in Unified Assembler Language (UAL) syntax (Hence the “.syntax unified”

directive in GNU assembler). A number of years ago, the pre-UAL assembly code

syntax used were less explicit and the omissions of “S” suffixes in many data

processing instructions were allowed. As the ARM architecture evolved, 32-bit Thumb�

instructions are introduced with the Thumb-2 Technology and the ambiguity of the

legacy syntax became a problem because many Thumb instructions have the option of

updating the APSR or not updating the APSR. The UAL syntax was developed to solve

this issue, as well as allowing consistent syntax for both Thumb and ARM assembly

codes.

For users who have been using ARM7TDMI in the past, the most noticeable differences

between UAL and pre-UAL syntax are as follows:

• Some data operation instructions use three operands even when the destination register

is the same as one of the source registers. While in the past (pre-UAL) syntax might

only use two operands for the same instructions.

• The “S” suffix becomes more explicit. In the past, when an assembly program file is

assembled into Thumb code, most data operations are implied as instructions that

update the APSR, as a result, the “S” suffix was not essential. With the UAL syntax,

Table 5.5: Suffixes for Cortex�-M0/M0þ assembly program codes

Suffix Descriptions

S Update APSR (flags); for example,
ADDS R0, R1 ; this ADD operation will update APSR

EQ, NE, CS, CC, MI, PL, VS,
VC, HI, LS, GE, LT, GT, LE

Conditional execution. EQ ¼ Equal, NE ¼ Not Equal, LT ¼ Less
Than, GT ¼ Greater Than, etc. On the Cortex-M0 processor these
conditions can only be applied to conditional branches. For example,
BEQ label ; Branch to label if equal

118 Chapter 5

instructions that update the APSR should have the “S” suffix to clearly indicate the ex-

pected operation. This prevents program code failing when being ported from one archi-

tecture to another.

For example, a pre-UAL ADD instruction for 16-bit Thumb code is

ADD R0, R1 ; R0 = R0 + R1, update APSR

With UAL syntax, this should be written as

ADDS R0, R0, R1 ; R0 = R0 + R1, update APSR

But in most cases (dependent on tool chain being used), you can still write the instruction

with a pre-UAL style (only two operands), but the use of “S” suffix has become a

requirement:

ADDS R0, R1 ; R0 = R0 + R1, update APSR

The pre-UAL syntax is currently still accepted by some development tools. However, use of

UAL is recommended in new projects. For assembly development with ARM Development

Studio 5 (DS-5�) or Keil Microcontroller Development Kit (MDK-ARM�), you can

specify using UAL syntax with “THUMB” directives, and pre-UAL syntax with “CODE16”

directives. The choice of Assembler syntax depends on which tool you use. Please refer to

the documentation of your development suite to determine the suitable syntax.

5.4 Instruction List

The instructions in the Cortex�-M0 and Cortex-M0þ Processors can be divided into

various groups based on functionality:

• Moving data within the processor

• Memory Accesses

• Stack Memory Accesses

• Arithmetic operations

• Logic operations

• Shift and Rotate operations

• Extend and reverse ordering operations

• Program flow control (Branch, conditional branch, and function calls)

• Memory barrier instructions

• Exception-related instructions

• Other functions

In this section, the instructions will be discussed in more detail. The syntax illustrated here

uses symbols of “Rd,” “Rm,” etc. In real program code these need to be substituted with

register names R0, R1, R2, etc.

Instruction Set 119

5.4.1 Moving Data within the Processor

Transferring data is one of the most common tasks in a processor. In Thumb� code the

instruction mnemonic for moving data is MOV. There are several types of MOV

instructions, based on the operand type and opcode suffix.

Instruction MOV

Function Move register into register
Syntax (UAL) MOV <Rd>, <Rm>
Syntax (pre-UAL) MOV <Rd>, <Rm>

CPY <Rd>, <Rm>
Note Rm and Rn can be high or low registers.

CPY is a pre-UAL synonym for MOV (register).

If we want to copy a register value to another, and update the APSR at the same time, we

could use MOVS/ADDS.

Instruction MOVS/ADDS

Function Move register into register
Syntax (UAL) MOVS <Rd>, <Rm>

ADDS <Rd>, <Rm>, #0
Syntax (pre-UAL) MOVS <Rd>, <Rm>
Note Rm and Rn are both low registers.

APSR.Z, APSR.N, and APSR.C (for ADDS) update.

We can also load an immediate data into a register using the MOV instruction.

Instruction MOV

Function Move immediate data (sign extended) into register
Syntax (UAL) MOVS <Rd>, #immed8
Syntax (pre-UAL) MOV <Rd>, #immed8
Note Immediate data range 0 to þ255.

APSR.Z and APSR.N update.

If we want to load an immediate data into a register which is out of the 8-bit value range,

we need to store the data into a program memory space, and then use a memory access

instruction to read the data into the register. This can be written using a pseudo instruction

LDR, which is converted into a real instruction by the assembler. This will be covered

later in this chapter (Section 5.5).

The MOV instructions can cause a branch to happen if the destination register is R15 (Program

Counter (PC)). However, generally the B and BX instructions are used for this purpose.

120 Chapter 5

Another type of data transfer in the Cortex-M Processors is Special Registers accesses. In

order to access the Special Registers (CONTROL, PRIMASK, xPSR, etc.), the MRS and

MSR instructions are needed. These two instructions cannot be generated in C language.

However, they can be created using inline assembler or Embedded Assembler,2 or other C

compiler specific feature like the named register variables feature in ARM� DS-5 or Keil�

MDK. CMSIS-CORE also provides APIs for accessing special registers.

Instruction MRS

Function Move Special Register into register
Syntax MRS <Rd>, <SpecialReg>
Note Example:

MRS R0, CONTROL ; Read CONTROL register into R0
MRS R9, PRIMASK ; Read PRIMASK register into R9
MRS R3, XPSR ; Read xPSR register into R3

Instruction MSR

Function Move register into Special Register
Syntax MSR <SpecialReg>, <Rd>
Note Example:

MSR CONTROL, R0 ; Write R0 into CONTROL register
MSR PRIMASK, R9 ; Write R9 into PRIMASK register

The following table (Table 5.6) shows the complete list of special register symbols that are

available on the Cortex-M0/M0þ Processors when MSR and MRS instructions are used.

Please also refer to Table 4.1 for access restrictions during unprivileged state.

Table 5.6: Special register symbols for MRS and MSR instructions

Symbol Register Access type

APSR Application Program Status Register (PSR) Read/Write
EPSR Execution PSR No accesses (read as zero)
IPSR Interrupt PSR Read only
IAPSR Composition of IPSR and APSR Read only
EAPSR Composition of EPSR and APSR Read only (EPSR read as zero)
IEPSR Composition of IPSR and EPSR Read only (EPSR read as zero)
XPSR Composition of APSR, EPSR, and IPSR Read only (EPSR read as zero)
MSP Main Stack Pointer Read/Write
PSP Process Stack Pointer Read/Write
PRIMASK Primary Exception Mask register Read/Write
CONTROL CONTROL register Read/Write

2 Embedded Assembler is supported on ARM� Development Studio 5 (DS-5) and Keil� Microcontroller
Development Kit for ARM (MDK).

Instruction Set 121

5.4.2 Memory Accesses

The Cortex-M0 and Cortex-M0þ processors support a number of memory access

instructions, which support various data transfer sizes and addressing modes. The

supported data transfer sizes are Word, Half Word, and Byte. In addition, there are

separate instructions to support signed and unsigned data. The following table

(Table 5.7) summarizes the memory address instruction mnemonics for single load and store

operations.

The instructions listed in Table 5.7 support multiple addressing modes. When the

instruction is used with different operands, different instruction encodings are generated by

the assembler.

Important

It is important to make sure the memory address accessed is aligned. For example, a word size
access can only be carried out on address locations when address bits[1:0] are set to zero,
and a half-word size access can only be carried out on address locations when address bit[0]
is set to zero. Unaligned transfers are not supported on the ARMv6-M Architecture (include
Cortex�-M0 and Cortex-M0þ processors). Any attempt at unaligned memory access result in
a HardFault exception. Byte size transfers are always aligned on the Cortex-M processors.
Additional information available in Section 7.9.1 in Chapter 7.

For memory read operations, the instruction to carry out single accesses is LDR (load):

Instruction LDR/LDRH/LDRB

Function Read single memory data into register
Syntax LDR <Rt>, [<Rn>, <Rm>] ; Word read

LDRH <Rt>, [<Rn>, <Rm>] ; Half-Word read
LDRB <Rt>, [<Rn>, <Rm>] ; Byte read

Note Rt ¼ memory[Rn þ Rm]
Rt, Rn, and Rm are low registers

Table 5.7: Memory access instructions for various transfer sizes

Transfer size Unsigned load Signed load

Signed/

Unsigned store

Word LDR LDR STR
Half word LDRH LDRSH STRH
Byte LDRB LDRSB STRB

122 Chapter 5

The Cortex-M processors also support immediate offset addressing modes:

Instruction LDR/LDRH/LDRB

Function Read single memory data into register
Syntax LDR <Rt>, [<Rn>, #immed5] ; Word read

LDRH <Rt>, [<Rn>, #immed5] ; Half-Word read
LDRB <Rt>, [<Rn>, #immed5] ; Byte read

Note Rt ¼ memory[Rn þ ZeroExtend (#immed5 << 2)] ; Word
Rt ¼ memory[Rn þ ZeroExtend(#immed5 << 1)] ; Half word
Rt ¼ memory[Rn þ ZeroExtend(#immed5)] ; Byte
Rt and Rn are low registers

The Cortex-M Processors support a useful PC-relative load instruction allowing efficient

literal data accesses. This instruction can be generated when we use the LDR pseudo

instruction for putting an immediate data value into a register. This data is stored in literal

data blocks alongside the instructionsdcalled literal pools.

Instruction LDR

Function Read single memory data word into register
Syntax LDR <Rt>, [PC, #immed8] ; Word read
Note Rt ¼ memory[WordAligned(PCþ4) þ ZeroExtend(#immed8 << 2)]

Rt is a low register, and targeted address must be a word-aligned
address. The reason for adding 4 is due to the pipelined nature of the
processor.
Example:

LDR R0,¼0x12345678 ; A pseudo instruction that use literal load
; to put an immediate data into a register

LDR R0, [PC, #0x40] ; Load a data in current program address
; with offset of 0x40 into R0

LDR R0, label ; Load a data in current program
; referenced by label into R0

Due to the pipeline nature of the Cortex-M processors, in some instructions (e.g., “MOV

R0, PC”) you will find that the effective PC value when executing an instruction is the

address of the instruction þ4. However, this literal data access instruction first mask the

two LSB of program address to 0 before the calculation, this ensures that the generate data

access is aligned to 32-bit address boundary. The address offset which is encoded into

immediate value must also be a multiple of 4 (the immediate data value is shifted left by 2

bits to allow larger offset range).

There is also an Stack Pointer (SP)-related load instruction which supports a wider offset

range. This instruction is very useful for accessing local variables in C functions because

very often the local variables are stored on the stack.

Instruction Set 123

Instruction LDR

Function Read single memory data word into register
Syntax LDR <Rt>, [SP, #immed8] ; Word read
Note Rt ¼ memory[SP þ ZeroExtend(#immed8 << 2)]

Rt is a low register

The Cortex-M0/M0þ Processor can also sign extend the read data automatically using the

LDRSB and LDRSH instructions. This is useful when a signed 8-bit/16-bit data type is

used, which is common in C programs.

Instruction LDRSH/LDRSB

Function Read single signed memory data into register
Syntax LDRSH <Rt>, [<Rn>, <Rm>] ; Half-Word read

LDRSB <Rt>, [<Rn>, <Rm>] ; Byte read
Note Rt ¼ SignExtend(memory[Rn þ Rm])

Rt, Rn, and Rm are low registers

For single data memory writes, the instruction is STR (store):

Instruction STR/STRH/STRB

Function Write single register data into memory
Syntax STR <Rt>, [<Rn>, <Rm>] ; Word write

STRH <Rt>, [<Rn>, <Rm>] ; Half-Word write
STRB <Rt>, [<Rn>, <Rm>] ; Byte write

Note memory[Rn þ Rm] ¼ Rt
Rt, Rn, and Rm are low registers

Like the load operation, the store operation supports an immediate offset addressing mode:

Instruction STR/STRH/STRB

Function Write single memory data into memory
Syntax STR <Rt>, [<Rn>, #immed5] ; Word write

STRH <Rt>, [<Rn>, #immed5] ; Half-Word write
STRB <Rt>, [<Rn>, #immed5] ; Byte write

Note memory[Rn þ ZeroExtend(#immed5 << 2)] ¼ Rt ; Word
memory[Rn þ ZeroExtend(#immed5 << 1)] ¼ Rt ; Half word
memory[Rn þ ZeroExtend(#immed5)] ¼ Rt ; Byte
Rt and Rn are low registers

An SP-relative store instruction which supports a wider offset range is also available. This

instruction is useful for accessing local variables that are stored on the stack.

Instruction STR

Function Write single memory data word into memory
Syntax STR <Rt>, [SP, #immed8] ; Word write
Note memory[SP þ ZeroExtend(#immed8 << 2)] ¼ Rt

Rt is a low register

124 Chapter 5

One of the important features in ARM processors is the ability to load or store multiple

registers with one instruction. There is also an option to update the base address register

to the next location. For load/store multiple instructions, the transfer size is always in

Word size.

Instruction LDM (Load Multiple)

Function Read multiple memory data word into registers, base address register update
by memory read

Syntax LDM <Rn>, {<Ra>, <Rb> ,..} ; Load multiple registers from memory
Note Ra ¼ memory[Rn],

Rb ¼ memory[Rnþ4],
.
Rn, Ra, Rb . are low registers. Rn is on the list of registers to be updated
by memory read. For example,
LDM R2, {R1, R2, R5 - R7} ; Read R1,R2,R5,R6, and R7 from memory

Instruction

LDMIA (Load Multiple Increment After)/LDMFDdBase address register

update to subsequence address

Function Read multiple memory data word into registers and update base register
Syntax LDMIA <Rn>!, {<Ra>, <Rb> ,..} ; Load multiple registers from memory

; and increment base register after completion
Note Ra ¼ memory[Rn],

Rb ¼ memory[Rnþ4],
.
and then update Rn to last read address plus 4.
Rn, Ra, Rb . are low registers. For example,
LDMIA R0!, {R1, R2, R5 - R7} ; Read multiple registers, R0 update to address
after last read operation.
LDMFD is another name for the same instruction, which was used for restoring
data from a Full Descending stack, in traditional ARM systems that use
software managed stack.

Instruction STMIA (Store Multiple Increment After)/STMEA

Function Write multiple register data into memory and update base register
Syntax STMIA <Rn>!, {<Ra>, <Rb> ,..} ; Store multiple registers to memory

; and increment base register after completion
Note memory[Rn] ¼ Ra,

memory[Rnþ4] ¼ Rb,
.
and then update Rn to last store address plus 4.
Rn, Ra, Rb . are low registers. For example,
STMIA R0!, {R1, R2, R5 - R7} ; Store R1, R2, R5, R6, and R7 to memory

; and update R0 to address after where R7 stored

Instruction Set 125

dCont’d

Instruction STMIA (Store Multiple Increment After)/STMEA

STMEA is another name for the same instruction, which was used for storing
data to an Empty Ascending stack, in traditional ARM systems that use
software-managed stack.
It is recommended to avoid a register being used as <Rn> as well as in the
register list (deprecated in the architecture). If <Rn> is in the register list, it
must be the first register in the register list.

5.4.3 Stack Memory Accesses

There are two memory access instructions that are dedicated to stack memory accesses.

The PUSH instruction is used to decrement the current SP and store data to the stack. The

POP instruction is used to read the data from the stack and increment the current SP. Both

PUSH and POP instructions allow multiple registers to be stored or restored. However,

only low registers, Link Register (LR) (for PUSH operation) and PC (for POP operation)

are supported.

Instruction PUSH

Function Write single or multiple registers (low register and Link Register (LR)) into memory
and update base register (Stack Pointer (SP))

Syntax PUSH {<Ra>, <Rb> ,..} ; Store multiple registers to memory and
; decrement SP to the lowest pushed data address

PUSH {<Ra>, <Rb>, .., LR} ; Store multiple registers and LR to
; memory and decrement SP to the lowest pushed data address

Note new_SP ¼ SP – 4 � number of registers to PUSH
memory[new_SP] ¼ Ra,
memory[new_SPþ4] ¼ Rb,
.
and then update SP to new_SP. For example,
PUSH {R1, R2, R5 - R7, LR} ; Store R1, R2, R5, R6, R7, and
LR to stack.
(The order of the register content is based on register’s number,
i.e., Lower register is push to the lower address in the stack)

Instruction POP

Function Read single or multiple registers (low register and Program Counter (PC)) from
memory and update base register (Stack Pointer (SP))

Syntax POP {<Ra>, <Rb> ,..} ; Load multiple registers from memory
; and increment SP to the last emptied stack address plus 4

POP {<Ra>, <Rb>, .., PC} ; load multiple registers and PC from
; memory and increment SP to the last emptied stack
; address plus 4

126 Chapter 5

dCont’d

Instruction POP

Note Ra ¼ memory[SP],
Rb ¼ memory[SPþ4],
.
and then update SP to last restored address plus 4. For example,
POP {R1, R2, R5 - R7} ; Restore R1, R2, R5, R6, R7 from stack

By allowing the LR and PC to be used with the PUSH and the POP instructions, a

function call can combine the register restore and function-return operations into one

single instruction. For example,

my_function
PUSH {R4, R5, R7, LR} ; Save R4, R5, R7 and LR (return address)
.; function body
POP {R4, R5, R7, PC} ; Restore R4, R5, R7 and return

When multiple registers are pushed to the stack using a PUSH instruction, the stacked data

are arranged with the lowest register data placed at the lowest stack address. For example,

with the above example, the stack contents in the above function after PUSH {R4, R5, R7,

LR} are shown in Figure 5.4.

5.4.4 Arithmetic Operations

The Cortex-M0 and Cortex-M0þ Processors support a number of Arithmetic operations.

The most basic ones are add, subtract, twos complement, and multiply. For most of these

instructions, the operation can be carried out between two registers, or between one

register and an immediate constant.

Instruction ADD

Function Add two registers
Syntax (UAL) ADDS <Rd>, <Rn>, <Rm>
Syntax (pre-UAL) ADD <Rd>, <Rn>, <Rm>
Note Rd ¼ Rn þ Rm, APSR update.

Rd, Rn, Rm are low registers.

R4
R5
R7
LR

Memory Address

Address pointed
by SP after PUSH

(used)
(used)

(empty)
(empty)

Figure 5.4
Stack data layout after PUSH {R4, R5, R7, LR}.

Instruction Set 127

Instruction ADD

Function Add an immediate constant into a register
Syntax (UAL) ADDS <Rd>, <Rn>, #immed3

ADDS <Rd>, #immed8
Syntax (pre-UAL) ADD <Rd>, <Rn>, #immed3

ADD <Rd>, #immed8
Note Rd ¼ Rn þ ZeroExtend(#immed3), APSR update, or

Rd ¼ Rd þ ZeroExtend(#immed8), APSR update.
Rd, Rn, Rm are low registers.

Instruction ADD

Function Add two registers without updating APSR
Syntax (UAL) ADD <Rd>, <Rm>
Syntax (pre-UAL) ADD <Rd>, <Rm>
Note Rd ¼ Rd þ Rm.

Rd, Rm can be high or low registers.

Instruction ADD

Function Add stack pointer to a register without
updating APSR

Syntax (UAL) ADD <Rd>, SP, <Rd>
Syntax(pre-UAL) ADD <Rd>, SP
Note Rd ¼ Rd þ SP.

Rd can be high or low register.

Instruction ADD

Function Add a register to stack pointer without
updating APSR

Syntax (UAL) ADD SP, <Rm>
Syntax (pre-UAL) ADD SP, <Rm>
Note SP ¼ SP þ Rm.

Rm can be high or low register.

Instruction ADD

Function Add stack pointer to a register without
updating APSR

Syntax (UAL) ADD <Rd>, SP, #immed8
Syntax (pre-UAL) ADD <Rd>, SP, #immed8
Note Rd ¼ SP þ ZeroExtend(#immed8 << 2).

Rd is a low register.

128 Chapter 5

Instruction ADD

Function Add an immediate constant to stack pointer
Syntax(UAL) ADD SP, SP, #immed7
Syntax (pre-UAL) ADD SP, #immed7
Note SP ¼ SP þ ZeroExtend(#immed7 << 2).

This instruction is useful for C functions to
adjust the SP for local variables.

Instruction ADR (ADD)

Function Add an immediate constant with Program Counter (PC) to a register
without updating APSR

Syntax (UAL) ADR <Rd>, <label> (pseudo instruction - Section 5.5)
ADD <Rd>, PC, #immed8 (alternate syntax)

Syntax (pre-UAL) ADR <Rd>, <label> (pseudo instruction - Section 5.5)
ADD <Rd>, PC, #immed8 (alternate syntax)

Note Rd ¼ (PC[31:2] << 2) þ ZeroExtend(#immed8 << 2).
This instruction is useful for locating a data address within the
program memory near to the current instruction. The result address
must be word aligned.
Rd is a low register.

Instruction ADC

Function Add with Carry and update APSR
Syntax (UAL) ADCS <Rd>, <Rm>
Syntax (pre-UAL) ADC <Rd>, <Rm>
Note Rd ¼ Rd þ Rm þ Carry

Rd and Rm are low registers.

Instruction SUB

Function Subtract two registers
Syntax (UAL) SUBS <Rd>, <Rn>, <Rm>
Syntax (pre-UAL) SUB <Rd>, <Rn>, <Rm>
Note Rd ¼ Rn – Rm, APSR update.

Rd, Rn, Rm are low registers.

Instruction SUB

Function Subtract a register with an immediate constant
Syntax (UAL) SUBS <Rd>, <Rn>, #immed3

SUBS <Rd>, #immed8
Syntax(pre-UAL) SUB <Rd>, <Rn>, #immed3

SUB <Rd>, #immed8

Instruction Set 129

dCont’d

Instruction SUB

Note Rd ¼ Rn – ZeroExtend(#immed3), APSR update, or
Rd ¼ Rd – ZeroExtend(#immed8), APSR update.
Rd, Rn are low registers.

Instruction SUB

Function Subtract SP by an immediate constant
Syntax (UAL) SUB SP, SP, #immed7
Syntax (pre-UAL) SUB SP, #immed7
Note SP ¼ SP – ZeroExtend(#immed7 << 2).

This instruction is useful for C functions to
adjust the SP for local variables.

Instruction SBC

Function Subtract with carry (borrow)
Syntax (UAL) SBCS <Rd>, <Rd>, <Rm>
Syntax (pre-UAL) SBC <Rd>, <Rm>
Note Rd ¼ Rd – Rm – Borrow, APSR update.

Rd and Rm are low registers.

Instruction RSB

Function Reverse Subtract (negative)
Syntax (UAL) RSBS <Rd>, <Rn>, #0
Syntax (pre-UAL) NEG <Rd>, <Rn>
Note Rd ¼ 0 – Rm, APSR update.

Rd and Rm are low registers.

Instruction MUL

Function Multiply
Syntax (UAL) MULS <Rd>, <Rm>, <Rd>
Syntax (pre-UAL) MUL <Rd>, <Rm>
Note Rd ¼ Rd * Rm, APSR.N and APSR.Z update.

Rd and Rm are low registers.

There are also a few compare instructions that compare (using subtract) values and update

flags (APSR), but the result of the compare is not stored.

Instruction CMP

Function Compare
Syntax (UAL) CMP <Rn>, <Rm>
Syntax (pre-UAL) CMP <Rn>, <Rm>
Note Calculate Rn – Rm, APSR update but

subtract result is not stored.

130 Chapter 5

Instruction CMP

Function Compare
Syntax (UAL) CMP <Rn>, #immed8
Syntax (pre-UAL) CMP <Rn>, #immed8
Note Calculate Rd – ZeroExtended(#immed8), APSR update

but subtract result is not stored. Rn is a low registers.

Instruction CMN

Function Compare negative
Syntax (UAL) CMN <Rn>, <Rm>
Syntax (pre-UAL) CMN <Rn>, <Rm>
Note Calculate Rn – NEG(Rm), APSR update but

subtract result is not stored. Effectively the
operation is an ADD.

5.4.5 Logic Operations

Another set of essential operations in most processors are logic operations. For logical

operations, the Cortex-M0 and Cortex-M0þ Processors have a number of instructions

available including basic features like AND, OR, etc. In addition, it has a number of

instructions for compare and testing.

Instruction AND

Function Logical AND
Syntax (UAL) ANDS <Rd>, <Rd>, <Rm>
Syntax (pre-UAL) AND <Rd>, <Rm>
Note Rd ¼ AND(Rd, Rm), APSR.N and APSR.Z update.

Rd and Rm are low registers.

Instruction ORR

Function Logical OR
Syntax (UAL) ORRS <Rd>, <Rd>, <Rm>
Syntax (pre-UAL) ORR <Rd>, <Rm>
Note Rd ¼ OR(Rd, Rm), APSR.N and APSR.Z update.

Rd and Rm are low registers.

Instruction EOR

Function Logical Exclusive OR
Syntax (UAL) EORS <Rd>, <Rd>, <Rm>

Instruction Set 131

dCont’d

Instruction EOR

Syntax (pre-UAL) EOR <Rd>, <Rm>
Note Rd ¼ XOR(Rd, Rm), APSR.N and APSR.Z update.

Rd and Rm are low registers.

Instruction BIC

Function Logical Bitwise Clear
Syntax (UAL) BICS <Rd>, <Rd>, <Rm>
Syntax (pre-UAL) BIC <Rd>, <Rm>
Note Rd ¼ AND(Rd, NOT(Rm)), APSR.N and APSR.Z update.

Rd and Rm are low registers.

Instruction MVN

Function Logical Bitwise NOT
Syntax (UAL) MVNS <Rd>, <Rm>
Syntax (pre-UAL) MVN <Rd>, <Rm>
Note Rd ¼ NOT(Rm), APSR.N and APSR.Z update.

Rd and Rm are low registers.

Instruction TST

Function Test (bitwise AND)
Syntax (UAL) TST <Rn>, <Rm>
Syntax (pre-UAL) TST <Rn>, <Rm>
Note Calculate AND(Rn, Rm), APSR.N and APSR.Z

update but the AND result is not stored.
Rd and Rm are low registers.

5.4.6 Shift and Rotate Operations

The Cortex-M0 and Cortex-M0þ Processors also support shift and rotate instructions. It

supports both arithmetic shift operations (data is a signed integer value where MSB needs

to be reserved) as well as logical shift. Operations of Arithmetic Shift Right are illustrated

in Figure 5.5.

Arithmetic Shift Right (ASR)

CRegister

Figure 5.5
Arithmetic Shift Right.

132 Chapter 5

Instruction ASR

Function Arithmetic Shift Right
Syntax (UAL) ASRS <Rd>, <Rd>, <Rm>
Syntax (pre-UAL) ASR <Rd>, <Rm>
Note Rd ¼ Rd >> Rm, last bit shift out is copied to

APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

Instruction ASR

Function Arithmetic Shift Right
Syntax (UAL) ASRS <Rd>, <Rm>, #immed5
Syntax (pre-UAL) ASR <Rd>, <Rm>, #immed5
Note Rd ¼ Rm >> immed5, last bit shifted out is copied

to APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

When ASR is used, the MSB of the result is unchanged, and the Carry flag is updated

using the last bit shifted out.

For logical shift operations, the instructions are LSL (Figure 5.6) and LSR

(Figure 5.7).

Instruction LSL

Function Logical Shift Left
Syntax (UAL) LSLS <Rd>, <Rd>, <Rm>
Syntax (pre-UAL) LSL <Rd>, <Rm>
Note Rd ¼ Rd << Rm, last bit shifted out is copied to

APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

Logical Shift Right (LSR)

CRegister0

Figure 5.7
Logical Shift Right.

Logical Shift Left (LSL)

C Register 0

Figure 5.6
Logical Shift Left.

Instruction Set 133

Instruction LSL

Function Logical Shift Left
Syntax (UAL) LSLS <Rd>, <Rm>, #immed5
Syntax (pre-UAL) LSL <Rd>, <Rm>, #immed5
Note Rd ¼ Rm << #immed5, last bit shifted out is copied to

APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

Instruction LSR

Function Logical Shift Right
Syntax (UAL) LSRS <Rd>, <Rd>, <Rm>
Syntax (pre-UAL) LSR <Rd>, <Rm>
Note Rd ¼ Rd >> Rm, last bit shifted out is copied to

APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

Instruction LSR

Function Logical Shift Right
Syntax (UAL) LSRS <Rd>, <Rm>, #immed5
Syntax (pre-UAL) LSR <Rd>, <Rm>, #immed5
Note Rd ¼ Rm >> #immed5, last bit shifted out is copied

to APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

There is only one rotate instruction, Rotate Right (ROR, Figure 5.8).

Instruction ROR

Function Rotate Right
Syntax (UAL) RORS <Rd>, <Rd>, <Rm>
Syntax (pre-UAL) ROR <Rd>, <Rm>
Note Rd ¼ Rd rotate right by Rm bits, last bit shifted out is

copied to APSR.C, APSR.N and APSR.Z are also updated.
Rd and Rm are low registers.

If a rotate left operation is needed, this can be done using an ROR with a different offset:

Rotate_Left(Data, offset) ¼¼ Rotate_Right(Data, (32-offset))

Rotate Right (ROR)

CRegister

Figure 5.8
Rotate Right.

134 Chapter 5

5.4.7 Extend and Reverse Ordering Operations

The Cortex-M0 and Cortex-M0þ Processors support a number of instructions that can

perform data reordering or extraction. These include

• REV (Byte Reverse in Word, Figure 5.9),

• REV16 (Byte Reverse Packed Half Word, Figure 5.10), and

• REVSH (Byte Reverse Signed Half Word, Figure 5.11).

Instruction REV (Byte-Reverse Word)

Function Byte Order Reverse
Syntax REV <Rd>, <Rm>
Note Rd ¼ {Rm[7:0], Rm[15:8], Rm[23:16], Rm[31:24]}

Rd and Rm are low registers.

Bit
[7:0]

Bit
[15:8]

Bit
[23:16]

Bit
[31:24]

Figure 5.9
REV operation.

Bit
[7:0]

Bit
[15:8]

Bit
[23:16]

Bit
[31:24]

Figure 5.10
REV16 operation.

sign extend

Bit
[7:0]

Bit
[15:8]

Bit
[23:16]

Bit
[31:24]

Figure 5.11
REVSH operation.

Instruction Set 135

Instruction REV16 (Byte-Reverse Packed Half Word)

Function Byte Order Reverse within half word
Syntax REV16 <Rd>, <Rm>
Note Rd ¼ {Rm[23:16], Rm[31:24], Rm[7:0] , Rm[15:8]}

Rd and Rm are low registers.

Instruction REVSH (Byte-Reverse Signed Half Word)

Function Byte order reverse within lower half word, then sign extend result
Syntax REVSH <Rd>, <Rm>
Note Rd ¼ SignExtend({Rm[7:0] , Rm[15:8]})

Rd and Rm are low registers.

These reverse instructions are usually used for converting data between little endian and

big endian systems.

The SXTB, SXTH, UXT, and UXTH instructions are used for extending a byte or half

word data into a word. They are usually used for data type conversions.

Instruction SXTB (Signed Extended Byte)

Function SignExtend lowest byte in a word of data
Syntax SXTB <Rd>, <Rm>
Note Rd ¼ SignExtend(Rm[7:0])

Rd and Rm are low registers.

Instruction SXTH (Signed Extended Half Word)

Function SignExtend lower half word in a word of data
Syntax SXTH <Rd>, <Rm>
Note Rd ¼ SignExtend(Rm[15:0])

Rd and Rm are low registers.

Instruction UXTB (Unsigned Extended Byte)

Function Extend lowest byte in a word of data
Syntax UXTB <Rd>, <Rm>
Note Rd ¼ ZeroExtend(Rm[7:0])

Rd and Rm are low registers.

Instruction UXTH (Unsigned Extended Half Word)

Function Extend lower half word in a word of data
Syntax UXTH <Rd>, <Rm>
Note Rd ¼ ZeroExtend(Rm[15:0])

Rd and Rm are low registers.

136 Chapter 5

With SXTB or SXTH, the data is extended using bit[7] or bit[15] of the input data. While

for UXTB and UXTH, the data is extended using zeros. For example, if R0 is

0x55AA8765, and the result of these extended instructions are

SXTB R1, R0 ; R1 = 0x00000065
SXTH R1, R0 ; R1 = 0xFFFF8765
UXTB R1, R0 ; R1 = 0x00000065
UXTH R1, R0 ; R1 = 0x00008765

5.4.8 Program Flow Control

There are five branch instructions in the Cortex-M0 and Cortex-M0þ processors. They are

essential for program flow control like looping and conditional execution, and allow

program code to be partitioned into functions and subroutines.

Instruction B (Branch)

Function Branch to an address (unconditional)
Syntax B <label>
Note Branch range is �2046 bytes of current

program counter

Instruction B<cond> (Conditional Branch)

Function Depending of APSR, branch to an address
Syntax B<cond> <label>
Note Branch range is �254 bytes of current program counter.

For example,
CMP R0, 0x1 ; Compare R0 with 0x1
BEQ process1 ; Branch to process1 if R0 equal 1

The <cond> is one of the 14 possible condition suffixes (Table 5.8).

For example, a simple loop that runs three times could be:

MOVS R0, #3 ; Loop counter starting value is 3
loop ; "loop" is an address label

SUBS R0, #1 ; Decrement by 1 and update flag
BGT loop ; branch to loop if R0 is Greater Than (GT) 1

The loop will execute three times. The third time, R0 is 1 before the SUBS instruction.

After the SUBS instruction, the zero flag is set, so the condition for the branch failed and

the program continues execution after the BGT instruction.

Instruction Set 137

Instruction BL (Branch and Link)

Function Branch to an address and store return address to Link
Register. Usually use for function calls, and can be used for
long range branch that is beyond the branch range of
branch instruction (B <label>).

Syntax BL <label>
Note Branch range is �16 MB of current program counter.

For example,
BL functionA ; call a function called functionA

Instruction BX (Branch and Exchange)

Function Branch to an address specified by a register, and change
processor state depending on bit[0] of the register.

Syntax BX <Rm>
Note Since the Cortex�-M processors only supports Thumb�

code, bit[0] of the register content (Rm) must be set to 1,
otherwise it means that it is trying to switch to ARM� state
and this will generate a fault exception.

BL is commonly used for calling a subroutine or function. When it is executed, the

address of the next instruction will be stored to the LR, with the LSB set to 1. When the

subroutine or function completes the required task, it can then return to the calling

program by executing a “BX LR” instruction (Figure 5.12).

Table 5.8: Condition suffixes for conditional branches

Suffix Branch condition Flags (APSR)

EQ Equal Z flag is set
NE Not equal Z flag is cleared
CS/HS Carry set/unsigned higher or same C flag is set
CC/LO Carry clear/unsigned lower C flag is cleared
MI Minus/negative N flag is set (minus)
PL Plus/positive or zero N flag is cleared
VS Overflow V flag is set
VC No overflow V flag is cleared
HI Unsigned higher C flag is set and Z is cleared
LS Unsigned lower or same C flag is cleared or Z is set
GE Signed greater than or equal N flag is set and V flag is set, or

N flag is cleared and V flag is cleared (N ¼¼ V)
LT Signed less than N flag is set and V flag is cleared, or

N flag is cleared and V flag is set (N !¼ V)
GT Signed greater then Z flag is cleared, and either both N flag and V flag are set,

or both N flag and V flag are cleared (Z ¼¼ 0 and N ¼¼ V)
LE Signed less than or equal Z flag is set, or either N flag set with V flag cleared, or N

flag cleared and V flag set (Z ¼¼ 1 or N !¼ V)

138 Chapter 5

BX can also be used to branch to an address that have an offset that is more than the

normal branch instruction. Since the target is specified by a 32-bit register, it can branch to

any address in the memory map.

Instruction BLX (Branch and Link with Exchange)

Function Branch to an address specified by a register, save return
address to Link Register and change processor state
depending of bit[0] of the register.

Syntax BLX <Rm>
Note Since Cortex�-M processors only support Thumb� code, the

bit[0] of the register content (Rm) must be set to 1,
otherwise it means that it is trying to switch to ARM� state
and this will create a fault exception.

BLX is used when a function call is required but the address of the function is held inside

a register (e.g., when working with function pointers).

5.4.9 Memory Barrier Instructions

Memory barrier instructions are often needed when the memory system is complex. In

some cases, for some of the higher performance processors if the memory barrier

instruction is not used, race conditions could occur and cause system failures. For

example, in some ARM processors that support simultaneous bus transfers (as a processor

can have multiple memory interfaces), the transfer sequence of these transfers might

overlap. If the software code relies on strict ordering of memory access sequences, it could

result in software errors in corner cases. The memory barrier instructions allow the

processor to stop executing next instruction, or stop starting a new transfer, until the

current memory access has completed.

Due to the simplistic nature of the processor’s pipeline design, the Cortex-M0 and Cortex-

M0þ processors do not allow starting of the next instruction until the previous one

main
 …
 BL func1 ; call Function1

 MOV R4, R0 ; next instruction
 …

func1 ; Function 1
 …
 …
 …
 BX LR ; Return

LR set to address of
next instruction, and

LSB set to 1

Load return
address in LR

into PC

Figure 5.12
Function call and return using BL and BX instructions.

Instruction Set 139

finished, and does not have a write buffer in the system bus interface. As a result, the

memory barrier instruction is rarely needed as everything is completing in the same order

as in the program code. However, memory barriers may be necessary on other ARM

processors which have more complex memory systems. If the software needs to be

portable to other ARM processor, then the uses of memory barrier instructions could be

essential. Therefore the memory barrier instructions are supported on the Cortex-M0 and

Cortex-M0þ processors to provide better compatibility within the Cortex-M processors

and other ARM processor families.

There are three memory barrier instructions support on the Cortex-M Processors:

• DMB

• DSB

• ISB

Instruction DMB

Function Data Memory Barrier
Syntax DMB
Note Ensures that all memory accesses are completed

before new memory access is committed.

Instruction DSB

Function Data Synchronization Barrier
Syntax DSB
Note Ensures that all memory accesses are

completed before next instruction is executed

Instruction ISB

Function Instruction Synchronization Barrier
Syntax ISB
Note Flushes the pipeline and ensure that all previous instructions

are completed before executing new instructions

Architecturally, there are various cases where these instructions are needed. Although in

practice omitting the memory barrier instruction might not cause any issue on the Cortex-

M0 or Cortex-M0þ processors, it could be an issue when the same software is used on

another ARM processor. For example, after changing the CONTROL register with an

MSR instruction, architecturally an ISB should be used after writing to the CONTROL

register to ensure subsequence instructions use the updated settings, for example, the

correct SP selection defined by CONTROL. With the Cortex-M0 and Cortex-M0þ
Processor omitting the ISB instruction in this case would not have any noticeable different

in this case.

140 Chapter 5

Another example is memory remap control. In some microcontrollers, the memory map

can be changed by a hardware register. After writing to the memory map switching

register, you need to use the DSB instruction to ensure the write has been completed and

memory configuration has been updated, before carrying out the next step. Otherwise, if

the memory switching is delayed, possibly due to a write buffer in the system bus

interface (e.g., the Cortex-M3 and Cortex-M4 processors have a write buffer in the system

bus interface to allow higher performance), and the processor starts to access the switched

memory region immediately, the access could be using the old memory mapping, or the

transfer could get corrupted by the memory map switching.

Another case where memory barrier instruction is needed is when the program contains

self-modifying code. For example, if an application changes its own program code, the

instruction execution following should use the updated program code. However, if the

processor is pipelined or has a fetch buffer, an old copy of the modified instruction could

be already fetched by the processor. In this case, the program should use a DSB operation,

to ensure the write to the memory is completed, and then use an ISB instruction to ensure

the instruction fetch buffer is updated with the new instructions.

More details about memory barriers can be found in the ARMv6-M Architecture

Reference manual (reference 1) and ARM application note AN321dARM Cortex-M

Programming Guide to Memory Barrier Instructions (reference 8).

5.4.10 Exception-Related Instructions

The Cortex-M0 and Cortex-M0þ processors provide an instruction called SVC

(SuperVisor Call). This instruction causes the SVC exception to take place immediately if

the exception priority level of SVC is higher than current level.

Instruction SVC

Function Supervisor call
Syntax SVC #<immed8>

SVC <immed8>
Note Trigger the SVC exception. For example,

SVC #3 ; SVC instruction, with parameter equal 3
Alternative syntax without the “#” is also allowed. For example,
SVC 3 ; This is the same as SVC#3

An 8-bit immediate data is used with SVC instruction. This parameter does not affect the

SVC exception directly but it can be extracted by the SVC handler and be used as an input

parameter to the SVC function. Typically the SVC can be used to provide access to

system service or API (Application Programming Interface), and this parameter can be

used to indicate which system service is required.

Instruction Set 141

If the SVC instruction is used in an exception handler that has the same or high priority

than SVC, this will cause a fault exception. As a result, the SVC cannot be used in the

HardFault handler, NMI handler, or the SVC handler itself.

Another instruction related to exception is the CPS. This instruction allows the

interrupt masking register PRIMASK to be set or clear with a single instruction.

Note: The PRIMASK special register can also be changed using the MSR

instruction.

Instruction CPS

Function Change processor state: enable or disable interrupt
Syntax CPSIE I ; Enable Interrupt(Clearing PRIMASK)

CPSID I ; Disable Interrupt (Setting PRIMASK)
Note PRIMASK only blocks external interrupts, SVC,

PendSV, SysTick. But it does not block NMI and
HardFault handler.

The switching of PRIMASK to disable and enable interrupt is commonly used for timing

critical code.

5.4.11 Sleep Mode Feature-Related Instructions

The Cortex-M0 and Cortex-M0þ processors can enter sleep mode by executing the

WFI (Wait For Interrupt) and WFE (Wait For Event) instructions. Note that for the

Cortex-M1 processor, as the design is implemented in an FPGA design, which does not

have sleep mode, these two instructions execute as NOP and will not cause the

processor to stop.

Instruction WFI

Function Wait For Interrupt
Syntax WFI
Note Stops program execution until an interrupt arrived,

or if the processor entered a debug state.

WFE is just like WFI, except that it can also be awoken by events. An event can be

an interrupt, execution of SEV instruction (see next page), or entering of debug state.

A previous occurred event also affects a WFE instruction: Inside the Cortex-M0 and

Cortex-M0þ Processor, there is an event register that records if an event has occurred

(exceptions, external event or execution of SEV instruction). If the event register is

not set when the WFE is executed, the WFE instruction execution will cause the

processor to enter sleep mode. If the event register was set when WFE is executed, it

will cause the event register to be cleared and the processor proceeds to the next

instruction.

142 Chapter 5

Instruction WFE

Function Wait For Event
Syntax WFE
Note If the internal event register is set, it clears the

internal event register and continues execution.
Otherwise stop program execution until an event
(e.g., an interrupt) arrive, or if the processor
enters debug state.

WFE can also be woken up by an external event input signal, which is normally used in

multiprocessing environment.

The SEV (Send Event) instruction is normally used in multiprocessor systems to wake up

other processors which are in sleep mode by means of the WFE instruction. For single

processor systems, where the processor does not have a multiprocessor communication

interface, or the multiprocessor communication interface is not used, the SEV can only

affect the local event register inside the processor itself.

Instruction SEV

Function Send event to all processors in multiprocessing
environment (including itself)

Syntax SEV
Note Set local event register and send out an event pulse to

other microprocessor in a multiple processor system.

5.4.12 Other Instructions

The Cortex-M0 and Cortex-M0þ processors support an NOP instruction. This instruction

can be used for adjusting instruction alignment, or to introduce delay.

Instruction NOP

Function No Operation
Syntax NOP
Note The NOP instruction takes 1 cycle minimum on the

Cortex�-M0/M0þ processor. In general delay timing
produced by NOP instruction is not guaranteed, and
can vary between different systems (e.g., memory wait
states, processor type). If the timing delay needs to
be accurate, a hardware timer should be used.

The breakpoint instruction (BKPT) is used to provide a break point function during debug.

Usually this instruction is inserted by a debugger, replacing the original instruction. When

the break point is hit, the processor would be halted, and the user can then carry out the

debug tasks through the debugger.

Instruction Set 143

Please note that the Cortex-M0 and Cortex-M0þ processors also have a hardware break

point unit. This is limited to four break points. Since many microcontrollers use flash

memory which can be reprogrammed a number of times, using of software break point

instruction allows more break points to be set at no extra hardware cost. The breakpoint

instruction has an 8-bit immediate data field. This immediate value does not affect the

breakpoint operation directly, but the debugger can extract this value and use it for debug

operation.

Instruction BKPT

Function Break point
Syntax BKPT #<immed8>

BKPT <immed8>
Note BKPT instruction can have an 8-bit immediate data. This can

be used by the debugger as an identifier for the BKPT. For
example,
BKPT #0 ; Break point, with immediate field equal zero

Alternative syntax without the “#” is also allowed. For example,
BKPT 0 ; This is the same as BKPT #0

The YIELD instruction is a hint instruction targeted for embedded operating systems. This

is not implemented in the current releases of the Cortex-M0 and Cortex-M0þ processors,

and executes as NOP.

When used in multithread systems, YIELD can indicate that the current thread is delayed

(e.g., waiting for hardware) and can be swapped out. In this case, the processor does not

have to spend too much time on an idle task, and can switch to other tasks earlier to get

better system throughput. On the existing Cortex-M0 and Cortex-M0þ processors, this

instruction is executed as an NOP (no operation) because it does not have special support

for multithreading. This instruction is included for better software compatibility with other

ARM processors.

Instruction YIELD

Function Indicate task is stalled
Syntax YIELD
Note Execute as NOP on the Cortex-M0 processor

5.5 Pseudo Instructions

Apart from the instructions listed in the previous section, a few pseudo instructions are

also available. The pseudo instructions are provided by the assembler tools, which convert

them into one or more real instructions.

144 Chapter 5

The most commonly used pseudo instruction is the LDR. This allows a 32-bit immediate

data to be loaded into a register.

Pseudo Instruction LDR

Function Load a 32-bit immediate data into a low register Rd
Syntax LDR <Rd>, ¼immed32
Note This is translated to a Program Counter-related load

from literal pool. For example,
LDR R0, ¼0x12345678 Set R0 to hexadecimal value
0x12345678
LDR R1, ¼10 ; Set R1 to decimal value 10
LDR R2, ¼‘A’ ; Set R2 to character ‘A’

Pseudo Instruction LDR

Function Load a data in specified address (label) into a low register
Syntax LDR <Rd>, label
Note The address of label must be word aligned, and should be

closed to current program counter. For example, you can put
a data in program ROM using DCD, and then access this
data using LDR.
LDR R0, CONST_NUM ; Load CONST_NUM (0x17) in R0
.
ALIGN 4 ; make sure next data is word

aligned
CONST_NUM DCD 0x17 ; Put a data in program code

Pseudo Instruction ADR

Function Load a Program Counter (PC)-relative address into a
register (usually using ADD) without updating APSR

Syntax ADR <Rd>, <label>
Note The assembler should use a single instruction to

generate the required address value. For example,
ADD <Rd>, PC, #immed8

This execute as Rd ¼ (PC[31:2]<<2) þ
ZeroExtend(#immed8 << 2).
<Rd> must be a low register.
The <label> need to a word-aligned address and due
to the limited immediate value range, the <label>
need to be close to current PC.

Other pseudo instructions depend on the tool chain being used. For more information,

please refer to the tools documentation for details.

Instruction Set 145

CHAPTER 6

Instruction Usage Examples

6.1 Overview

In the last chapter we have looked at the instruction set of the ARM� Cortex�-M0 and

Cortex-M0þ processors. In this chapter we will see how these instructions are used to

carry out various basic operations.

Note for beginners

The examples in this chapter are aiming to help understanding of the instruction set. However,
since most embedded programmers write their programs in C/Cþþ or other high-level lan-
guages, normally in real-world software development projects there is no need to write code in
assembly as illustrated in these examples.

The following examples are written based on ARM assembly syntax. For GNU assembler

the syntax is different in a number of ways, as highlighted in the last chapter.

6.2 Program Control
6.2.1 If-then-else

One the most important functions of the instruction set is to handle conditional branches.

For example, if we need to carry out the task:

if (counter > 10) then
counter = 0

else
counter = counter + 1

Assume the R0 is used as “counter” variable, the above operation can be implemented as:

CMP R0, #10 ; compare to 10
BLE incr_counter ; if less or equal, then branch
MOVS R0, #0 ; counter = 0
B counter_done ; branch to counter_done

incr_counter
ADDS R0, R0, #1 ; counter = counter +1

counter_done
.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00006-0

Copyright © 2015 Elsevier Inc. All rights reserved. 147

http://dx.doi.org/10.1016/B978-0-12-803277-0.00006-0

The program code first carries out a compare, and then executes a conditional branch. The

program then carried out required task and finish at program address labeled as

“counter_done.”

6.2.2 Loop

Another important program control operation is looping. For example,

Total = 0;
for (i=0;i<5;i=i+1)

Total = Total + i;

Assume “Total” is R0, “i” is R1, the program can be implemented as:

MOVS R0, #0 ; Total = 0
MOVS R1, #0 ; i = 0

loop
ADDS R0, R0, R1 ; Total = Total + i
ADDS R1, R1, #1 ; i = i + 1
CMP R1, #5 ; compare i to 5
BLT loop ; if less than then branch to loop

6.2.3 More on the Branch Instructions

There are various branch instructions, as shown in Table 6.1.

The BL instruction (Branch and Link) is usually used for calling functions. It can also be

used for normal branch operations when a longer branch range is required. If the branch

target offset is more than 16 MB, we can use BX instruction instead. This is illustrated in

example in Table 6.2.

6.2.4 Typical Usages of Branch Conditions

A number of conditions are available for the conditional branches. They allow result of

signed and unsigned data operations, or compare operations to be used for branch

control. For example, if we need to carry out a conditional branch after a compare

operation “CMP R0, R1”, we can use one of the following conditional branch instructions

in Table 6.3.

For detection for value overflow in add or subtract operations, we can use conditional

branch instructions in Table 6.4.

For detection of whether an operation result is a positive value or negative value (signed

data), the “PL” and “MI” suffixes can be used for the conditional branch as shown in

Table 6.5.

148 Chapter 6

Table 6.1: Various branch instructions

Branch type Examples

Normal branchdbranch always carry out. B label
(Branch to address marked as “label”)

Conditional branchdbranch depends on the current
status of APSR and the condition specified in the
instruction

BEQ label
(Branch if Z flag is set, which is result
from an equal comparison or ALU
operation with result of zero.)

Branch and linkdbranch always carries out and updates
the Link Register (LR, R14) with the instruction address
following the executed BL instruction.

BL label
(Branch to address “label,” and Link
Register updated to the instruction after
this BL instruction.)

Branch and exchange statedBranch to address stored in
a register. The LSB of the register should be set to 1 to
indicate Thumb� state. (Cortex�-M0 and Cortex-M0þ
processors do not support ARM� instructions so Thumb
state must be used.)

BX LR
(Branch to address stored in the Link
register. This instruction is often used for
function return.)

Branch and link with exchange statedBranch to address
stored in a register, with the Link Register (LR/R14)
updated to the instruction address following the executed
BLX instruction. The LSB of the register should be set to 1
to indicate Thumb state. (Cortex-M0 and Cortex-M0þ
processors do not support ARM instructions so Thumb
state must be used.)

BLX R4
(Branch to address stored in the R4 and
LR is updated to the instruction following
the BLX instruction. This instruction is
often used for calling functions addressed
by function pointers.)

Table 6.2: Different branch instructions for different branch ranges

Branch range Available instruction

Under +/–254 bytes B label
B<cond> label

Under +/–2 KB B label
Under +/–16 MB BL label
Over +/–16 MB LDR R0, ¼label; Load the address value of label in R0

BX R0; Branch to address pointed to by R0, or
BLX R0; Branch to address pointed to by R0 and update LR

Table 6.3: Conditional branch instructions for value comparison operations

Required branch control Unsigned data Signed data

If (R0 equal R1) then branch BEQ label BEQ label
If (R0 not equal R1) then branch BNE label BNE label
If (R0 > R1) then branch BHI label BGT label
If (R0 >[R1) then branch BCS label/BHS label BGE label
If (R0 < R1) then branch BCC label/BLO label BLT label
If (R0 <[R1) then branch BLS label BLE label

Instruction Usage Examples 149

Apart from using the CMP (compare) instruction, conditional branches can also be

controlled by results of arithmetic operations and logical operations, or instructions like

CMN (compare negative) and TST (test). For example, a simple loop that executes five

times can be written as:

MOVS R0, #5 ; Loop counter
loop

SUBS R0, R0, #1 ; Decrement loop counter
BNE loop ; if result is not 0 then branch to loop

A polling loop that wait until a status register bit 3 to be set can be written as:

LDR R0, =Status ; Load address of status register in R0
MOVS R2, #0x8 ; Bit 3 is set

loop
LDR R1, [R0] ; Read the status register
TST R1, R2 ; Compute “R1 AND 0x8”
BEQ loop ; if result is 0 then try again

6.2.5 Function Calls and Function Returns

When carrying out function call (or subroutine call), we need to save the return address,

which is the address of the instruction following the call instruction, so that we can

resume the execution of the current instruction sequence. There are two instructions that

can be used for function call (Table 6.6).

After executing the BL/BLX instructions, the return address is stored in the Link Register

(LR/R14) for function return when the function completed. In the simple cases, the

function executed will be terminated using “BX LR”, as shown in Figure 6.1.

Table 6.4: Conditional branch instructions for overflow detections

Required branch control Unsigned data Signed data

If (overflow(R0 + R1)) then branch BCS label BVS label
If (no_overflow(R0 + R1)) then branch BCC label BVC label
If (overflow(R0 – R1)) then branch BCC label BVS label
If (no_overflow(R0 – R1)) then branch BCS label BVC label

Table 6.5: Conditional branch instructions for positive or negative value

detection

Required branch control Unsigned data Signed data

If (result >[0) then branch Not applicable BPL label
If (result < 0) then branch Not applicable BMI label

150 Chapter 6

If the value of LR could be changed during “FunctionA,” we will need to save the return

address to prevent it from being lost. This happens when BL or BLX instruction is

executed within “FunctionA,” for example, when a nested function call is required. For

illustration, Figure 6.2 below shows when “FunctionA” calls another function called

“FunctionB.” (Note: this minimalistic example does not conform to double word stack

alignment requirement in AAPCS, reference 6.)

In the Cortex-M0 and Cortex-M0þ processors, you can push multiple low registers (R0 to

R7) and the return address in LR on to the stack with just one instruction. Similarly, you

can carry out the pop operation to low registers and the PC (Program Counter) in one

instruction. This allows you to combine register values restore and return with a single

instruction. For example, if the registers R4 to R6 are being modified in “FunctionA” and

needed to be saved to the stack, we can write “FunctionA” as in Figure 6.3.

6.2.6 Branch Table

In C programming, sometime we use the “switch” statement to allow a program to branch

to multiple possible address locations based on an input. In assembly programming, we

can handle the same operation by creating a table of branch destination addresses, issue a

Table 6.6: Instructions for function or subroutine calls

Instruction example Scenarios

BL function Target function address is fixed and the offset
is within þ/–16 MB

LDR R0, [function; (other
registers could also be used)
BLX R0

Target function address can be changed
during run time. No branch offset limitation.

...

BL FunctionA

...

FunctionA

...

BX LR

...

...

...

Function/subroutine call
PC changed to “FunctionA”,
and LR changed to address
of the instruction after BL

Return
PC changed to value stored
in LR to resume execution
of instructions after BL

Figure 6.1
Simple function call and function return.

Instruction Usage Examples 151

...

BL FunctionA

...

FunctionA

...

POP {PC}

...

...

...

Function/subroutine call
PC changed to “FunctionA”,
and LR changed to address
of the instruction after BL

Return
PC changed to value stored
in stack to resume
execution of instructions
after BL FunctionA

BL FunctionB

FunctionB

...

BX LR

PUSH {LR}

Function/subroutine call
PC changed to “FunctionB”, and LR
changed to instruction address after “BL
FunctionB”. If LR was not saved the return
address for FunctionA would be lost.

Return
PC changes to value stored in
LR to resume execution of
instructions after BL FunctionB

Save return
address for
FunctionA to
stack.

Figure 6.2
Nested function call and function return.

...

BL FunctionA

...

FunctionA

...

POP {R4-R6, PC}

...

...

...

Function/subroutine call
PC changed to “FunctionA”,
and LR changed to address
of instruction after BL

Return
Registers are restored and
PC changed to value stored
in stack to resume
execution of instructions
after BL FunctionA

BL FunctionB

FunctionB

...

BX LR

PUSH {R4-R6, LR}

Function/subroutine call
PC changed to “FunctionB”, and LR
change to address of instruction after “BL
FunctionB”. If LR was not saved the return
address for FunctionA would be lost.

Return
PC changed to value stored in
LR to resume execution of
instructions after BL FunctionB

Save return
address for
FunctionA and
registers to stack.

Figure 6.3
Using push and pop of multiple registers in functions.

152 Chapter 6

load (LDR) to the table with offset computed from the input, and then use BX to carry out

the branch. In the following example, we have a selection input of 0e3 in R0, which

allow the program to branch to Dest0 to Dest3. If the input value is larger than 3, it will

cause a branch to the default case.

CMP R0, #3 ; Compare input to maximum valid choice
BHI default_case ; Branch to default case if higher than 3
MOVS R2, #4 ; Multiply branch table offset by 4
MULS R0, R2, R0 ; (size of each entry)
LDR R1,=BranchTable ; Get base address of branch table
LDR R2,[R1,R0] ; Get the actual branch destination
BX R2 ; Branch to destination
ALIGN 4 ; Alignment control. The table has

; to be word aligned to prevent unaligned read
BranchTable ; table of each destination addresses

DCD Dest0
DCD Dest1
DCD Dest2
DCD Dest3

default_case
. ; Instructions for default case

Dest0
. ; Instructions for case ‘0’

Dest1
. ; Instructions for case ‘1’

Dest2
. ; Instructions for case ‘2’

Dest3
. ; Instructions for case ‘3’

Additional examples on complex branch conditional handling are covered in Chapter 21

(Section 21.9.2 Complex branch handling).

6.3 Data Accesses

Data accesses are vital to embedded applications. The Cortex�-M processors provide a

number of load (memory read) and store (memory write) instructions with various address

modes. In here we will go through a number of typical application examples on how these

instructions can be used.

6.3.1 Simple Data Accesses

Normally the memory locations (physical address) of software variables are defined by the

linker and are not known until linking stage. However, we can write the software code to

access to the variables as long as we know the symbol of the variables. For example, if we

need to calculate the sum of an integer array “DataIn” with 10 elements (32 bit each), and

Instruction Usage Examples 153

put the result in another variable called “Sum” (also 32 bit), we can use the following

assembly code:

LDR r0,=DataIn ; Get the address of variable ’DataIn’
MOVS r1, #10 ; loop counter
MOVS r2, #0 ; Result - starting from 0

add_loop
LDM r0!,{r3} ; Load result and increment address
ADDS r2, r3 ; add to result
SUBS r1, #1 ; increment loop counter
BNE add_loop
LDR r0,=Sum ; Get the address of variable ’Sum’
STR r2,[r0] ; Save result to Sum

In the above example, we use the LDM instruction rather than a normal LDR instruction.

This allows us to read the memory and increment the address to the next array element

with a single instruction.

When using assembly to access data, we need to pay attention to a few things:

• Use correct instruction for corresponding data size. Different instructions are available

for different data sizes.

• Make sure that the access is aligned. If an access is unaligned, it will trigger a fault

exception. This can happen if an instruction of incorrect data size is being used to

access a data.

• Various addressing modes are available and can simplify your assembly codes. For

example, when programming/accessing a peripheral, you can set a register to its base

address value and then use immediate offset addressing mode for accessing each

registers. In this way you do not have to set up the register address every time a

different register is accessed.

6.3.2 Example of Using Memory Access Instruction

In order to demonstrate how different memory access instructions can be used, several

simple examples of memory copying functions are shown in this section. The most basic

approach is copy the data byte by byte, thus allowing any number of bytes to be copied

and do not have memory alignment issue.

LDR r0, =0x00000000 ; Source address
LDR r1, =0x20000000 ; Destination address
LDR r2, =100 ; number of bytes to copy

copy_loop
LDRB r3, [r0] ; read 1 byte
ADDS r0 r0 #1 ; increment source pointer
STRB r3, [r1] ; write 1 byte

154 Chapter 6

ADDS r1, r1, #1 ; increment destination pointer
SUBS r2, r2, #1 ; decrement loop counter
BNE copy_loop ; loop until all data copied

The program code uses a number of add and subtract instructions in the loop, which

reduce the performance. We could modify the code to reduce the program size using a

register offset address mode:

LDR r0, =0x00000000 ; Source address
LDR r1, =0x20000000 ; Destination address
LDR r2, =100 ; number of bytes to copy, also

copy_loop ; acts as loop counter
SUBS r2, r2, #1 ; decrement offset and loop counter
LDRB r4, [r0, r2] ; read 1 byte
STRB r4, [r1, r2] ; write 1 byte
BNE copy_loop ; loop until all data copied

By using the loop counter as memory offset, we have reduced the code size and improve

execution speed. The only side effect is that the copying operation will be started from the

end of the memory block and finished at the start of the memory block.

For copying large amount of data, we can use multiple load and store instructions to

increase the performance. Since the load store multiple instructions can only be used with

word accesses, we usually use them in memory copying functions only when we know

that the size of memory being copied is large and the data are word aligned.

LDR r0, =0x00000000 ; Source address
LDR r1, =0x20000000 ; Destination address
LDR r2, =128 ; number of bytes to copy, also

copy_loop ; acts as loop counter
LDMIA r0!, {r4-r7} ; Read 4 words and increment r0
STMIA r1!, {r4-r7} ; Store 4 words and increment r1
LDMIA r0!, {r4-r7} ; Read 4 words and increment r0
STMIA r1!, {r4-r7} ; Store 4 words and increment r1
LDMIA r0!, {r4-r7} ; Read 4 words and increment r0
STMIA r1!, {r4-r7} ; Store 4 words and increment r1
LDMIA r0!, {r4-r7} ; Read 4 words and increment r0
STMIA r1!, {r4-r7} ; Store 4 words and increment r1
SUBS r2, r2, #64 ; Each time 64 bytes are copied
BNE copy_loop ; loop until all data copied

In the above code, each loop iteration copies 64 bytes. This greatly increases the

performance of data transfer.

Another type of useful memory access instructions is the load and store instructions with

stack pointer (SP)-related addressing. This is commonly used for local variables, as C

compilers often store simple local variables on the stack memory. For example, let’s say

Instruction Usage Examples 155

we need to create two local variables in a function called “function1,” the code can be

written as:

function1
SUB SP, SP, #0x8 ; Reserve 2 words of stack

;(8 bytes) for local variables
; Data processing in function
MOVS r0, #0x12 ; set a dummy value
STR r0, [sp, #0] ; Store 0x12 in 1st local variable
STR r0, [sp, #4] ; Store 0x12 in 2nd local variable
LDR r1, [sp, #0] ; Read from 1st local variable
LDR r2, [sp, #4] ; Read from 2nd local variable
ADD SP, SP, #0x8 ; Restore SP to original position
BX LX

In the beginning of the function, a SP adjustment is carried out so that the data reserved

will not be overwritten by further stack push operations (Figure 6.4). During the execution

of the function, SP-related addressing with immediate offset allows the local variables to

be accessed efficiently. The value of SP can also be copied to another register if further

stack operations are required, or if the some of the local variables are in byte or half-word

size (in the ARMv6-M architecture, SP-related addressing mode only supports word size

data). In such cases load/store instructions accessing the local variables would use the

copied version of SP.

SP value at
beginning of

function1

Memory
Address

SP value at after
adjustment

Data space
reserved for local

variables

Stack space for
further stack

push

Figure 6.4
A function can reserve stack spaces for local variables (e.g., two words are reserved in this

diagram).

156 Chapter 6

At the end of the function, the local variables can be discarded and we restore the SP

value to the position as when the function started using an ADD instruction.

6.4 Data Type Conversion

The Cortex�-M processors support a number of instructions for converting data between

different data types.

6.4.1 Conversion of Data Size

On compilers for ARM� architecture, different data types have different sizes. A number

of commonly used data types and its corresponding sizes on ARM compilers are shown in

the following table (Table 6.7).

When converting a data value from one type to another type with a larger size, we need to

sign extend or zero extend it. A number of instructions are available to handle this

conversion (Table 6.8).

If the data is in the memory, we can read the data and carry out the zero-extend or signed-

extend operation in a single instruction (Table 6.9).

There is no need for additional store instructions to handle signed data because truncation

of data values from 32 bit to 16 bit or 8 bit is done on the fly.

Table 6.7: Size of commonly used data types in C language for

ARM� architecture

C data type Number of bits

“char”, “unsigned char” 8
“enum” 8/16/32 (Smallest is chosen)
“short”, “unsigned short” 16
“int”, “unsigned int” 32
“long”, “unsigned long” 32

Table 6.8: Instructions for signed extend and zero extend of data values

Conversion operation Instruction

Converting an 8-bit signed data to 32-bit or 16-bit signed data SXTB (signed extend byte)
Converting an 16-bit signed data to 32-bit signed data SXTH (signed extend half word)
Converting an 8-bit unsigned data to 32-bit or 16-bit data UXTB (zero extend byte)
Converting an 16-bit unsigned data to 32-bit data UXTH (zero extend half word)

Instruction Usage Examples 157

6.4.2 Endian Conversion

The memory system of a Cortex-M processors can either be in little endian configuration, or

big endian configuration. The configuration is defined in hardware and cannot be changed by

programming. Occasionally we might need to convert data between little endian and big

endian format. There are several instructions to handle this, as listed in Table 6.10.

6.5 Data Processing

Most of the data processing operations can be carried out in very simple instruction

sequence. However, there are situations that more steps are required. In here we will look

at a number of examples.

6.5.1 64-Bit/128-Bit Add

Adding two 64-bit values together is fairly straightforward. Assume that you have two

64-bit values (X and Y) stored in four registers, you can add them together using ADDS

followed up ADCS instruction, as shown below:

LDR r0, =0xFFFFFFFF ; X_Low (X = 0x3333FFFFFFFFFFFF)
LDR r1, =0x3333FFFF ; X_High
LDR r2, =0x00000001 ; Y_Low (Y = 0x3333000000000001)
LDR r3, =0x33330000 ; Y_High
ADDS r0, r0, r2 ; lower 32-bit
ADCS r1, r1, r3 ; upper 32-bit

In this example, the result is in R1, R0, which is 0x66670000 and 0x00000000. The

operation can be extended to 96 bit, 128 bit, or more by increasing number of ADCS

instructions in the sequence (Figure 6.5).

Table 6.9: Memory read instructions with signed extend and zero extend of data values

Conversion operation Instruction

Read an 8-bit signed data from memory and convert it to a 16-bit or 32-bit signed value LDRSB
Read an 16-bit signed data from memory and convert it to a 32-bit signed value LDRSH
Read an 8-bit unsigned data from memory and convert it to a 16-bit or 32-bit value LDRB
Read an 16-bit unsigned data from memory and convert it to a 32-bit value LDRH

Table 6.10: Instructions for conversions between big endian and little endian data

Conversion operation Instruction

Convert a little endian 32-bit value to big endian, or vice versa REV
Convert a little endian 16-bit unsigned value to big endian, or vice versa REV16
Convert a little endian 16-bit signed value to big endian, or vice versa REVSH

158 Chapter 6

6.5.2 64-Bit/128-Bit Sub

The operation of 64-bit subtract is very similar to the one of 64-bit add. Assume that you

have got two 64-bit values (X and Y) in four registers, you can subtract them (X � Y)

using SUBS followed up SBCS instruction, as follows:

LDR r0, =0x00000001 ; X_Low(X = 0x0000000100000001)
LDR r1, =0x00000001 ; X_High
LDR r2, =0x00000003 ; Y_Low(Y = 0x0000000000000003)
LDR r3, =0x00000000 ; Y_High
SUBS r0, r0, r2 ; lower 32-bit
SBCS r1, r1, r3 ; upper 32-bit

In this example, the result is in R1, R0, which is 0x00000000 and 0xFFFFFFFE. The

operation can be extended to 96 bit, 128 bit, or more by increasing number of SBCS

instructions in the sequence as shown in Figure 6.6.

6.5.3 Integer Divide

Unlike the Cortex�-M3/M4 processor, the Cortex-M0 and Cortex-M0þ processors do not

have integer divide instructions. For users who program their applications in C language,

the C compilers automatically inserts the required C library function that handles integer

divide when needed. For some other users who prefer to write their application entirely in

assembly language, they can create an assembly function like the following example

(Figure 6.7), which handles unsigned integer divide:

The divide function contains a loop that iterates 32 times and compute 1 bit of the result

each time. Instead of using an integer loop counter, the loop control is done by a value N

X word #0X word #1X word #2X word #3

ADDSADCSADCSADCS

carrycarrycarry

Result
word #0

Result
word #1

Result
word #2

Result
word #3

Y word #0Y word #1Y word #2Y word #3

carry

Figure 6.5
Adding of two 128-bit numbers.

Instruction Usage Examples 159

X word #0X word #1X word #2X word #3

SUBSSBCSSBCSSBCS

borrowborrowborrow

Result
word #0

Result
word #1

Result
word #2

Result
word #3

Y word #0Y word #1Y word #2Y word #3

borrow

Figure 6.6
Subtracting two 128-bit values.

N = 0x80000000

Quotient = 0

Set loop control

Tmp = 0

Shift Dividend left by
1, MSB shift into Tmp

Tmp variable for
calculation

Tmp >= Divisor?

Tmp = Tmp -
Divisor

Quotient =
Quotient + N

N = N >> 1

Decrement loop
counter

N = 0?

Remainder = Tmp

Initialize result

Y

N

Y

N

Figure 6.7
Simple unsigned integer divide function.

160 Chapter 6

which has 1 bit set (one hot), and shift right by 1 bit each time the loop is executed. The

corresponding assembly code can be written as:

simple_divide
; Inputs
; R0 = dividend
; R1 = divider
; Outputs
; R0 = quotient
; R1 = remainder
PUSH {R2-R4} ; Save registers to stack
MOV R2, R0 ; Save dividend to R2 as R0 will be changed
MOVS R3, #0x1 ; loop control
LSLS R3, R3, #31 ; N = 0x80000000
MOVS R0, #0 ; initial Quotient
MOVS R4, #0 ; initial Tmp

simple_divide_loop
LSLS R2, R2, #1 ; Shift dividend left by 1 bit, MSB go into carry
ADCS R4, R4, R4 ; Shift Tmp left by 1 bit, carry move into LSB
CMP R4, R1
BCC simple_divide_lessthan
ADDS R0, R0, R3 ; Increment quotient
SUBS R4, R4, R1

simple_divide_lessthan
LSRS R3, R3, #1 ; N = N >> 1
BNE simple_divide_loop
MOV R1, R4 ; Put remainder in R1, Quotient is already in R0
POP {R2-R4}; Restore used register
BX LR ; Return

This simple example does not handle signed data and there is no special handling for

divide-by-zero case. If handling of signed data division is needed, you can create wrapper

to convert the dividend and divisor into unsigned data first, and then run the unsigned

divide, and convert the result back to signed value afterward.

6.5.4 Unsigned Integer Square Root

Another mathematical calculation that is occasionally needed in embedded system is

square root. Since square root can only deal with positive numbers (unless complex

number are used), the following example only handles unsigned integers. For the

following implementation (Figure 6.8), the result is rounded to the next lower integer.

The corresponding assembly code can be written as:

simple_sqrt
; Input : R0
; Output : R0 (square root result)
PUSH {R1-R3} ; Save registers to stack

Instruction Usage Examples 161

MOVS R1, #0x1 ; Set loop control register
LSLS R1, R1, #15 ; R1 = 0x00008000
MOVS R2, #0 ; Initialize result

simple_sqrt_loop
ADDS R2, R2, R1 ; M = (M + N)
MOVS R3, R2 ; Copy (M + N) to R3
MULS R3, R3, R3 ; R3 = (M + N) ^ 2
CMP R3, R0
BLS simple_sqrt_lessequal
SUBS R2, R2, R1 ; M = (M - N)

simple_sqrt_lessequal
LSRS R1, R1, #1 ; N = N >> 1
BNE simple_sqrt_loop
MOV R0, R2 ; Copy to R0 and return
POP {R1-R3} ;
BX LR ; Return

6.5.5 Bit and Bit Field Computations

Bit data processing is very common in microcontroller applications. From the previous

divide example code we have already seen some basic bit computation on the Cortex-M0/

M0þ processor. In here we will cover a few more examples of bit and bit field processing.

To extract a bit from a value stored in a register, we first need to determine how the result

would be used. If the result is to be used for controlling conditional branch, the best solution

N = 0x8000

M = 0

M = M + N

M = M - N

y

N

N = N>>1

N = 0

y

N

Return M

M^2 > Input

Initial result

Loop control
and bit mask

Result too big,
restore previous

result

Try a smaller bit
mask

Check if all bits been
tested

Figure 6.8
Simple unsigned integer square root function.

162 Chapter 6

is to use shift or rotate instruction to copy the required bit in Carry flag in the APSR, and

then carry out the conditional branch using a BCC or BCS instruction. For example,

LSRS R0, R0, #<n+1> ; Shift bit “n” into carry flag in APSR
BCS <label> ; branch if carry is set

If the result is going to be used for other processing, then we could extract the bit by a

logic shift operations. For example, if we need to extract bit 4 in the register R0, this can

be carried out by:

LSLS R0, R0, #27 ; Remove un-needed top bits
LSRS R0, R0, #31 ; Move required bit into bit 0

This extraction method can be generalized to support extraction of bit fields. For example,

if we need to extract a bit field in a data with “W” bits wide, starting with bit position “P”

(LSB of the bit field), we can extract the bit field using:

LSLS R0, R0, #(32-W-P) ; Remove un-needed top bits
LSRS R0, R0, #(32-W) ; Align required bits to bit 0

For example, if we need to extract an 8-bit width bit field from bit 4 to bit 11, we can use:

LSLS R0, R0, #(32-8-4) ; Remove un-needed top bits
LSRS R0, R0, #(32-8) ; Align required bits to bit 0

The operation is illustrated in Figure 6.9.

0413 11

LSLS R0, R0,#(32-8-4)

0413 1124

LSRS R0, R0,#(32-8)

0713

left 20 bits
removed

20 bits of 0 shifted in

Right 24 bits
removed

24 bits of 0 shifted in

Required bit field

Figure 6.9
Bit field extract operation.

Instruction Usage Examples 163

In a similar way, we can clear bit field in a register by a few shift and rotate instructions:

RORS R0, R0, #4 ; Shift unneeded bit to bit 0
LSRS R0, R0, #8 ; Align required bits to bit 0
RORS R0, R0, #(32-8-4) ; store value to original position

The operation is illustrated in Figure 6.10.

For masking of other bit patterns, we can use BICS (Bit Clear) instruction. For example,

LDR R1, =Bit_Mask ; Bit to clear
BICS R0, R0, R1 ; Clear bits that are not required

The “Bit_Mask” is a value reflecting the bit pattern you want to clear. The BICS

instruction does not have any limitation of the bit pattern to be cleared, but it might

require slightly larger program size as the program might need to store the value of

“Bit_Mask” pattern as a word size constant.

031 411

Rotate right by 4 bits
(RORS R0, R0,#4)

031 71124

LSRS R0, R0,#8

031 19

Bit field to be
clear rotated

to LSB

0

Bit field shifted
out and

replaced by 0

Bit field to be cleared

RORS R0, R0,#20

20
23

24

031 12

0

4
Rotate value to
restore original

position
11

Bit field
removed

Figure 6.10
Bit field clear operation.

164 Chapter 6

CHAPTER 7

Memory System

7.1 Memory Systems in Microcontrollers

All processor systems need memories. In typical microcontrollers we need Non-Volatile

Memory (NVM) for program storage, such as flash memories or mask ROM, as well as

memory space such as SRAM (Static Random Access Memory) in which we can easily

write and read back. SRAM is typically used for data variables, stack memory, as well as

heap memory for dynamic memory allocation (e.g., when using alloc() function in C

language).

In most microcontrollers, you can find these memories integrated in the microcontroller

chip. This makes these microcontrollers much easier to use (requires fewer external

connections and reduces costs for the final embedded products). However, the on-chip

flash and SRAM memory sizes are limited. Many low cost microcontrollers have around

128 KB (or less) of flash memory and around 32 KB (or less) of SRAM size.

A number of microcontrollers also have a boot loader ROM which enables the

microcontroller to execute a small program provided by the Micro-Controller Unit (MCU)

vendor before starting the user applications stored in the flash memory. The boot loader

ROM might provide various boot options and flash programming utility, as well as setting

up factory calibration data for internal clock source calibration, or calibration data for

internal voltage references. Some of the microcontroller designs do not allow the boot

loader to be modified or erased by the software developers.

If the project requires more memories in the system, the system designer would need to

select a microcontroller product which supports external memory interface. Please note

that many microcontroller products are not designed to support off-chip memory systems.

Even with microcontrollers that support external memories, each memory access to the

off-chip memory system can take multiple clock cycles, and therefore the system

performance is likely to be lower than placing all data in the on-chip memory systems.

Traditional microcontrollers require separate NVM and SRAM because NVM-like flash

memories require a complex programming sequence to update, therefore is not suitable for

data storage (e.g., data variables, stack, which need to be updated very frequently).

Recently, some microcontroller products start to use FRAM (Ferroelectric RAM) or

MRAM (Magnetoresistive RAM). These technologies enable a single memory block to be

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00007-2

Copyright © 2015 Elsevier Inc. All rights reserved. 165

http://dx.doi.org/10.1016/B978-0-12-803277-0.00007-2

used for both program code and data storage, and have the advantage that the memory

system can be powered down completely and then resume operations without losing the

data in the RAM (traditional approach requires the SRAM to be put into a state retention

mode which still incurs leakage current). While existing Cortex�-M processor-based

microcontroller products do not use these memory technologies, this can be done (and

have been demonstrated experimentally1) as the Cortex-M processors do not restrict the

types of memory technologies used for the implementation.

One important aspect of NVM memories in microcontrollers is that many NVM technologies

are relatively slow compared to SRAM access speed. As a result, the bus interface for the

flash memories or FRAM memories needs to insert wait states to the bus system when the

processor bus is running faster than the maximum access speed of the memory. For example,

typically on-chip flash memory has access speed ranged from 25 to 50 MHz (some high-

speed flash memory technologies can run at over 100 MHz, but they are rarely used for ultra

low power microcontroller devices as their power consumption is relatively high).

7.2 Bus Systems in the Cortex�-M0 and Cortex-M0þ Processors

The Cortex-M0 and Cortex-M0þ processors have a 32-bit system bus interface with 32-bit

address lines (4 GB address space). The system bus is based on a bus protocol called

AHB-Lite (Advanced High-performance Bus), which is a protocol defined in the AMBA�

(Advanced Microcontroller Bus Architecture) standard. The AMBA standard is developed

by ARM� and is widely used in semiconductor industry.

The system bus interface is a generic design that can be connected to different types of

memories with suitable memory interface logic. The bus interface can support read/write

transfers with 32-, 16-, and 8-bit data, and support wait states and slave responses (can be

OKAYor ERROR). Technically the memory devices connected to the processor can be any

size and can be different width. For example, the memory devices can be 8-bit, 16-bit, or

64-bit memory, but would require additional hardware to bridge between different bus sizes.

Typically 32-bit on-chip memories are used to keep the design’s complexity at minimum.

While the AHB-Lite protocol provides high-performance accesses to the memory system,

very often a secondary bus segment can also be found for slower devices including

peripherals, as shown in Figure 7.1. In ARM microcontrollers, the peripheral bus system is

normally based on the APB (Advanced Peripheral Bus) protocol. The APB is connected to

the AHB-Lite via a bus bridge and may run at a different clock speed compared to the

AHB system bus. The data path on the APB is also 32-bit, but the address lines are often

less than 32-bit as the peripheral address space is relatively small.

1 http://www.electronicsweekly.com/news/design/embedded-systems/isscc-cortex-m0-sleeps-on-nothing-and-
wakes-in-400ns-2013-02/.

166 Chapter 7

http://www.electronicsweekly.com/news/design/embedded-systems/isscc-cortex-m0-sleeps-on-nothing-and-wakes-in-400ns-2013-02/
http://www.electronicsweekly.com/news/design/embedded-systems/isscc-cortex-m0-sleeps-on-nothing-and-wakes-in-400ns-2013-02/

Due to the separation of main system bus and peripheral bus, and in some cases with

separated clock frequency controls, an application might need to initialize some clock

control hardware in the microcontroller before accessing some of the peripherals. In some

cases, there can also be multiple peripheral bus segments in a microcontroller running at

different clock frequencies. Beside from allowing some part of the system running in a

slower speed, the separation of bus segments also provide possibilities of power reduction

by allowing clock signal to a peripheral system to be stopped completely.

Depending on the microcontroller designs, some high-speed peripherals might be

connected to the AHB-Lite system bus instead of the APB. This is because the AHB-Lite

protocol requires less number of clock cycles for each transfer when compared to the

APB. The bus protocol behavior affects the system operation and programmer’s view on

the memory system in a number of ways. This will be covered in Section 7.9.

7.3 Memory Map
7.3.1 Overview

The 4 GB memory space of the Cortex�-M0 and Cortex-M0þ processors is architecturally

divided into a number of regions (Figure 7.2). Each region has its recommended usage,

and the memory access behavior could be dependent on which memory region you are

accessing to. This memory region definition helps software porting between different

ARM� Cortex microcontrollers as they all have the similar arrangements.

32-bit System bus (AHB Lite)Cortex-M0

Program Memory
(e.g. Flash)

Data Memory
(e.g. SRAM) Bus Bridge

32-bit Peripheral bus (APB)

Peripheral
(e.g. UART)

Peripheral
(e.g. Watchdog timer)

External memory
interface

External bus
(optional)

Microcontroller

Peripheral
(e.g. Timer)

Peripheral
(e.g. I/O)

Figure 7.1
Separation of system and peripheral bus in a simple 32-bit microcontroller.

Memory System 167

Although having an architectural defined memory map, the actual usage of the memory map

is very flexible. There are only a few limitations, for example: a few memory regions which

are allocated for peripherals do not allow program code execution, and there are a number

of internal components that have fixed memory addresses to ensure software portability.

Next we will have a look into the usage of each region.

7.3.2 Code Region (0x00000000e0x1FFFFFFF)

The size of the code region is 512 MB. It is primarily used to store program code,

including the initial exception vector table at address 0x00000000 which is a part of the

program image. This region can also be used for data memory (connection to RAM).

7.3.3 SRAM Region (0x20000000e0x3FFFFFFF)

The SRAM region is the located in the next 512 MB of the memory map. It is primarily

used to store data, including stack. It can also be used to store program codes. For

example, in some cases you might want to copy program codes from slow external

Code
0x00000000

SRAM

Peripheral

RAM

External device

Internal Private Peripheral
Bus

Reserved

0x1FFFFFFF
0x20000000

0x3FFFFFFF
0x40000000

0x5FFFFFFF
0x60000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF
0xA0000000

0xBFFFFFFF
0xC0000000

0xDFFFFFFF
0xE0000000
0xE00FFFFF
0xE0100000

0xFFFFFFFF

Memory map

Reserved

DWT (Data
Watchpoint unit)

BP
(Breakpoint unit)

Reserved

NVIC
(Nested Vectored

Interrupt Controller)

Debug Control
Reserved

ROM Table

0xE0000000

0xE0001000

0xE0002000

0xE0003000

0xE000E100

0xE000ED00

0xE000F000

0xE00FEFFF
0xE00FF000
0xE00FFFFF

Memory map of the
Private Peripheral Bus

System Control Space
(SCS) 0xE000E000

SysTick Timer
Reserved 0xE000E000

0xE000E010
Reserved 0xE000E020

Figure 7.2
Architecturally defined memory map of the Cortex�-M0/M0þ processor.

168 Chapter 7

memory to the SRAM and execute it from there. Despite the name given to this region is

called “SRAM,” the actual memory devices being used could be SRAM, SDRAM or other

types or readewrite memory.

7.3.4 Peripheral Region (0x40000000e0x5FFFFFFF)

The Peripheral region also has the size of 512 MB. It is primarily used for peripherals, and

can also be used for data storage. However, program execution is not allowed in the

Peripheral region. The peripherals connected to this memory region can either be

AHB-Lite peripheral or APB peripherals (via a bus bridge).

7.3.5 RAM Region (0x60000000e0x9FFFFFFF)

The RAM region consists of two 512 MB blocks, which results in total of 1 GB space.

Both 512 MB memory blocks are primarily used to stored data, and in most cases the

RAM region can be used as a 1 GB continuous memory space. The RAM region can also

be used for program code execution. The only differences between the two halves of the

RAM region are the memory attributes, which might cause differences in caching behavior

if a system level cache (level-2 cache) is used. More about memory attributes will be

covered in later part of this chapter.

7.3.6 Device Region (0xA0000000e0xDFFFFFFF)

The external device region consists of two 512 MB memory blocks, which results in a

total of 1 GB space. Both 512 MB memory blocks are primarily used for peripherals and

I/O usages. The device region does not allow program execution, but it can be used for

general data storage. Similar to the RAM region, the two halves of the device region have

different memory attributes.

7.3.7 Internal Private Peripheral Bus (0xE0000000e0xE00FFFFF)

The internal Private Peripheral Bus (PPB) memory space is allocated for peripherals inside

the processor, such as the interrupt controller Vectored Interrupt Controller (NVIC), as

well as the debug components. The internal PPB memory space is 1 MB in size, and

program execution is not allowed in this memory range.

Within the PPB memory range, a special range of memory is defined as the System Control

Space (SCS). The SCS address is from 0xE000E000 to 0xE000EFFF. It contains the

interrupt control registers, system control registers, debug control registers, etc. The NVIC

registers are part of the SCS memory space. The SCS also contains an optional timer called

the SysTick. This will be covered in Chapter 10 (Section 10.3, The SysTick Timer).

Memory System 169

7.3.8 Reserved Memory Space (0xE0100000e0xFFFFFFFF)

The last section of the memory map is a 511 MB reserved memory space. This may be

used in some microcontrollers for microcontroller vendor specific usages.

7.3.9 System Level Design

Although all the Cortex-M Processors have this fixed memory map, the usage of the

memory is very flexible. For example, it can have multiple SRAM memory blocks placed

in SRAM region as well as other locations like the CODE region, and it can also execute

program code from external memory components located in CODE/SRAM/RAM region.

Microcontroller vendors can also add their own system level memory features like system

level cache if needed.

So how does the memory map of a typical real system look like?

For a typical microcontroller developed with the Cortex-M0/M0þ processor, normally you

can find:

• Flash memory (for program code)

• Internal SRAM (for data)

• Internal peripherals

• External memory interface (for external memories as well as external peripherals, optional)

• There could also be other external peripherals interface

After putting all these components together, an example microcontroller could be

illustrated as in Figure 7.3, with the nonexecutable memory regions highlighted in yellow.

Figure 7.3 shows some of the possibilities of how memory regions can be used. However,

in many low cost microcontrollers the system designs do not have any external memory

interface or SD (Secure Digital) card interface. In these cases, some of the memory

regions like the external RAM or the external device regions might be unused.

7.4 Program Memory, Boot Loader, and Memory Remapping
7.4.1 Program Memory and Boot Loader

In microcontroller products, usually the program memory of the Cortex�-M0 or

Cortex-M0þ processor is implemented with on-chip flash memory. However, it is also

possible that the program is stored externally or using other types of memory devices (e.g.,

external Quad SPI flash, EEPROM).

When the Cortex-M processor comes out of reset, it accesses the vector table in address

zero for initial Main Stack Pointer value and reset vector value, and then starts the

170 Chapter 7

program execution from the reset vector. In order to ensure the system start up correctly, a

valid vector table and a valid program memory must be available in the system to prevent

the processor from executing rogue program code. In many designs the required vector

table and boot code are provided by a flash memory starting from address zero. However,

an off-the-shelf microcontroller product might not have any program in the flash memory

before it is programmed. In order to allow the processor start up correctly, some Cortex-M

microcontrollers come with a boot loader, a small program located on the microcontroller

chip that executes after power-up and branch to the user’s application in the flash memory

only if the flash is programmed.

The boot loader is preprogrammed by the chip manufacturer. Sometimes it is stored on the

on-chip flash memory with a memory section separated from user applications (to allow

update of user program without affecting the boot loader), or stored on an NVM separated

On chip flash
memory

(CODE region)

On chip SRAM
(SRAM region)

Cortex-M0 / Cortex-M0+
processor

(Internal PPB region)

NVIC Debug

External Memory
Interface
(RAM, Device
regions)

SD Card
interface
(Device/RAM
region)

AHB to APB
bridge

(Peripheral region)

System bus

Peripheral
bus

I/O

I/O

UART

UART

Timer

Timer

I2C

(Peripheral region)

Microcontroller

External SRAM,
Flash

(RAM regsion)

LCD module
(Device region)

SD card

Non-executable memories

Figure 7.3
Example usage of various memory regions in a microcontroller design.

Memory System 171

from the user programmable flash memory. The boot loader feature is not always needed,

even if the microcontroller does not boot up correctly due to the lacking of a valid

program image in the flash memory, a debugger can still be able to connect to the

processor via a debug connection and reprogram the flash memory.

7.4.2 Memory Remap

When a boot loader is present, it is possible that the microcontroller vendor would

implement a memory map switching feature called “remap” on the system bus. The

switching of the memory map is controlled by a hardware register, which is programmed

when the boot loader is executed. There are various types of remap arrangements. One

common remap arrangement is to allow the boot loader to be mapped to the start of the

memory during power-up using address alias, as shown in Figure 7.4.

The boot loader might also support additional features like hardware initialization (clock

and PLL setup), supporting of multiple boot configurations, firmware protection or even

flash erase utilities. The memory remap feature is implemented on the system bus and is

not a part of the Cortex-M0/M0þ processor, therefore different microcontrollers from

different vendors have different implementations.

Another common type of remap features implemented on some ARM microcontrollers

allows an SRAM block to be remapped to address 0x0 (Figure 7.5). Normally NVM used

on microcontrollers like flash memory is slower than SRAM. When the microcontroller is

running at high clock rate, wait states would be required if the program is executed from

the flash memory. By allowing an SRAM memory block to be remapped to address 0x0,

then the program can be copied to SRAM and execute at maximum speed. This also

avoids wait states in vector table fetch which affects interrupt latency.

Address
0x00000000

CODE
region

User
flash

Boot loader alias

Boot loader

Memory map at power up
with remap turned on

Processor fetch reset
vector from boot loader

alias and start
executing boot loader

Address
0x00000000

CODE
region

User
flash

Boot loader

Memory map after remap
turned off

Boot loader turn off
remap (address alias),

and execute user
application if flash is

programmed.

Figure 7.4
An example of memory-remap implementation with boot loader.

172 Chapter 7

In some other cases, the memory remapping technique is being used in Cortex-M0

microcontrollers to allow the vector table (see Section 8.5 in Chapter 8) to be modified

dynamically during runtime. For this usage, a small part of the SRAM can be mapped

into address 0x0 as an address alias and used for storing vector table entries. Since the

Cortex-M0þ processor has the vector table relocation feature (see Section 9.2.4 Vector

Table Offset Register in Chapter 9), the system level memory remap is not essential

because the users can define part of the on-chip SRAM or user flash memory as vector table.

7.5 Data Memory

The data memory in Cortex�-M processors is used for software variables, stack memory,

and in some cases, heap memory. Sometimes local variables in C functions could be

stored onto the stack memory. The heap memory is needed when the applications use C

functions that require dynamically allocated memory space (e.g., alloc(), malloc()

functions). Other data variables like global variables and static variables are normally

statically allocated in the beginning of the RAM space.

In most embedded applications without Operating Systems (OS), only one stack is used

(only the Main Stack Pointer is required). In this case the data memory can be arranged as

shown in Figure 7.6.

Since the stack operation is based on full descending stack arrangement, and heap memory

allocation is ascending, it is common to put the stack at the end of the memory block and

heap memory just after normal memory to get the most flexible arrangement.

For embedded applications with embedded OS, each task might have their own stack

memory range (see Figure 3.9 in Chapter 3). It is also possible that each task has its own

Address
0x00000000

User
flash

SRAM (code)

Memory map before SRAM is
remapped

Processor copies
program code into

SRAM, and then remap
SRAM to 0x0

Address
0x00000000

Memory map after SRAM is
remapped

SRAM is remapped to
address 0x0 for zero
wait state accesses.

SRAM (data)

User flash

SRAM (code)

SRAM (code)
alias

SRAM (data)

Figure 7.5
A different example of memory-remap implementationdSRAM for fast program accesses.

Memory System 173

allocated memory space, with each memory space containing a memory layout which

consists of stack, heap, and data.

7.6 Little Endian and Big Endian Support

The Cortex�-M0 and Cortex-M0þ processors support either little endian or big endian

memory format. The choice is made by the microcontroller vendor when the chip is

designed, and cannot be changed by embedded programmers. Software developers must

configure their development tools project options to match the endianness of the targeted

microcontroller.

The big endian mode supported on the Cortex-M0/M0þ processor is called Byte-Invariant

big endian mode, or “BE8” big endian mode. It is one of the big endian modes in ARM

architectures. Traditional ARM processors like ARM7TDMI� use a different big endian

mode called Word-Invariant big endian mode, or “BE32.” The difference between the two

is on the hardware interface level and does not affect programmer’s view.

Most of the Cortex-M Processor-based microcontrollers are using little endian

configuration. With little endian arrangement, the lowest byte of a word-size data is stored

in bit 0 to bit 7 (Figure 7.7).

While in big endian configuration, the lowest byte of a word-size data is stored in bit 24 to

bit 31 (Figure 7.8).

Address
0x20000000

Address
0x3FFFFFFF

SRAM

SRAM
region

Data

Heap data

Stack spaceStack grow
direction

Heap grow
direction

(e.g. Global variables,
static data, data

structures)

Figure 7.6
An example of common SRAM usage.

174 Chapter 7

Both memory configurations support data handling of different sizes. The Cortex-M

processors can generate byte, half-word, and word transfers. When the memory is

accessed, the memory interface selects the data lanes based on the transfer size and the

lowest 2 bits of the address. For little endian systems, the data access can be illustrated by

the following diagram (Figure 7.9).

Similarly, a big endian system support data access of different size (Figure 7.10).

Note that there are two exceptions in big endian configurations:

1. the instruction fetch is always in little endian, and

2. the accesses to PPB address space are always in little endian.

7.7 Data Type

The Cortex�-M processors support different data types by providing various memory

access instructions for different transfer sizes, and by providing a 32-bit AHB-Lite

interface which supports 32-bit, 16-bit, and 8-bit transfers. For example, in C language

development, the following data types are commonly used (Table 7.1).

Byte 3 Byte 2 Byte 1 Byte 00x00000000

Byte 7 Byte 6 Byte 5 Byte 40x00000004

Byte 0xB Byte 0xA Byte 9 Byte 80x00000008

Bits [31:24] [23:16] [15:8] [7:0]

Figure 7.7
Little endian 32-bit memory.

Byte 3Byte 2Byte 1Byte 00x00000000

Byte 7Byte 6Byte 5Byte 40x00000004

Byte 0xBByte 0xAByte 9Byte 80x00000008

Bits [31:24] [23:16] [15:8] [7:0]

Figure 7.8
Big endian 32-bit memory.

Memory System 175

Address Size Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

0x00000000 Word Data[31:24] Data[23:16] Data[15:8] Data[7:0]

0x00000000 Half word Data[15:8] Data[7:0]

0x00000002 Half word Data[15:8] Data[7:0]

0x00000000 Byte Data[7:0]

0x00000001

Data[7:0]

Byte Data[7:0]

0x00000002 Byte

0x00000003 Byte Data[7:0]

Figure 7.9
Data access in little endian system.

Address Size Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

0x00000000 Word Data[31:24]Data[23:16]Data[15:8]Data[7:0]

0x00000000 Half word

Data[15:8]Data[7:0]0x00000002 Half word

Data[15:8]Data[7:0]

0x00000000 Byte Data[7:0]

0x00000001

Data[7:0]

Byte Data[7:0]

0x00000002 Byte

0x00000003 Byte Data[7:0]

Figure 7.10
Data access in big endian system.

Table 7.1: Commonly used data types in C language development

Type Number of bits in ARM� Instructions

“char”, “unsigned char” 8 LDRB, LDRSB, STRB
“enum” 8/16/32 (smallest is chosen) LDRB, LDRH, LDR,

STRB, STRH, STR
“short”, “unsigned short” 16 LDRH, LDRSH, STRH
“int”, “unsigned int” 32 LDR, STR
“long”, “unsigned long” 32 LDR, STR

176 Chapter 7

If “stdint.h” in C99 is used, the following commonly used data types are available

(Table 7.2).

For other data type that requires larger size (e.g., int64_t, uint64_t), the C compilers

automatically convert the data transfer into multiple memory access instructions.

Note that for peripheral register accesses, the data types being used should match the

hardware register sizes. Otherwise the peripheral might ignore the transfer or not

functioning as expected. In most cases, peripherals connected to the peripheral bus (APB)

should be accessed using word-size transfers. This is due to the fact that APB protocol

does not have transfer size signals, hence all the transfers are assumed to be word size.

Therefore peripheral registers accessed via the APB are normally declared as “volatile

unsigned integer” or “volatile uint32_t” if “stdint.h” is used.

7.8 Memory Attributes and Memory Access Permission

The Cortex�-M Processors can be used with a wide range of memory systems and

devices. In order to make porting of software between different devices easier, a number

of memory attribute settings are available for each regions in the memory map. Memory

attributes are characteristics of the memory accesses; they can affect data and instruction

accesses to memory as well as accesses to peripherals.

In the ARMv6-M architecture, which is used by the Cortex-M0 and Cortex-M0þ
processors, a number of memory access attributes are defined for different memory regions

(these attributes are also available on ARMv7-M architecture):

ExecutabledThe executable attribute defines whether program execution is allowed in

that memory region. If a memory region is defined as nonexecutable, in ARM

documentation it is marked as eXecute Never (XN).

BufferabledWhen a data write is carried out to a bufferable memory region, the write

transfer can be buffered, which means the processor can continue to execute next

instruction without waiting for the current write transfer to complete.

CacheabledIf a cache device is present on the system, it can keep a local copy of the

data during a data transfer, and reuse it next time the same memory location is accessed

to speed up the system. The cache device can be a cache memory unit, or could be a

small buffer in a memory controller.

Table 7.2: Commonly used data types provided in “stdint.h” in C99

Type Number of bits in ARM� Instructions

“int8_t”, “uint8_t” 8 LDRB, LDRSB, STRB
“int16_t”, “uint16_t” 16 LDRH, LDRSH, STRH
“int32_t”, “uint32_t” 32 LDR, STR

Memory System 177

ShareabledThe shareable attribute defines whether a memory region can be accessed

by more than one processor. If a memory region is shareable, the memory system needs

to ensure coherency between memory accesses by multiple processors in this region.

For most users of the Cortex-M0 and Cortex-M0þ processor-based products, only the XN

attribute is relevant as it defines which regions can be used for program execution. The

other attributes are used only if cache unit or multiple processors are used. Since the

Cortex-M0 and Cortex-M0þ processors do not have an internal cache unit, in most cases

these memory attributes are not used. If a system level cache is used, or when the memory

controller has a build-in cache, then these memory attributes signals exported by the

processor via the AHB interface could be used.

Base on the memory attributes, various memory types are architecturally defined, and is

used to define what type of devices could be used in each memory region:

Normal memorydNormal memories can be shareable or nonshareable, and can be

either cacheable or noncacheable. For memories with cacheable, the caching behavior

can be further divided into Write Through (WT) or Write Back Write Allocate

(WBWA).

Device memorydDevice memories are noncacheable. They can be shareable or

nonshareable.

Strongly Ordered (SO) memorydA memory region that is nonbufferable, noncache-

able and transfer to/from SO region takes effect immediately. Also, the orders of SO

transfers on the memory interface must be identical to the orders of the corresponding

memory access instructions (i.e., no access reordering for speed optimizationdplease

note that the Cortex-M0 and Cortex-M0þ processors do not have such access

reordering feature anyway). SO memory regions are always shareable in terms of

architectural definition.

The memory attribute and memory types for each memory region in the Cortex-M

processors are defined in the architecture (Table 7.3), and the attribute for some of the

regions can be overridden with configuration settings in the MPU (Memory Protection

Unit) if available. During the memory accesses, the memory attributes are exported from

the processor to the AHB system, which can be used by a system level cache controller

(L2 cache) when applicable.

The PPB memory region is defined as SO. This means the memory region is nonbufferable

and noncacheable. In the Cortex-M0 and Cortex-M0þ processors, operations following an

access to SO region are not started until the access is completed. This behavior is important

for changing registers in the SCS, where we often expected the operations of changing a

control register should take place immediately before next instruction is executed. Please

note that memory attributes and permissions for SCS cannot be changed by MPU.

178 Chapter 7

In some other ARM processors like the Cortex-M3 processor, there can also be default

memory access permission for each region. Since the Cortex-M0 processor does not have

separated privileged and nonprivileged (user) access level, the processor is in privilege

access level all the time and therefore does not have a memory map for default memory

access permission. The Cortex-M0þ processor, however, has the optional unprivileged

execution level and therefore has the default access permission as shown in Table 7.4.

In practice, most of the memory attributes and memory type definitions are unimportant

(apart from the XN attribute and access permissions) to users of Cortex-M0 and Cortex-

M0þ microcontrollers. However, if the software code has to be reused on high-end

Table 7.3: Default memory attribute map defined by the architecture

Address Region

Memory

type Cache XN Shareable Descriptions

0x00000000e
0x1FFFFFFF

CODE Normal WT e e Memory for program code
including vector table

0x20000000e
0x3FFFFFFF

SRAM Normal WBWA e e SRAM, typically used for
data and stack memory

0x40000000e
0x5FFFFFFF

Peripheral Device e XN e Typically used for on-chip
devices

0x60000000e
0x7FFFFFFF

RAM Normal WBWA e e Normal memory with
Write Back, Write Allocate
cache attributes

0x80000000e
0x9FFFFFFF

RAM Normal WT e e Normal memory with
Write Through cache
attributes

0xA0000000e
0xBFFFFFFF

Device Device e XN S Shareable device memory

0xC0000000e
0xDFFFFFFF

Device Device e XN e Nonshareable device
memory

0xE0000000e
0xE00FFFFF

PPB Strongly
ordered

e XN S Internal Private Peripheral
Bus

0xE0100000e
0xFFFFFFFF

Reserved Reserved e e e Reserved (Vendor-specific
usage)

Table 7.4: Memory access permission

Memory region Default permission Note

CODE, SRAM, Peripheral,
RAM, Device

Accessible for both privileged
and unprivileged code.

Access permission can be
overridden by MPU
configurations

System Control Space
including NVIC, MPU, SysTick

Accessible for privileged code
only. Attempts to access these
registers from unprivileged code
result in HardFault exception.

Cannot be overridden by MPU
configurations

Memory System 179

processors, especially on systems with multiple processors and cache memories, these

details can be important.

7.9 Effect of Hardware Behavior to Programming

The design of the processor hardware and the behavior of the bus protocol affect the

software in a number of ways. In previous section we have already mentioned that

peripherals connected to the APB are usually accessed using word-size transfers due to the

nature of the APB protocol. In this section we will look into other aspects.

7.9.1 Data Alignment

The Thumb� instruction set supported by the Cortex�-M0 and Cortex-M0þ processors

can only generate aligned transfers. It means that the transfer address must be a multiple

of the transfer size. For example, a word-size (32-bit) transfer can only access addresses

like 0x0, 0x4, 0x8, 0xC, etc. Similarly, a half-word transfer can only access addresses like

0x0, 0x2, 0x4, etc. All byte data accesses are aligned. Examples of aligned and unaligned

data accesses are shown in Figure 7.11.

If the program executed attempts to generate an unaligned transfer, this will result in a fault

exception and cause the HardFault handler to be executed. In normal cases, C compilers do

byte

byte

byte

byte

Byte
0

Byte
1

Byte
2

Byte
3

Byte size
transfers

Half word
transfershalf word

half word

word Word transfer

Aligned transfers

Byte
0

Byte
1

Byte
2

Byte
3

Half word
transfers

Half word

lower
byte

lower 3 bytes

Word
transfers

Unaligned transfers

upper
byte

upper
byte

lower half word

upper half word

upper 3 bytes

lower
byte

Figure 7.11
Examples of aligned and unaligned transfers (for little endian memory configuration).

180 Chapter 7

not generate any unaligned transfers, but an unaligned transfer can still be generated if a C

program directly manipulated a pointer (example in Appendix G, Section G.6.3).

Unaligned transfers can also be generated accidentally when programming in assembly

language, for example, when load/store instructions of wrong transfer size is used. In the

case of a half-word data located in address 0x1002, which is an aligned data, it can be

accessed using LDRH, LDRSH, or STRH instructions without problems. But if the

program code used LDR or STR instruction to access this data, an unaligned access fault

would be triggered.

7.9.2 Access to Invalid Addresses

Unlike most 8-bit or 16-bit processors, a memory access to an invalid memory address

generates a fault exception on ARM� Cortex-M-based microcontrollers. This provides

better program error detection and allows software bugs to be detected earlier.

In an AHB system connected to a Cortex-M processor, the address decoding logic detects

the address being accessed and the bus system response with an error signal if the access

is going to an invalid location. The bus error can be caused by either data accesses or

instruction fetches. When the processor detects the error response, it can trigger a

HardFault exception to handle the error.

One exception to this behavior is the branch shadows for instruction fetch. Due to the

pipeline nature of the Cortex-M processors, instructions are fetched in advance. Therefore

if the program execution reaches the end of a valid memory region and a branch is

executed, there might be chances that the addresses beyond the valid instruction memory

region could have been fetched and result in a bus error response in the AHB system.

However, in this case the bus fault would be ignored if the faulted instruction is not

executed due to the branch.

7.9.3 Use of Multiple Load and Store Instructions

The multiple load and store instructions in the Cortex-M processor can greatly increase the

system performance when used correctly. For example, it can be used to speed up data

transfer processes or can be used as a way to adjust memory pointer automatically.

However, when handling peripheral accesses, typical use of LDM or STM instructions

should be avoided. If the Cortex-M0 or Cortex-M0þ processor received an interrupt

request during the execution of LDM or STM instruction, the LDM or STM instruction

will be abandoned and the interrupt service will start. At the end of the interrupt service,

the program execution will return to the interrupted LDM or STM instruction and restart

again from the first transfer of the interrupted LDM or STM.

Memory System 181

As a result of this restart behavior, some of the transfers in this interrupted LDM or STM

instruction could be carried out twice. It is not a problem for normal memory devices.

However, if the access is carried on a peripheral, then the repeating of the transfer could

cause error. For example, if the LDM instruction is used for reading a data in a FIFO

(First-In-First-Out) buffer, then some of the data in the FIFO could be lost as the read

operation is repeated.

As a precaution, we should avoid the use of LDM or STM instruction on peripheral

accesses unless we are sure that the restart behavior does not cause incorrect operation to

the peripheral.

7.9.4 Wait States

Some of the memory accesses might take several clock cycles to complete. For example,

the flash memory used in a low power microcontroller might have a maximum access

speed of just around 20 MHz while the microcontroller can run at over 40 MHz. When

this happens, the flash memory interface would need to insert wait states to the bus system

so that the processor will wait for the transfer to complete.

The wait states can affect the systems in a number of ways:

• The performance of the system is reduced.

• The energy efficiency of the system can be reduced because the performance is

reduced.

20MHz 40MHz 60MHz

Flash
0 WS

Flash
1 WS

Flash
2 WS

Flash
3 WS

Performance

0MHz Clock
frequency

Figure 7.12
Performance of an example system based on the Cortex�-M0 processor

with various wait states for flash memory.

182 Chapter 7

• The interrupt latency of the system increases.

• The system behavior is less deterministic in terms of program execution timing.

For example, assume the flash memory system of an MCU with Cortex-M0 processor has

an access speed of 50 ns (20 MHz), the performance curve of the device could look like

the one shown in Figure 7.12.

As you can see from Figure 7.12, the performance is not linear because the flash memory

access speed could limit the maximum performance. In order to solve this problem, many

microcontroller vendors introduce flash prefetch hardware in the design so that multiple

words of instructions are fetched from the flash memory each time, and when the

processor is still consuming the instructions in the buffer, the next set of instruction

fetches can start. This technique reduces the performance drop when the frequency

increases. For example, Figure 7.13 shows the improvement with a simple prefetch logic

design.

Further performance improvement is possible with more complex designs or with a system

level cache.

20MHz 40MHz 60MHz

Flash
0 WS

Flash
1 WS

Flash
2 WS

Flash
3 WS

Performance

0MHz Clock
frequency

With prefetch logic

Without prefetch logic

Figure 7.13
Performance comparison for a simple MCU with flash prefetch logic and without prefetch logic.

Memory System 183

CHAPTER 8

Exceptions and Interrupts

8.1 What are Exceptions and Interrupts?

In most microcontrollers, the interrupt feature enables a peripheral or an external hardware

to send a request to a processor so that the processor can execute a piece of code to

service the request. The process involves suspending the current executing task, or wake

up from sleep mode, and execute the piece of software code called exception handler to

service the request. After the request is serviced, the processor can then resume the

previous interrupted code.

In Figure 8.1:

1. A peripheral generates an interrupt request (IRQ) to the processor.

2. The processor detected and accepted the IRQ. The current executing task is

suspended and some of the status information including Program Status Register

(xPSR) (including APSR flags like carry, overflow, negative sign, and zero) and the

Program Counter (PC) are pushed into the stack alongside with couple of other

registers.

3. The processor locates the starting address of the interrupt handler from the vector table,

and then executes the interrupt handler associated with this IRQ.

4. The processor finishes the handler execution, restores the information previously pushed

to the stack, and resumes the interrupted task.

ProcessorPeripheral

1

Thread
e.g. main() Handler

Interrupt
return

Processor status and
some registers are save

to stack

Processor status and
some registers are

restored from the stack

2
3

4

IRQ
(Interrupt
Request)

Thread
resume

Program
execution

Service the
peripheral
request

Figure 8.1
Interrupt handling concept.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00008-4

Copyright © 2015 Elsevier Inc. All rights reserved. 185

http://dx.doi.org/10.1016/B978-0-12-803277-0.00008-4

After the interrupt is serviced, the thread or interrupted task can resume operations as

nothing has happened because the status of the processor (e.g., APSR) is saved and

restored by the processor.

In general, interrupt is just one type of exceptions in ARM� Cortex�-M Processors.

Exceptions are events that cause changes in program flow outside normal code sequence.

When it happens, the current executing program would be suspended, and the exception

handler associated with the event would be executed. The events could either be external

or internal. When an event is from an external source, it is commonly known as interrupts

or IRQ. Exceptions and interrupts are supported in almost all modern processors. In

typical microcontrollers, the interrupts can also be generated using on-chip peripherals or

by software.

Before we continue to cover the exception and interrupt topic in details, let us first cover

some common terminologies:

Interrupt Requests (IRQs)dOne of the exception types in the Cortex-M processors

which are associates with peripherals including external interrupt inputs via GPIO pins.

The Cortex-M0 and Cortex-M0þ processors support up to 32 IRQ inputs.

Non-Maskable Interrupt (NMI)dA special IRQ with highest priority level and cannot

be disabled. Typically generated by peripherals like the watchdog timer or a Brown Out

Detector (BOD). This is exception type 2 in the Cortex-M Processors.

HandlersdThe software code that gets executed when an exception occurred is

called exception handler. If the exception handler is associated with an interrupt

event, then it can also be called as interrupt handler, or Interrupt Service Routine

(ISR). The exception handlers are part of the program code in the compiled

program image.

Nested InterruptsdIt is common to divide interrupts and exceptions into multiple levels

of priority, and while running an exception handler of a low priority exception, a higher

priority exception can be triggered and get serviced. This is commonly known as nested

exception. Priority level of an exception can be programmable or fixed. Apart from

priority settings, some exceptions (including most interrupts) can also be disabled or

enabled by software.

Nested Vectored Interrupt Controller (NVIC)dA programmable hardware unit inside

the Cortex-M processors to handle the management of interrupts and exception requests.

The NVIC in the Cortex-M0 and Cortex-M0þ processors can support up to 32 IRQ inputs,

an NMI input, and a number of system exceptions including one exception type from the

SysTick (System Tick) timer (Figure 8.2).

186 Chapter 8

8.2 Exception Types on the Cortex�-M0 and Cortex-M0þ Processors
8.2.1 Overview

The Cortex-M0 and Cortex-M0þ processors contain a built-in interrupt controller called

NVIC which supports up to 32 IRQ inputs, an NMI input, and a number of system

exceptions from within the processor. Depending on the design of the microcontroller

product, the IRQ and the NMI can be generated either from on-chip peripherals or from

external sources.

Each exception source in the Cortex-M0 or Cortex-M0þ processor has a unique exception

number. The exception number for NMI is 2, and the exception numbers for the on-chip

peripherals and external interrupt sources are from 16 up to 47. The other exception

numbers from 1 to 15 are for system exceptions generated inside the processor, with some

of the exception numbers in this range are not used.

Each exception type also has an associated priority. The priority levels of some exceptions

are fixed and some are programmable. Table 8.1 shows the exception types, exception

number, and priority level.

8.2.2 Non-Maskable Interrupt

The NMI is similar to IRQ, but it cannot be disabled and has the highest priority apart

from the reset. It is very useful for safety critical systems like industrial control or

automotive. Depending on the design of the microcontroller, the NMI could be used for

power failure handling, or can be connected to a watchdog unit to restart a system if the

Processor
CoreNVIC

SysTick timer

System
Exceptions

NMI

IRQs

Cortex-M processor

I/O port

I/O port

Peripherals

Peripheral

Microcontroller

Figure 8.2
The NVIC in the Cortex�-M0 and Cortex-M0þ processors can deal with up to 32 IRQ inputs, an

NMI, and a number of system exceptions.

Exceptions and Interrupts 187

system stopped responding. Since the NMI cannot be disabled by control registers, the

responsiveness is guaranteed.

8.2.3 HardFault

HardFault is an exception type dedicated for handling fault conditions during program

execution. These fault conditions could be trying to execute an unknown opcodes,

fault on bus interface or memory system, or illegal operations like trying to switch to

ARM� state.

8.2.4 SVCall (Supervisor Call)

SVCall exception takes place when the SVC instruction is executed. SVC is usually used

in system with Operating System (OS), allowing applications to access to system services.

8.2.5 Pendable Service Call

Pendable Service Call (PendSV) is another exception for applications with OS. Unlike the

SVCall exception, which must start immediate after the SVC instruction is executed,

PendSV can be delayed. PendSV is commonly used by the OS to schedule system

operations to be carried out only when high priority tasks are completed.

8.2.6 System Tick Timer

The SysTick Timer inside the NVIC is another feature for OS application. Almost all OS

need a timer to generate periodic interrupt for system maintenance works like context

switching. By integrating a simple timer in the Cortex-M processor, porting of OS from

Table 8.1: List of exceptions in the Cortex-M0 and Cortex-M0þ processors

Exception number Exception type Priority Descriptions

1 Reset -3 (Highest) Reset
2 NMI -2 Non-Maskable Interrupt
3 HardFault -1 Fault handling exception
4e10 Reserved NA e
11 SVCall Programmable Supervisor call via SVC instruction
12e13 Reserved NA e
14 PendSV Programmable Pendable request for system service
15 SysTick Programmable System Tick Timer
16 Interrupt #0 Programmable External Interrupt #0
17 Interrupt #1 Programmable External Interrupt #1
. . . .
47 Interrupt #31 Programmable External Interrupt #31

188 Chapter 8

one device to another is much easier. The SysTick timer and its exception are optional in

the Cortex-M0 and Cortex-M0þ processors. However, they are included in most

microcontroller implementations.

8.2.7 Interrupts

The number of interrupts supported in a microcontroller based on the Cortex-M0 or

Cortex-M0þ processor could be from 1 to 32. The interrupt signals could be connected

from on-chip peripherals, or from external source via the I/O port. In some cases

(depending on the microcontroller design), the external interrupt number might not match

the interrupt signal number on the Cortex-M processor.

External interrupts need to be enabled before being used. If an interrupt is not enabled, or

if the processor is already running another exception handler with same or higher priority,

the IRQ will be stored in a pending status register. The pended IRQ can be triggered when

the priority level allows and if the interrupt is enabled, for example, when the higher

priority interrupt handler that was blocking the service is completed and returned. The

NVIC can accept IRQ signals in the form of a high logic level, as well as interrupt pulse

(minimum one clock cycle). Note that in the external interface of a microcontroller, the

external interrupt signals can be active high or active low, or can have programmable

configurations.

8.3 Brief Overview of the NVIC

The NVIC is a programmable unit that allows software to manage interrupts and

exceptions. It has a number of memory mapped registers for the following:

• Enabling or disabling of each of the interrupts

• Defining the priority levels of each interrupts and some of the system exceptions

• Enabling the software to access the pending status of each interrupt, including the capa-

bility to trigger interrupts by setting pending status in software.

An additional interrupt masking feature, the PRIMASK special register covered in Section

4.2.2.6, is available to allow software to disable all interrupts and exceptions (apart from

the NMI and HardFault).

The NVIC registers can only be accessed in privileged state. For the NVIC design in

ARMv6-M architecture, including the Cortex�-M0 and Corex-M0þ Processors, the NVIC

registers must be accessed using aligned 32-bit transfers. To make it easier for software

development, the CMSIS-CORE software framework includes a set of standardized APIs

for interrupt management. This is integrated in the device driver libraries for most

microcontrollers based on the ARM Cortex-M processors.

Exceptions and Interrupts 189

The ARMv7-M architecture (e.g., Cortex-M3, Cortex-M4, and Cortex-M7 processors) has

additional interrupt masking registers and a set of interrupt active status registers. Full

details on the differences of the NVIC between different Cortex-M processors are covered

in Section 22.5 in Chapter 22.

8.4 Definition of Exception Priority Levels

In the Cortex�-M processors, each exception has a priority level. The priority level affects

whether the exception will be carried out, or waits until later (stay in a pending state). The

Cortex-M0 and Cortex-M0þ processors support three fixed highest priority levels for three

of the system exceptions (Reset, NMI, and HardFault) and four programmable levels for

all other exceptions including interrupts. For exceptions with programmable priority levels,

the priority level configuration registers are 8-bit wide, but only the two MSBs are

implemented, as shown in Figure 8.3.

Since bit 5 to bit 0 are not implemented, they are always read as zero, and write to

these bits is ignored. With this setup, we have possible priority levels of 0x00

(high priority), 0x40, 0x80, and 0xC0 (low priority). This is very similar to the Cortex-

M3 processor, except that on the Cortex-M3 processor it has at least 3 bits

implemented, and therefore the Cortex-M3 processor has at least eight programmable

priority levels, while the Cortex-M0 and Cortex-M0þ processors have only four

programmable levels.

When combine with the three fixed priority levels, the Cortex-M0 and Cortex-M0þ
processors have total of seven priority levels, as shown in Figure 8.4.

The reason for removing the LSB of the Priority Level Register instead of the MSB is to

make it easier to port software from one Cortex-M-based device to another. In this way,

a program written for devices with wider priority width registers is likely to be able run

on devices with narrower priority width. If the MSB is removed instead of LSB, you

might get an inversion of priority level arrangement among several exceptions during

porting of the application. This might result in an exception which is expected to have

a lower exception priority preempting another exception which was expected to be

higher priority.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Implemented Not implemented, read as zero

Figure 8.3
A Priority Level Register with 2 bits implemented.

190 Chapter 8

If an enabled exception event occurred (e.g., interrupt, SysTick timer) while no other

exception handler is running, and the exception is not blocked due to PRIMASK (the

interrupt masking register, see descriptions in Chapter 4), then it will be accepted by the

processor, and the exception handler will be executed. The process of switching from a

current running task to an exception handler is called preemption.

If the processor is already running another exception handler, but the new exception has

higher priority level than the current level, then preemption will also take place. The

running exception handler will be suspended, and the new exception handler is executed.

This is commonly known as Nested Interrupt or Nested Exception. After the new

exception handler is completed, the previous exception handler can resume execution and

return to thread when it is completed.

However, if the processor is already running another exception handler that has the same

or higher priority level, the new exception will have to wait by entering a pending state.

A pending exception can wait until the current exception level changes, for example, after

the running exception handler completed and returned, and lowering the current priority

level to be below the priority level of the pending exception. The pending status of

exceptions can be accessed via memory-mapped registers in the NVIC. It is possibly to

clear the pending status of an exception by writing to an NVIC register in software. If the

pending status of an exception is cleared, it will not be executed.

Programmable
Exceptions

Reset

NMI

Hard Fault

0

-1

-2

-3

0x40

0x80

0xC0

0

0xFF

Highest priority

Lowest priority

Implemented
Exception Priority
Levels on Cortex-M0

-1

-2

-3

Architectural
priority range

0x40

0x80

0xC0

Figure 8.4
Available priority levels in the Cortex�-M0 and Cortex-M0þ Processors.

Exceptions and Interrupts 191

If two exceptions happen at the same time and they have the same programmed priority

level, the exception with a lower exception type number will be processed first. For

example, if both IRQ #0 and IRQ #1 are enabled, both have the same priority level and

both get asserted at the same time, IRQ #0 will be handled first. This rule only applies

when the processor is accepting the exceptions, but not when one of these exceptions is

already being processed.

The interrupt nesting support in the Cortex-M0 and Cortex-M0þ Processors does not

require any software intervention. This is different from traditional ARM7TDMI�, as well

as some 8-bit and 16-bit microcontroller architectures where interrupts are disabled

automatically during interrupt services, and require additional software processing to

enable nested interrupt supports.

The ARMv6-M architecture does not support dynamic changing of interrupt priority level

for active/enabled interrupts. If the priority level of an interrupt needs to be changed, it is

normal to disable the interrupt first, change the priority level, and then enable the interrupt

again. This is different from ARMv7-M architecture (e.g., Cortex-M3 and Cortex-M4

Processors), where you can dynamically change the priority level of an active interrupt.

8.5 Vector Table

The interrupt handling in the Cortex�-M Processor is vectored, which means the

processor’s hardware automatically determines which interrupt or exception to service.

After receiving an IRQ of exception event, the processor will need to decide whether to

accept the request, and if yes, it will need to execute the corresponding exception handler

or interrupt handler. And to do that, it will need to know the starting address of the

handler, and the vector table is a lookup table in the memory that provides such

information.

The interrupt handling in the Cortex-M processors is different from the classic ARM�

processors like the ARM7TDMI�. In the ARM7TDMI, the starting addresses of the

exception handlers are fixed. Since the ARM7TDMI has only one IRQ input, multiple

IRQs have to share the same IRQ handler starting address, and the IRQ handler has to

access the status of a system level interrupt controller to determine which interrupt to be

serviced and branch to the service function accordingly.

In the Cortex-M processors, the vector table stores the starting address of each exception

and interrupt individually (Figure 8.5). The built-in interrupt controller (NVIC)

automatically decides which interrupt or exception to be serviced first based on the

priority levels and generate a vector so that the processor hardware can look up the

starting address of the exception handler from the vector table.

192 Chapter 8

Some of the spaces in the vector table are not used because the Cortex-M0 and Cortex-

M0þ processors only have a few system exceptions. Some of the unused exceptions are

used on other ARM processors like the Cortex-M3/M4 processor for additional system

exceptions.

By default, the vector table is in address 0x00000000 of the memory space. The vector

table contains the exception vectors (starting address of ISR) for available exceptions in

the system, as well as the starting value of the Main Stack Pointer (MSP) in the beginning

of the vector table. The order of exception vector being stored is the same order of the

exception number. Since each vector is one word (4 bytes), the address of the exception

vector is the exception number times four. Each exception vectors is the starting address of

the exception handler, with the LSB set to one to indicate that the exception handler is in

Thumb� code.

MSP initial value
Reset vector
NMI vector

HardFault vector

SVC vector

PendSV vector

Not used
Not used
Not used

0x00000000
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018
0x0000001C
0x00000020
0x00000024
0x00000028
0x0000002C
0x00000030
0x00000034
0x00000038
0x0000003C
0x00000040
0x00000044
0x00000048
0x0000004C

Not used
Not used
Not used
Not used

Not used
Not used

SysTick vector
Interrupt#0 vector
Interrupt#1 vector
Interrupt#2 vector
Interrupt#3 vector

Memory
Address

Exception
Number

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Note : LSB of each vector must be
set to 1 to indicate Thumb state

Figure 8.5
Vector table.

Exceptions and Interrupts 193

The Cortex-M0þ Processor has a vector table relocation feature so that you can define a

different part of the memory space as vector table by programming a hardware register

called VTOR (Vector Table Offset Register). In the Cortex-M0þ processor, the vector

table starting address must have bit 7 to bit 0 set to 0. In order words, the starting address

must be a multiple of 0�100 (256 bytes). More details of the VTOR can be found in

Section 9.2.4, Vector Table Offset Register.

8.6 Exception Sequence Overview
8.6.1 Acceptance of Exception Request

The processor accepts an exception if the following conditions are satisfied:

• The processor is not halted for debugging

• For interrupt and SysTick IRQs, the interrupt has to be enabled

• The processor is not running an exception handler of same or higher priority

• The exception is not blocked by the PRIMASK interrupt masking register

Note that for SVCall exception, if the SVC instruction is accidentally used in an exception

handler that has same or higher priority than the SVC exception itself, it will cause the

HardFault exception handler to execute.

8.6.2 Stacking and Unstacking

In order to allow an interrupted program to be resumed correctly, some of the current state

of the processor must be saved before the program execution switch to the exception

handler that services the occurred exception. Different processor architectures have

different ways to do this, in the Cortex�-M processors, the architecture uses a mixture of

automatic hardware arrangement and, only if necessary, additional software steps for

saving and restoring of processor status.

When an exception is accepted on the Cortex-M0 or Cortex-M0þ processor, some of the

registers in the register banks (R0 to R3, R12, R14), the return address (PC), and the xPSR

are pushed to the current active stack memory automatically. The Link Register (LR/R14)

is then updated to a special value to be used during exception return (EXC_RETURN, to

be introduced later in this chapter, Section 8.7), and then the exception vector is

automatically located from the vector table and the exception handler starts to execute.

At the end of the exception handler, the exception handler executes a return using the

special value (EXC_RETURN, previously generated in LR) to trigger the exception return

mechanism. The processor checks if there is any other exception to be serviced. If not, the

register values previously stored onto the stack memory are restored and the interrupted

program is resumed.

194 Chapter 8

The actions of automatic saving and restoring of the register contents are called “stacking”

and “unstacking” (see Figure 8.6). These mechanisms allow exception handlers to be

implemented as normal C functions, thereby reducing the software overhead of exception

handling, as well as reducing the circuit size (no need to have extra banked registers), and

hence lowering the power consumption of the design.

For the registers not saved by the automatic stacking process, they will have to be saved

and restored by software in the exception handler if they are modified by the exception

handler. However, this does not affect the use of normal C functions as exception handler

because it is a requirement for C compilers to save and restore these other registers

(R4-R11) if they will be modified during the C function execution.

8.6.3 Exception Return Instruction

Unlike some other processors, there is no special return instruction for exception handlers.

Instead, a normal return instruction is used and a special value called EXC_RETURN is

used to trigger the exception return when it is loaded into PC. This mechanism allows

exception handlers to be implemented as a normal C function.

Two different instructions can be used for exception return. They are:

BX <Reg> ; Load a register value into PC. E.g. “BX LR”

And

POP {<Reg1>,<Reg2>,..,PC} ; POP instruction with PC being one of the registers

being updated

Exception handlerHandler
mode

Thread
mode

Interrupt

Stacking

Thread
(main program)

Thread
(main program)

Interrupt occur
Interrupt cleared

by ISR

Exception
Return

Unstacking

Main
program

interrupted

Main
program
resumed

Time

Figure 8.6
Stacking and unstacking of registers at exception entry and exit.

Exceptions and Interrupts 195

When one of these instructions is executed with a special value called EXC_RETURN

being loaded into the PC, the exception return mechanism will be triggered. If the value

being load into PC does not match the EXC_RETURN pattern, then it will be executed as

a normal BX or POP instruction.

8.6.4 Tail Chaining

If an exception is in pending state when another exception handler is completed, instead of

returning to the interrupted program and then entering exception sequence again, a tail-

chain scenario will occur. When this happens, the processor will not have to restore all

register values from stack and push them back to the stack again (Figure 8.7). Only a few

memory accesses are made between the switch. The tail chaining of exceptions allows

lower exception processing overhead and hence better energy efficiency.

8.6.5 Late Arrival

Late arrival is an optimization mechanism in some of the Cortex-M processors to speed up

processing of higher priority exceptions. If a higher priority exception occurs during

stacking process of a lower-priority exception, the processor switches to handle the higher

priority exception first (Figure 8.8).

Exception handler AHandler
mode

Thread
mode

Interrupt B

Stacking

Thread
(main program)

Thread
(main program)

Interrupt occur
Interrupt cleared

by ISR

Exception
Return

Unstacking

Main
program

interrupted

Main
program
resumed

Time

Interrupt A
Interrupt occur

Interrupt cleared
by ISR

Exception handler B

Exception
Return

Tail-chaining

Figure 8.7
Tail chaining of interrupt service routines.

196 Chapter 8

Since processing of either interrupt requires the same stacking operation, the stacking

process continues as normal when the late arriving higher priority interrupt occurs. At the

end of the stacking process, the vector for the higher priority exception is fetched instead

of the lower priority one.

Without the late arrival optimization, a processor will have to preempt and enter the

exception entry sequence again at the beginning of the lower-priority exception handler.

This results in longer latency as well as larger stack memory usage.

8.7 EXC_RETURN

The EXC_RETURN is a special architecturally defined value for triggering and

helping exception return mechanism. This value is generated automatically when an

exception is accepted and is stored into the Link Register (LR, or R14) after stacking.

The EXC_RETURN is a 32-bit value, the upper 28 bits are all set to 1, with bit 2 and

bit 3 used to provide information for exception return mechanism, as shown in

Table 8.2.

Bit 0 of EXC_RETURN on the Cortex-M0/M0þ processor is reserved and must be 1.

Bit 2 of EXC_RETURN indicates whether the unstacking should restore registers from

the main stack (using MSP) or process stack (using Process Stack Pointer (PSP)).

Exception handler BHandler
mode

Thread
mode

Interrupt B
(high priority)

Stacking

Thread
(main program)

Thread
(main program)

Interrupt occur
Interrupt cleared

by ISR

Exception
Return

Unstacking

Main
program

interrupted

Main
program
resumed

Time

Interrupt A
(low priority)

Interrupt occur
Interrupt cleared

by ISR

Exception handler A

Exception
Return

Late arrival
(processor switch to
process interrupt B)

Figure 8.8
Late arrival optimization.

Exceptions and Interrupts 197

Bit 3 of EXC_RETURN indicates whether the processor is returning to Thread mode or

Handler mode.

The valid EXC_RETURN values for Cortex-M0 and Cortex-M0þ processors are shown in

Table 8.3.

Since the EXC_RETURN value is loaded into LR automatically at exception entry,

it is handled as a normal return address by the exception handler. If the return

address does not need to be saved onto the stack, the exception handler can trigger

the exception return and return to the interrupted program by executing “BX LR”, just like

a normal function. Alternatively, if the exception handler needs to execute function calls, it

will need to push the LR to the stack. At the end of the exception handler, the stacked

EXC_RETURN value can be load into PC directly by a POP instruction, thus trigger the

exception return sequence and return to the interrupted program.

The following diagrams (Figure 8.9 and Figure 8.10) show the situations where different

EXC_RETURN values are generated and used.

If the thread is using main stack (CONTROL register bit 1 is zero), the value of the LR

will be set to 0xFFFFFFF9 when it enters an exception, and 0xFFFFFFF1 when a nested

exception is entered, as shown in Figure 8.9.

If the thread is using process stack (CONTROL register bit 1 is set to 1), the value of LR

would be 0xFFFFFFFD when entering the first exception and 0xFFFFFFF1 for entering a

nested exception, as shown in Figure 8.10.

Table 8.2: Bit fields in the EXC_RETURN value

Bits 31:28 27:4 3 2 1 0

Descriptions EXC_RETURN
indicator

Reserved Return mode Return stack Reserved Processor
state

Value 0xF 0xFFFFFF 1 (thread) or
0 (handler)

0 (main stack)
or 1 (process stack)

0 1
(reserved)

Table 8.3: Valid EXC_RETURN values for the Cortex-M0 and

Cortex-M0þ processors

EXC_RETURN Condition

0xFFFFFFF1 Return to handler mode (nested exception case)
0xFFFFFFF9 Return to Thread mode and use the main stack for return
0xFFFFFFFD Return to Thread mode and use the process stack for return

198 Chapter 8

Interrupt #1
(Low priority)

Interrupt #2
(High priority)

Main program

Exception
return

Unstacking

Interrupt Serivce
Routine #2

Interrupt Serivce
Routine #1

StackingExecution
status

Interrupt
event #1

Thread mode Handler
mode

Handler
mode

Handler
mode Thread mode

LR = 0xFFFFFFF9 LR = 0xFFFFFFF1

Main StackMain Stack Main Stack

Handler

Thread

Exception
return

Interrupt
event #2

Figure 8.9
LR set to EXC_RETURN values at exceptions (main stack is used in Thread mode).

Interrupt #1
(Low priority)

Interrupt #2
(High priority)

Main program
Unstacking

Interrupt Serivce
Routine #2

Interrupt Serivce
Routine #1

Stacking

Interrupt
event #1

Thread mode Handler
mode

Handler
mode

Handler
mode Thread mode

LR = 0xFFFFFFFD LR = 0xFFFFFFF1

Main StackProcess Stack Process Stack

Execution
status

Handler

Thread

Exception
return

Exception
return

Figure 8.10
LR set to EXC_RETURN values at exceptions (process stack is used in Thread mode).

Exceptions and Interrupts 199

As a result of EXC_RETURN format, a normal return instruction cannot return to an

address in the range of 0xFFFFFFFX, because this will be treated as an exception return

rather than a normal one. However, since the address range 0xFXXXXXXX is reserved

and should not contain program code, it is not a problem.

8.8 NVIC Control Registers for Interrupt Control
8.8.1 Overview of NVIC Control Registers

The NVIC interrupt control registers are memory mapped. Their addresses are part of the

System Control Space (SCS), starting from 0xE000E100. Here you can find the registers

for the following:

• Enabling/disabling interrupts

• Controlling the priority level of interrupts

• Accessing to the pending status of each interrupts

For ARMv6-M architecture (including Cortex�-M0 and Cortex-M0þ processors), all these

registers can only be accessed in privileged state and with 32-bit accesses only. In C/Cþþ
programming, these registers can be accessed using pointers, but it is more common and

recommended to the standardized APIs provided in the CMSIS-CORE to handle interrupt

control. CMSIS-CORE software framework is integrated in most of the device driver

libraries for Cortex-M-based microcontroller devices. Using the standard APIs in

CMSIS-CORE makes the program code more portable.

The NVIC in Cortex-M0 and Cortex-M0þ processors supports up to 32 IRQ inputs.

However, in some devices there could be less number of interrupts and therefore of the

bits in the interrupt control registers described in this section might not be implemented.

Please note there is another group of system control registers called System Control Block

(SCB), which share part of the SCS. The SCB contains registers for low power features

and OS support. The OS-related features will be covered in Chapter 10, OS Support

Features.

8.8.2 Interrupt Enable and Clear Enable

The Interrupt Enable control register is a programmable register, which is used to control

the enable/disable of the IRQs (exception 16 and above). The width of this register

depends on how many interrupts are supported, the maximum size is 32 bit and minimum

size is 1 bit. This register is programmed via two separate addresses. To enable an

interrupt, the SETENA address is used, and to disable an interrupt, the CLRENA address

is used, as described in Table 8.4.

200 Chapter 8

Separating the set and clear operations in two different addresses has various advantages.

First, it reduces the steps needed for enabling an interrupt, thus getting small code and

shorter execution time. For example, to enable interrupt #2, we only need to program the

NVIC with one access:

*((volatile unsigned long *)(0xE000E100)) =0x4; //Enable interrupt #2

Or in assembly

LDR R0,=0xE000E100 ; Setup address in R0
MOVS R1,#0x4 ; interrupt #2
STR R1,[R0] ; write to set interrupt enable

The second advantage is that this arrangement prevents race condition between

multiple application processes that can result in losing of programmed control

information. For example, if the enable control is implemented using a simple read/

write register, a read-modify-write process is required for enabling an interrupt,

e.g., interrupt #2 in this case, and if between the read operation and write operation,

an interrupt occurred and the ISR changed another bit in the interrupt enable register,

the change done by the ISR could be overwritten when the interrupted program

resumed.

Clearing of interrupt enable can be done with similar code, only the address is different.

For example, to disable interrupt #2:

*((volatile unsigned long *)(0xE000E180)) =0x4; //Disable interrupt #2

Table 8.4: Interrupt Enable Set and Clear Register

Address Name Type Reset value Descriptions

0xE000E100 SETENA R/W 0x00000000 Set enable for interrupt 0 to 31. Write
1 to set bit to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable
status

0xE000E180 CLRENA R/W 0x00000000 Clear enable for interrupt 0 to 31. Write 1
to clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable
status

Exceptions and Interrupts 201

Or in assembly

LDR R0,=0xE000E180 ; Setup address in R0
MOVS R1,#0x4 ; interrupt #2
STR R1,[R0] ; write to clear interrupt enable

In normal application development, it is best to use NVIC control functions provided in

the CMSIS compliant device driver library to enable or disable interrupts. This gives your

application code the best software portability. CMSIS-CORE is part of the device driver

library from your microcontroller vendor and is covered in Chapter 4. To enable or disable

interrupt using CMSIS, the functions provided are:

// Enable Interrupt e IRQn value of 0 refer to Interrupt #0
void NVIC_EnableIRQ(IRQn_Type IRQn);
// Disable Interrupt e IRQn value of 0 refer to Interrupt #0
void NVIC_DisableIRQ(IRQn_Type IRQn);

8.8.3 Interrupt Pending Set and Clear Register

If an interrupt takes place but cannot be processed immediately, for example, if the

processor is serving another higher priority interrupt, the IRQ will be pended. The pending

status is held in a register and will remain valid until the current priority of the processor

is lowered so that the pending request is accepted, or if the application clears the pending

status manually.

The interrupt pending status can be accessed, or modified, through the Interrupt Set

Pending (SETPEND) and Interrupt Clear Pending (CLRPEND) register addresses. Similar

to the Interrupt Enable control register, the Interrupt Pending status register is physically

one register, but use two addresses to handle the set and clear of the bits. This allows each

bit to be modified independently, without risk of losing information due to race conditions

between two application processes. The description of the Interrupt Pending Set and Clear

Register is shown in Table 8.5.

The Interrupt Pending status register allows an interrupt to be triggered by software. If the

interrupt is already enabled, no higher priority exception handler is running, and no

interrupt masking is set, then the ISR will be carried out almost immediately. For example,

if we want to trigger interrupt #2, we can use the following code:

*((volatile unsigned long *)(0xE000E100)) =0x4; //Enable interrupt #2
*((volatile unsigned long *)(0xE000E200)) =0x4; //Pend interrupt #2

Or in assembly

MOVS R1,#0x4 ; interrupt #2
LDR R0,=0xE000E100 ; Setup address in R0

202 Chapter 8

STR R1,[R0] ; write to set interrupt enable
LDR R0,=0xE000E200 ; Setup address in R0
STR R1,[R0] ; write to set pending status

In some cases we might need to clear the pending status of an interrupt. For example,

when an interrupt generating peripheral is being reprogrammed, we can disable the

interrupt for this peripheral, reprogram its control registers, and clear the interrupt

pending status (which might be set by spurious activities in the peripheral during

reprogramming) before re-enabling the peripheral (in case unwanted IRQs might

be generated during reprogramming). For example, to clear the pending status of

interrupt 2:

*((volatile unsigned long *)(0xE000E280)) = =0x4;//Clear interrupt #2
// pending status

Or in assembly

LDR R0,=0xE000E280 ; Setup address in R0
MOVS R1,#0x4 ; interrupt #2
STR R1,[R0] ; write to clear pending status

In the CMSIS compliant device driver libraries, three functions are provided for accessing

the pending status registers:

// Set pending status of a interrupt
void NVIC_SetPendingIRQ(IRQn_Type IRQn);
// Clear pending status of a interrupt
void NVIC_ClearPendingIRQ(IRQn_Type IRQn);

Table 8.5: Interrupt Pending Set and Clear Register

Address Name Type Reset value Descriptions

0xE000E200 SETPEND R/W 0x00000000 Set pending for interrupt 0 to 31. Write 1 to
set bit to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending
status

0xE000E280 CLRPEND R/W 0x00000000 Clear pending for interrupt 0 to 31. Write 1
to clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending
status

Exceptions and Interrupts 203

// Return true if the interrupt pending status is 1
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn);

8.8.4 Interrupt Priority Level

Each external interrupt has an associated priority level register. Each of them is 2 bit wide,

occupying the two MSBs of the Interrupt Priority Level Registers. Each Interrupt Priority

Level Register occupies 1 byte (8 bits), as shown in Figure 8.11. NVIC registers in the

Cortex-M0 and Cortex-M0þ processors can only be accessed using word-size transfers, so

for each access, four Interrupt Priority Level Registers are accessed at the same time.

The unimplemented bits are read as zero. Write to those unimplemented bits are ignored

and read values of the unimplemented bits return zeros (Table 8.6).

Because each access to the Priority Level Register will access four of them in one go, if

we only want to change one of them, we need to read back the whole word, change 1 byte

and then write back the whole value. For example, if we want to set priority level of

interrupt #2 to 0�C0, we can do it by:

unsigned long temp; // a temporary variable
temp = *((volatile unsigned long *)(0xE000E400)); // Get IPR0
temp = temp & (0xFF00FFFF) j (0xC0 << 16); // Change Priority level
*((volatile unsigned long *)(0xE000E400)) = temp; // Set IPR0

Or in assembly

LDR R0,=0xE000E400 ; Setup address in R0
LDR R1,[R0] ; Get PRIORITY0
MOVS R2, #0xFF ; Byte mask
LSLS R2, R2, #16 ; Shift mask to interrupt #2’s position
BICS R1, R1, R2 ; R1 = R1 AND (NOT(0x00FF0000))
MOVS R2, #0xC0 ; New value for priority level
LSLS R2, R2, #16 ; Shift left by 16 bits
ORRS R1, R1, R2 ; Put new priority level
STR R1,[R0] ; write back value

0xE000E400 IRQ 0
0xE000E404 4
0xE000E408 8
0xE000E40C 12
0xE000E410 16
0xE000E414 20
0xE000E418 24
0xE000E41C 28

078232431Bit 6

IRQ 1
5
9

13
17
21
25
29

IRQ 2
6

10
14
18
22
26
30

IRQ 3
7

11
15
19
23
27
31

22 5103 16 14

Figure 8.11

Interrupt Priority Level Registers for each interrupt.

204 Chapter 8

Alternatively, if the mask value and new value are fixed in the application code, we

can set the mask value and new priority level values using LDR instructions to shorten

the code:

LDR R0,=0xE000E400 ; Setup address in R0
LDR R1,[R0] ; Get PRIORITY0
LDR R2,=0x00FF0000 ; Mask for interrupt #2’s priority
BICS R1, R1, R2 ; R1 = R1 AND (NOT(0x00FF0000))
LDR R2,=0x00C00000 ; New value for interrupt #2’s priority
ORRS R1, R1, R2 ; Put new priority level
STR R1,[R0] ; write back value

With CMSIS compliant device driver libraries, the interrupt priority level can be accessed

by two functions:

// Set the priority level of an interrupt or a system exception
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority);

// return the priority level of an interrupt or a system exception
uint32_t NVIC_GetPriority(IRQn_Type IRQn);

Table 8.6: Interrupt Priority Level Registers (0xE000E400e0xE000E41C)

Address Name Type Reset value Descriptions

0xE000E400 IPR0 R/W 0x00000000 Priority level for interrupt 0 to 3.
[31:30] Interrupt priority 3
[23:22] Interrupt priority 2
[15:14] Interrupt priority 1
[7:6] Interrupt priority 0

0xE000E404 IPR1 R/W 0x00000000 Priority level for interrupt 4 to 7.
[31:30] Interrupt priority 7
[23:22] Interrupt priority 6
[15:14] Interrupt priority 5
[7:6] Interrupt priority 4

0xE000E408 IPR2 R/W 0x00000000 Priority level for interrupt 8 to 11.
[31:30] Interrupt priority 11
[23:22] Interrupt priority 10
[15:14] Interrupt priority 9
[7:6] Interrupt priority 8

0xE000E40C IPR3 R/W 0x00000000 Priority level for interrupt 12 to 15.
[31:30] Interrupt priority 15
[23:22] Interrupt priority 14
[15:14] Interrupt priority 13
[7:6] Interrupt priority 12

0xE000E410 IPR4 R/W 0x00000000 Priority level for interrupt 16 to 19.
0xE000E414 IPR5 R/W 0x00000000 Priority level for interrupt 20 to 23.
0xE000E418 IPR6 R/W 0x00000000 Priority level for interrupt 24 to 27.
0xE000E41C IPR7 R/W 0x00000000 Priority level for interrupt 28 to 31.

Exceptions and Interrupts 205

Note that these two functions automatically shift the priority level values to the

implemented bits of the Priority Level Registers. Therefore when we want to set the

priority value of interrupt #2 to 0xC0, we should use:

NVIC_SetPriority(2, 0x3); // priority value 0x3 is shifted to become 0xC0

The Interrupt Priority Level Registers should be programmed before the interrupt is

enabled. Usually this is done at the beginning of the program. Changing of interrupt

priority when the interrupt is already enabled should be avoided as this is

architecturally unpredictable in the ARMv6-M architecture and is not supported in

Cortex-M0 or Cortex-M0þ processors. This is different from the ARMv7-M

Architecture (e.g., Cortex-M3/M4 Processor) which supports dynamic switching of

interrupt priority levels.

Another different between ARMv6-M Architecture and ARMv7-M Architecture is that the

interrupt priority registers in ARMv7-M can be accessed using byte or half-word transfers,

so that you can access to individual priority level setting with byte size accesses. More

details of the differences between various Cortex-M processors are covered in Chapter 22,

Section 22.5.

8.9 Exception Masking Register (PRIMASK)

In some applications, it is necessary to disable all interrupts for a short period of time for

some time critical processes. Instead of disabling all interrupts and restoring them using

the interrupt enable/disable control register, the Cortex�-M processors provide a separate

feature for this usage. One of the special registers called PRIMASK (introduced in

Chapter 4) can be used to mask all interrupts and system exceptions, apart from the NMI

and the HardFault exceptions.

The PRIMASK is a single-bit register and is set to 0 at reset. When set to 0, interrupts and

system exceptions are allowed. When set to 1, only NMI and HardFault exceptions are

allowed. Effectively, when it is set to 1, it changes the current priority level to 0 (the

highest programmable level).

There are various ways to program the PRIMASK register.

In assembly language, you can set or clear the PRIMASK register using MSR instruction.

For example, you can use the following code to set PRIMASK (disable interrupt):

MOVS R0, #1 ; New value for PRIMASK
MSR PRIMASK, R0 ; Transfer R0 value to PRIMASK

Enabling the interrupt can be done in the same way by just changing the R0 value to 0.

206 Chapter 8

Alternatively, you can use the CPS instructions to set or clear PRIMASK:

CPSIE i ; Clear PRIMASK (Enable interrupt)
CPSID i ; Set PRIMASK (Disable interrupt)

In C language, users of CMSIS compliant device drivers can use the following functions

to set and clear PRIMASK. Even if CMSIS is not used, most C compilers for ARM�

processors handle these two functions automatically as intrinsic functions:

void __enable_irq(void); // Clear PRIMASK
void __disable_irq(void); // Set PRIMASK

These two functions get compiled into the CPS instructions.

It is important to clear the PRIMASK after the time critical routine is finished. Otherwise

the processor will stop accepting new IRQ. This applies even if the __disable_irq()

function (or setting of PRIMASK) is used inside an interrupt handler. This behavior is

different from the ARM7TDMI
�
; in the ARM7TDMI processor, the I-bit in Current

Program Status Register (CPSR) can be reset (to enable interrupts) at exception return due

to restoration of the CPSR. When in the Cortex-M processors, PRIMASK and xPSR are

separated and therefore the interrupt masking is not affected by exception return.

8.10 Interrupt Inputs and Pending Behavior

The Cortex�-M processors support IRQs in form of level trigger as well as pulse input.

This feature involves a number of pending status registers associated with interrupt inputs,

including the NMI input. For each interrupt input, the pending status for each interrupt is

held in a 1-bit register which holds the interrupt request even if the IRQ signal is

de-asserted (e.g., an interrupt pulse generated from external hardware connected via the

I/O port). When the exception starts being served by the processor, the pending status is

cleared automatically by hardware.

In the case of NMI it is almost the same, apart from the fact that the NMI request is

usually served almost immediately because it is the highest priority interrupt type. In other

aspects NMI is quite similar to the IRQs: the pending status register for NMI allows

software to trigger NMI, and allows new NMI to be held in pending state if the processor

is still serving the previous NMI request.

8.10.1 Simple Interrupt Process

Most peripherals developed for ARM� processor use level trigger interrupt output. When

an interrupt event takes place, the interrupt signal connected from the peripheral to the

NVIC will be asserted. The signal will remain high until the processor clears the IRQ at

Exceptions and Interrupts 207

the peripheral during the ISR. Inside the NVIC, the pending status register of the interrupt

is set when the interrupt is detected and gets cleared as the processor accepted and started

the ISR execution (Figure 8.12).

8.10.2 Simple Pulse Interrupt Handling

Some interrupt sources might generate IRQs in form of a pulse (for at least one clock

cycle). In this case, the pending status register will hold the request until the interrupt is

being served (Figure 8.13).

For pulsed IRQs, there is no need to clear the IRQ at the peripheral.

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread

Stacking

Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set
Entering the interrupt handler cause

the pending status to be cleared

Exception
return

Unstacking

Thread

Interrupt service routine clears the
interrupt request at the peripheral

Thread

Figure 8.12
Simple case of interrupt activation and pending status behavior.

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread

Stacking

Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set

Entering the interrupt handler cause
the pending status to be cleared

Exception
return

Unstacking

Thread

Thread

Figure 8.13
Simple case of pulsed interrupt activation and pending status behavior.

208 Chapter 8

8.10.3 Canceling of Interrupt Pending Status Before the Interrupt Is Serviced

If the IRQ is not carried out immediately and is de-asserted, and the pending status is

cleared by software, then the IRQ will be ignored, and the processor will not execute the

interrupt handler (Figure 8.14). The clearing of the pending status can be carried out by

writing to the NVIC CLRPEND register. This is sometimes necessary when setting up a

peripheral, and the peripheral might have generated spurious IRQs previously.

8.10.4 Clearing of Pending Status While Peripheral Still Asserting IRQ

If the IRQ signal is still asserted by the peripheral when the software clears the pending

status, the pending status will be asserted again immediately (Figure 8.15).

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Processor operation Thread (interrupt X is not accepted due to disabled or masked by PRIMASK)

Assertion of interrupt request
cause pending status to be set

Pending status cleared by software

Thread

Interrupt request de-asserted by
the peripheral

Figure 8.14
Interrupt pending status gets cleared by software and is not taken by the processor.

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Processor operation Thread (interrupt X is not accepted due to disabled or masked by PRIMASK)

Assertion of interrupt request
cause pending status to be set

Pending status cleared by software

Thread

Pending status re-asserted

Figure 8.15
Interrupt pending status gets cleared and reasserted again.

Exceptions and Interrupts 209

8.10.5 IRQ Remains High When ISR Completed

Now let us go back to the normal interrupt processing scenarios. If the IRQ from a

peripheral is not cleared during the execution of the exception handler, the pending status

will be activated again at the exception return and will cause the exception handler to be

executed again. This might happen if the peripheral got more data to be processed (for

example, a data receiver might want to hold the IRQ high as long as data remain in its

received data FIFO) (Figure 8.16).

8.10.6 Multiple IRQ Pulses Before Entering ISR

For pulsed interrupts, if the IRQ is pulsed several times before the processor starts the ISR

(for example, the processor could be handling another IRQ), then the multiple interrupt

pulses will be treated as just one IRQ (Figure 8.17).

8.10.7 IRQ Pulse During ISR Execution

If the pulsed IRQ is triggered again during the execution of the ISR, it will be processed

as a new IRQ and will cause the ISR to be entered again after the interrupt exit

(Figure 8.18).

The second IRQ does not cause the interrupt to be serviced immediately because it is at

the same priority level as the current execution priority. Once the processor exits the

handler, then the current priority level is lowered and thus allows the pending IRQ to be

serviced.

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread

Stacking

Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set

Entering the interrupt handler cause
the pending status to be cleared

Exception
return

Interrupt handler X

Exception return while interrupt
asserted cause pending status

to get activated

Interrupt handler entered
again and clear the

pending status

Interrupt request remain high

Interrupt re-entered

Vector fetch

Figure 8.16
Interrupt request remains high at the end of ISR causes reentering of the same interrupt handler.

210 Chapter 8

8.10.8 IRQ Assertion for a Disabled Interrupt

The pending status of an interrupt can be activated even when the interrupt is disabled.

Therefore when reprogramming a peripheral and setting up its interrupt and if the previous

state of the peripheral is unknown, you might need to clear its interrupt pending status in

the NVIC before re-enabling the interrupt in the NVIC. This can be done by writing to the

Interrupt Clear Pending register in 0xE000E280 (Section 8.8.3, Interrupt Pending Set and

Clear Register).

Interrupt request X

Interrupt pending
status X

Processor mode

reldnaHreldnaH

Processor operation Interrupt Handler Y

Vector fetch

Interrupt Handler X

Multiple interrupt pulses before the
processor start processing the interrupt

Entering the interrupt handler cause
the pending status to be cleared

Exception
return

Unstacking

Thread

Thread

Exception
return

The processor cannot process interrupt X
until handler Y is completed

Tail-chain

Figure 8.17
Multiple interrupt request pulses can be treated as one request.

Interrupt request X

Interrupt pending
status X

Processor mode
Thread

Handler

Processor operation Thread

Stacking

Vector fetch

Interrupt Handler X

Assertion of interrupt
request cause pending

status to be set

New activation of the interrupt request cause the
pending status to be set again during the execution

of interrupt handler

Exception
return

Unstacking

Thread

Thread

 Vector fetch

Interrupt Handler X

Figure 8.18
Interrupt pending status can be set by new interrupt request pulse during its handler execution.

Exceptions and Interrupts 211

One of the most common cases for this is a GPIO peripheral being reprogrammed

to switch between different interrupt-triggering modes. The external input value during

the reconfiguration might change and could cause the pending status to be set

unexpectedly.

8.11 Details of Exception Entry Sequence

When an exception takes place, a number of things happen as follows:

• Stacking and update of one of the Stack Pointers (SPs)

• Vector fetch (determine starting address of ISR) and update R15 (PC)

• Registers update (LR, Internal Program Status Register (IPSR), NVIC registers)

8.11.1 Stacking

When an exception takes place, eight registers are pushed to the stack automatically.

These registers are R0eR3, R12, R14 (the Link Register), the return address/PC (address

of the next instruction, or current address if the current instruction is to be abandoned),

and the xPSR. The stack being used for stacking is the current active stack: If the

processor was in Thread mode when the exception happened, the stacking could be using

either process stack or the main stack, depending on the setting in the CONTROL

register bit 1. If CONTROL[1] was 0, the main stack would be used for the stacking, as

shown in Figure 8.19.

Thread
mode

Handler
mode

ISR execution

Thread

Stacking

Using
main
stackUsing main stack

(CONTROL[1] = 0)

Using main
stackIRQ

Stacking

Using
main
stack

Higher priority
IRQ

Nested ISR
execution

Using main
stack

Figure 8.19
Exception stacking in nested interrupt with main stack used in the Thread mode.

212 Chapter 8

If the processor was in Thread mode and CONTROL[1] was set to 1 when the exception

occurred, the stacking will be using the process stack, as shown in Figure 8.20.

For nested exceptions, the stacking always uses the main stack because the processor is

already in handler mode, which can only use the main stack.

The reason for the registers R0eR3, R12, PC, LR, and xPSR to be saved to stack is that

these are called “caller saved registers.” According to the AAPCS (ARM Architecture

Procedure Call Standard, reference 6), a C function does not have to retain the values of

these registers. In order to allow exception handlers to be implemented as a normal C

functions, these registers have to be saved and restored by hardware, so that when the

interrupt program resumes, all these registers will be the same as before the exception

occurred.

The grouping of the register contents that are pushed onto the stack during stacking is

called a “Stack Frame.” In the Cortex�-M0 and Cortex-M0þ processors, a stack frame

is always double word aligned. This ensures that the stack implementation conforms to

the AAPCS standard (reference 6). If the position of the last pushed data could be in

an address that is not double word aligned, the stacking mechanism automatically

adjusts the stacking position to the next double-word-aligned location, and sets a flag

(bit 9) in the stacked xPSR to indicate the double word stack adjustment has been

made, as shown in Figure 8.21.

During unstacking, the processor checks the flag in the stacked xPSR and adjusts the SP

accordingly.

Thread
mode

Handler
mode

ISR execution

Thread

Stacking

Using
process

stackUsing process stack
(CONTROL[1] = 1)

Using main
stackIRQ

Stacking

Using
main
stack

Higher priority
IRQ

Nested ISR
execution

Using main
stack

Figure 8.20
Exception stacking in nested interrupt with process stack used in the Thread mode.

Exceptions and Interrupts 213

The stacking of registers is carried in the following order, as shown in Figure 8.22.

When the stacking is completed, the SP will be updated, and the MSP will be selected as

the current SP (handlers always use main stack), then the exception vector will be fetched.

8.11.2 Vector Fetch and Update PC

After the stacking is done, the processor then fetches the exception vector (starting address

of the ISR) from the vector table. The vector is then updated to the PC, and instruction

fetch of the exception handler execution starts from this address.

8.11.3 Registers Update

As the exception handler starts to execute, the value of LR is updated to the corresponding

EXC_RETURN value. This value is to be used for exception return. In addition, the IPSR

is also updated to the exception number of current serving exception.

In addition, a number of NVIC registers might also get updated. This included the pending

status registers (see Section 8.8.3) for external interrupts if the exception taken is an

Old SP0x20008000
xPSR (bit 9 is 0)
Return Address

R1
R0

R3
R2

LR
R12

New SP
0x20007FDC

A stack
frame

0x20007FFC

0x20007FE0

Old SP
0x20008000

xPSR (bit 9 is 1)
Return Address

R1
R0

R3
R2

LR
R12

New SP
0x20007FDC

A stack
frame

Unused
0x20007FFC

0x20007FE0

0x20007FF8

0x20007FD8

0x20007FF4

SP was double
word aligned

SP was not double
word aligned

Figure 8.21
Stack frame and double word stack alignment.

Return
Address xPSRR0 R1 R2 R3 R12 LR

(R14)
Stacking
start

Fetch
exception
vector

Figure 8.22
Order of register stacking during exception sequence in the Cortex�-M0 and Cortex-M0þ

processors.

214 Chapter 8

interrupt, or an internal memory-mapped register called the Interrupt Control and Status

Register (see Section 9.2.3, Control registers for System exception management) if the

exception is a system exception.

8.12 Details of Exception Exit Sequence

When an exception return instruction is executed (loading of EXC_RETURN into PC by

POP or BX instruction), the exception exit sequence begins. This included the following:

• Unstacking of registers

• Fetch and execute from the restored return address

8.12.1 Unstacking of Registers

In order to restore the status of the registers, as it was before the exception is taken, the

register values which were stored onto the stack during stacking is read (POP) and

restored back to the registers. Since the stack frame can either be stored on the main stack

or the processor stack, the processor first checks the value of the EXC_RETURN being

used. If bit 2 of EXC_RETURN is 0, it starts the unstacking from the main stack. If this

bit is 1, it starts the unstacking from process stack, as shown in Figure 8.23.

After the unstacking is done, the SP needs to be adjusted. During stacking, a 4 byte space

might have been included in the stack memory so as to ensure the stack frame is double

word aligned. If this is the case, the bit 9 of the unstacked xPSR would be 1, and the value

of SP could be adjusted accordingly to remove the 4 byte padding space.

In addition, the current SP selection may be switched back to process stack if bit 2 of

EXC_RETURN was set to 1, and when bit 3 of the EXC_RETURN was set, indicating the

exception exit is returning to Thread mode.

8.12.2 Fetch and Execute From Return Address

After the exception return process is completed, the processor can then fetch instruction

from the restored return address in the PC, and resume execution of the interrupted

program. The Interrupt Program Status Register (IPSR) also get updated to match the

restored context.

8.13 Interrupt Latency

For simple cases (with assumptions described below), the interrupt latency of the Cortex�-

M0 processor is 16 cycles, and the interrupt latency for the Cortex-M0þ processor is 15

clock cycles. The interrupt latency is defined as from the processor clock cycle the

Exceptions and Interrupts 215

interrupt is asserted, to the start of the execution of the interrupt handler. This interrupt

latency assumes the following:

• The interrupt is enabled and is not masked by PRIMASK or other executing exception

handlers.

• The memory system does not have any wait state. If the memory system has wait state,

the interrupt could be delayed by wait states that occur at the last bus transfer before

xPSR

R0

R1

R2

R3

R12

LR

Return Address

xPSR

R0
R1
R2
R3
R12
LR

Return
Address

(PC)

Restore
Registers
from Stack

Frame

Unstacked xPSR[9]=0

SP = SP + 36

Adjust SP due to
previous stack frame

double word alignment

SP selection update

Unstacking
using PSP

Unstacking
using MSP

SP = SP + 32

EXC_RETURN[2] =0 EXC_RETURN[2] =1

MSP selected
(CONTROL[1] = 0)

PSP selected
(CONTROL[1] = 1)

Resume program
execution

EXC_RETURN[2] =0 EXC_RETURN[2] =1

Unstacked xPSR[9]=1

Exception Return
executed

Register
unstacking

order

SP before
unstacking

Figure 8.23
Unstacking operation at exception exit.

216 Chapter 8

interrupt processing, stacking, vector fetch, or instruction fetch at the starting of inter-

rupt handler.

The interrupt latency figure included the time required for NVIC to detect the IRQ, the

stacking of registers, vector fetch and fetching of the instructions in the ISRs.

There are some cases that can result in different interrupt latency:

• Tail chaining of interrupt: if the IRQ occurs just as another exception handler return, the

unstacking and stacking process can be skipped and thus reduces the interrupt latency.

Note: a few memory accesses cycles (e.g., vector fetch) are still required.

• Late arrival: if the IRQ occurred during the stacking process of another lower-priority

interrupt, the late arrival mechanism allows the new high priority to take place first.

This can result in lower latency for the higher-priority interrupt.

These two behaviors are features to allow interrupt latency to be reduced to minimum.

However, in some embedded application, zero jitter interrupt response is required.

Fortunately the Cortex-M0 and Cortex-M0þ processors equipped with a zero jitter feature.

On the interface of the Cortex-M0 and Cortex-M0þ processors, there is an 8 bit signal

called IRQLATENCY connected to the NVIC. This signal can be used to control the

interrupt latency behavior. If this signal is connected to 0, then the processor will start to

process the IRQ as soon as possible. If the signal is set to a specific value depending on

the timing of the memory system, then it can enable the zero jitter behavior to force the

interrupt latency to a higher number of cycles, but is guaranteed to have zero jitter. The

IRQLATENCY signal is normally controlled by configurable registers developed by

microcontroller vendors and is not visible on the microcontroller interface.

Exceptions and Interrupts 217

CHAPTER 9

System Control and Low-Power Features

9.1 Brief Introduction of System Control Registers

Inside the System Control Space (SCS) address range (0xE000E000 to 0xE000EFFF),

there are a number of control registers built-in in the Cortex�-M processors. This included

the following:

• Nested Vectored Interrupt Controller (NVIC) registers for interrupt management

(already introduced in Chapter 8)

• System Control Block (SCB)da range of registers for system control including sleep

mode features management

• System Tick timer (SysTick)da timer which can be used by the OS or can be used as a

generic timer in applications without OS. The SysTick Timer is an optional feature.

• Memory Protection Unit (MPU)da programmable unit for controlling memory access

permissions and memory attributes, this is covered in Chapter 12. The MPU feature is

an optional feature available on the Cortex-M0þ processor and not available on the

Cortex-M0 processor.

Many of the features on the Cortex-M processors are controlled by registers in this

memory space. To make software development easier, the CMSIS-Core software frame

work defined a number of data structures in the header files (used by CMSIS compliant

device drivers) which enable these registers to be accessed in C/Cþþ programming

environment easily. They are listed in Table 9.1.

There is also a number of core debug registers in the SCS address range but these registers

are not accessible by software running on the Cortex-M0/Cortex-M0þ processor and can

only be used by the debuggers only. Therefore they are not covered in this chapter.

Table 9.1: CMSIS-Core data structures for registers in System Control

Space (SCS)

CMSIS data structure symbols Descriptions

SCB System Control Block
NVIC Nested Vectored Interrupt Controller
SysTick System Tick Timer
MPU Memory Protection Unit

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00009-6

Copyright © 2015 Elsevier Inc. All rights reserved. 219

http://dx.doi.org/10.1016/B978-0-12-803277-0.00009-6

In ARMv6-M architecture, all the registers in the SCS can only be accessed in privileged

state and need to be accessed using aligned 32-bit data transfers.

9.2 Registers in the SCBs
9.2.1 List of Registers in the SCB

The SCB data structure contains the registers (Table 9.2).

9.2.2 CPU ID Base Register

The CPU ID Base Register is a read-only register containing the processor ID value

(Figure 9.1). It allows application software as well as debugger to determine the processor

core type and version.

The current release of the Cortex-M0 processor (r0p0) has CPU ID values of 0x410CC200,

and with Cortex-M0þ processor you might find value of 0x410CC600(r0p0) or 0x410CC601

(r0p1) (see Table 9.3). The variant (bit[23:20]) or revision numbers (bit[3:0]) advance for

each new release of the core. The CPU ID register can be accessed with CMSIS compliant

device drivers as “SCB->CPUID”.

Software can also use this register to determine the CPU type. Bit[7:4] of the CPU ID is

“0” for the Cortex-M0 processor, “1” for Cortex-M1 processor, “3” for Cortex-M3

processor, and “4” for Cortex-M4 processor.

Table 9.2: Registers inside the SCB data structure

Name Descriptions

CPU ID CPU Identification Base Register
ICSR Interrupt Control State Register
VTOR Vector Table Offset Register (not available in the Cortex�-M0

processor, optional in Cortex-M0þ processor)
AIRCR Application Interrupt and Reset Control Register
SCR System Control Register
CCR Configuration and Control Register
SHP[0/1] System Handler Priority Level Register (two of them)
SHCSR System Handler Control and State Register (accessible from

debugger only)

Implementer
0x410xE000ED00

04232431Bit 320 151619
Variant
0x0

Constant
0xC

Partnumber
0xC20

Revision
0x0

Figure 9.1
CPU ID Base Register.

220 Chapter 9

9.2.3 Control Registers for System Exceptions Management

Beside from external interrupts, some of the system exceptions can also have

programmable priority level and can have pending status registers. First, we look at the

priority level registers for system exceptions. On the Cortex-M0 and Cortex-M0þ
processors, there are only three OS related system exceptions that have programmable

priority levels and they are handled by the System Handler Priority Registers (SHPR)

(Figure 9.2). These included SVC, PendSV, and SysTick. Other system exceptions like

Non-Maskable interrupt (NMI) and HardFault have fixed priority levels.

The unimplemented bits are read as zero. Write to those unimplemented bits are ignored.

On the Cortex-M0 and Cortex-M0þ processors, only the SHPR2 and SHPR3 are

implemented (Table 9.4). SHPR1 is not available on these processors (it is available on the

ARMv7-M architecture, for example, the Cortex-M3 processor).

Users of CMSIS compliant device drivers can access to the priority levels of these system

exceptions using the following CMSIS-CORE functions, just like peripheral interrupts:

// Set the priority level of an interrupt or a system exception
void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority);

// return the priority level of an interrupt or a system exception
uint32_t NVIC_GetPriority(IRQn_Type IRQn);

Table 9.3: CPU ID Base Register (0xE000ED00)

Bits Field Type Reset value Descriptions

31:0 CPU ID RO 0x410CC200
(Cortex-M0 r0p0)
0x410CC600
(Cortex-M0þ r0p0)
0x410CC601
(Cortex-M0þ r0p1)

CPU ID value: used by debugger as well as
application code to determine processor type
and revision.

SVC0xE000ED1C
0xE000ED20 SysTick

078232431Bit 62230 1516 14
PendSV SHPR3

SHPR2

Figure 9.2
Priority Level Registers for programmable system exceptions.

Table 9.4: System Handler Priority Level Registers (0xE000ED1Cd0xE000ED20)

Address Name Type Reset value Descriptions

0xE000ED1C SHPR2 R/W 0x00000000 System Handler Priority Register 2
[31:30] SVC priority

0xE000ED20 SHPR3 R/W 0x00000000 System Handler Priority Register 3
[31:30] SysTick priority
[23:22] PendSV priority

System Control and Low-Power Features 221

Alternatively, it is also possible to access the SHPR2 and SHPR3 registers using the

following register names (Table 9.5).

Another SCB register useful for system exception handling is the Interrupt Control State

Register (ICSR) (Table 9.6). This register allows the NMI exception to be pended by

software, as well as accessing the pending status of PendSV and SysTick exceptions. This

register also provides information useful for the debugger such as current active exception

number, and if any exception is currently pended. Since the SysTick implementation is

Table 9.5: CMSIS register names for System Handler Priority Level Registers

Register CMSIS register name Descriptions

SHPR2 SCB -> SHP[0] System Handler Priority Register 2
SHPR3 SCB -> SHP[1] System Handler Priority Register 3

Table 9.6: Interrupt Control State Register (0xE000ED04)

Bits Field Type Reset value Descriptions

31 NMIPENDSET R/W 0 Write 1 to pend NMI, write 0 has no effect.
On reads return pending state of NMI.

30:29 Reserved e e Reserved
28 PENDSVSET R/W 0 Write 1 to set PendSV, write 0 has no effect.

On reads return the pending state of PendSV.
27 PENDSVCLR R/W 0 Write 1 to clear PendSV, write 0 has no effect.

On reads return the pending state of PendSV.
26 PENDSTSET R/W 0 Write 1 to pend SysTick, write 0 has no effect.

On reads return the pending state of SysTick.
25 PENDSTCLR R/W 0 Write 1 to clear SysTick pending, write 0 has no effect.

On reads return the pending state of SysTick.
24 Reserved e e Reserved
23 ISRPREEMPT RO e During debugging, this bit indicates that an exception

will be served in the next running cycle, unless it is
suppressed by debugger by C_MASKINTS in Debug
Control and Status Register.

22 ISRPENDING RO e During debugging, this bit indicates that an exception
is pended.

21 Reserved e e Reserved
20:12 VECTPENDING RO e Indicates the exception number of the highest priority

pending exception. If it is read as 0, it means no
exception is currently pended. (Note: ARMv6-M only
support up to 32 interrupts, so bit[20:18] must be 0)

11:9 Reserved e e Reserved
8:0 VECTACTIVE RO e Current active exception number, same as IPSR. If the

processor is not serving an exception (Thread mode),
this field read as 0. (Note: ARMv6-M only support up
to 32 interrupts, so bit[8:6] must be 0)

222 Chapter 9

optional, the SysTick exception pending set/clear bits are only available when the

SysTick option is presented. As a result, the bit 26 and 25 of this register might not be

available.

Users of CMSIS compliant device driver library can access to ICSR in C/Cþþ code using

the register symbol “SCB->ICSR”.

Some of the fields (e.g., The ISRPREEMPT and ISRPENDING fields) in the ICSR are

used by the debug system only. In most cases, application codes only use the ICSR for

system exception control or checking of system exception pending status.

9.2.4 Vector Table Offset Register

The Vector Table Offset Register (VTOR) is optional in ARMv6-M architecture. In the

Cortex-M0 processor the VTOR is not available, and the vector table is always located in

address 0x00000000. In the Cortex-M0þ processor, the VTOR is optional and is reset to

0. So by default, the vector table of the Cortex-M0þ processor is at address 0x00000000

and can be relocated to other address locations after booted up. The definition of VTOR is

shown in Table 9.7.

In C/Cþþ programming environment, the VTOR can be accessed as “SCB->VTOR.” Details

of using VTOR are covered in Section 9.4.

Architecturally, it is possible for an ARMv6-M processor design to implement only part of

the TBLOFF or even use a nonzero value for the reset value of VTOR. Software can write

1 to all bits in VTOR to see what is the maximum allowed address offset value. In the

Cortex-M0þ Processor, the VTOR implemented bit[31:8], so lowest 8 bits of VTOR are

always zero.

The Cortex-M0þ processor has a maximum of 48 exceptions (32 IRQ vectors þ 16 words

for system exception vectors), the maximum vector table size is 0xC0. By having VTOR

bit[7:0] always set to zero, it avoided the need for a hardware adder inside the processor

hardware for calculating of vector addresses.

Table 9.7: Vector Table Offset Register (0xE000ED08)

Bits Field Type Reset value Descriptions

31:7 TBLOFF R/W 0 Vector Table Offset Address bit[31:7].
Note: Cortex-M0þ processor only
implemented bit[31:8], but architecturally
allows bit[31:7] to be implemented.

6:0 Reserved e e Reserved.

System Control and Low-Power Features 223

9.2.5 Application Interrupt and Reset Control Register

The Application Interrupt and Reset Control Register (AIRCR) have several functions. It

allows an application to request for a system reset, determine the endianess of the system,

and clear all exception active status (can be done by debugger only). It can be accessed

in CMSIS compliant device drivers as “SCB->AIRCR”. The bit fields of the AIRCR are

described in Table 9.8.

The VECTKEY field is used to prevent accidental write to this register from resetting the

system or clearing of the exception status.

The ENDIANESS bit can be used by the application as well as debugger to determine the

endianess of the system. This endianess of a Cortex-M0 or Cortex-M0þ processor system

cannot be changed by software, as the setup is defined by the microcontroller vendor.

The SYSRESETREQ bit is used to request for a system reset. When a value of 1 is

written to this bit with a valid key, it causes a signal called SYSRESETREQ on the

processor to be asserted and triggers the system reset. The actual reset timing of the

system depends on how this signal is connected. More details on the usage of this bit are

cover in Section 9.3.

The VECTCLRACTIVE bit is used by the debugger to clear exception status, for

example, when the debugger trying to rerun a program without resetting the processor.

Application code running on the processor should not use this feature.

Table 9.8: Application Interrupt and Reset Control Register (0xE000ED0C)

Bits Field Type Reset value Descriptions

31:16 VECTKEY (during write
operation)

WO e Register access key. When writing to this
register, the VECTKEY field need to be set
to 0x05FA, otherwise the write operation
would be ignored.

31:16 VECTKEYSTAT (during read
operation)

RO 0xFA05 Read as 0xFA05

15 ENDIANESS RO 0 or 1 1 indicates the system is big endian.
0 indicates the system is little endian.

14:3 Reserved e e Reserved
2 SYSRESETREQ WO e Write 1 to this bit cause the external signal

SYSRESETREQ to be asserted.
1 VECTCLRACTIVE WO e Write 1 to this bit causes:

- Exception active status to be cleared
- Processor return to Thread mode
- IPSR to be cleared
This bit can only be used by debugger.

0 Reserved e e Reserved

224 Chapter 9

9.2.6 System Control Register

The System Control Register (SCR) is mainly used to control low-power features (e.g.,

sleep modes) in the Cortex-M processors. Users of CMSIS compliant device drivers can

access to the SCR using the register name “SCB->SCR”. The definitions of the bit fields in

the SCR are listed in Table 9.9.

The SLEEPDEEP defines if the normal sleep mode or the deep sleep mode should be used

when the processor goes into sleep. Please note that chip designers can add additional

system level power control registers to increase the number of supported sleep modes in

the device.

More details of the sleep modes and the other bit fields in the SCR are covered in Section

9.5 of this chapter.

9.2.7 Configuration and Control Register

The Configuration and Control Register (CCR) in the Cortex-M0 and Cortex-M0þ
processors is a read-only register. It determines the double word stack alignment behavior

and the trapping of unaligned access (see Table 9.10). On the ARMv6-M architecture,

such as the Cortex-M0/M0þ processor, these behaviors are fixed and not configurable.

This register is included to make it compatible to ARMv7-M architecture such as the

Cortex-M3 processor. On the ARMv7-M processors these two behaviors are

programmable.

Table 9.9: System Control Register (0xE000ED10)

Bits Field Type Reset value Descriptions

31:5 Reserved e e Reserved
4 SEVONPEND R/W 0 When set to 1, an event is generated for each

new pending of an interrupt. This can be used
to wakeup the processor if Wait-for-Event
(WFE) sleep is used.

3 Reserved e e Reserved
2 SLEEPDEEP R/W 0 When set to 1, deep sleep mode is selected

when sleep mode is entered. When this bit is
zero, normal sleep mode is selected when sleep
mode is entered.

1 SLEEPONEXIT R/W 0 When set to 1, enter sleep mode (Wait-for-
Interrupt (WFI)) automatically when exiting an
exception handler and returning to thread
level. When set to 0 this feature is disabled.

0 Reserved e e Reserved

System Control and Low-Power Features 225

Users of CMSIS compliant device drivers can access to the CCR using the register name

“SCB->CCR”.

The STKALIGN bit is set to 1 indicating that when exception stacking occurs, the stack

frame is always automatically aligned to double word aligned memory location.

The UNALIGN_TRP bit is set to 1 indicating that when an instruction attempt to carry out

an unaligned transfer, a fault exception will be resulted.

9.2.8 System Handler Control and State Register

Unlike ARMv7-M architecture (e.g., Cortex-M3 processor), this register is not accessible

from software running of the Cortex-M0/Cortex-M0þ processor. It is for debugger only.

The difference is due to the fact that in the Cortex-M0 and Cortex-M0þ processor, there

are no separated configurable fault exceptions as in ARMv7-M architecture, which brings

additional control bit fields for those exceptions.

The definition of the SHCSR for ARMv6-M architecture is shown in Table 9.11.

9.3 Using the Self-Reset Feature

The Cortex�-M processors provide a mechanism for trigging self-reset in software. This is

supported via the SYSRESETREQ bit in the AIRCR (Table 9.3). This could be used in

HardFault handler to reset the system when things go wrong (Note: this is not suitable during

Table 9.10: Configuration and Control Register (0xE000ED14)

Bits Field Type Reset value Descriptions

31:10 Reserved e e Reserved
9 STKALIGN RO 1 Double word exception stacking alignment

behavior is always used.
8:4 Reserved e e Reserved
3 UNALIGN_TRP RO 1 Instruction trying to carry out an unaligned

access always causes a fault exception.
2:0 Reserved e e Reserved

Table 9.11: System Handler Control and State Register (0xE000ED24)

Bits Field Type Reset value Descriptions

31:16 Reserved e e Reserved
15 SVCALLPENDED R/W 0 Write 1 to set SVCall pending status, write

0 to clear SVCall pending status.
On reads return the pending state of SVCall.

14:0 Reserved e e

226 Chapter 9

software development as this makes debugging of faults difficult). The SYSRESETREQ

feature might also be used by the debugger after a debug connection is established, after

flash programming is carried out and when user specified a target reset operation. Please note

this feature can also dependent on the chip design so it might not be available.

The SYSRESETREQ bit (bit 2) in the AIRCR generates a system reset request to the

microcontroller’s system reset control logic. Because the system reset control logic is not

part of the processor design, the exact timing of the reset is device specific (e.g., How

many clock cycles delay before the system is actually going into the reset state). There

can be a small delay from the time this bit is written to the actual reset, depending on the

design of the system reset control.

In typical microcontroller designs the SYSRESETREQ generates system reset for the

processor and most parts of the system, but should not affect the debug system of

the microcontroller. This allows the debug operations to work correctly even when the

software trigger a reset.

To use the SYSRESETREQ feature (or any access to the AIRCR), the program must be

running in privileged state. The easiest way is to use a function provided in the

CMSIS-CORE header file called “NVIC_SystemReset(void)”.

Instead of using CMSIS-CORE, you can access the AIRCR register directly:

// Use DMB/DSB to wait until all outstanding
// memory accesses are completed. Here DSB is used
// because the next instruction is CPS.
__DSB();
__disable_irq(); // Disable interrupts, optional
SCB->AIRCR = 0x05FA0004; //System reset
while(1); // Wait until reset happen

The Data Synchronization Barrier (DSB) instruction is to allow the code to be used with

other ARM� processors that have write buffers in the memory interface. In these

processors, a memory write operation might be delayed and if the system reset and

memory write happened at the same time, the memory could get corrupted. As a result, a

DSB is needed to make sure previous memory accesses are completed before executing

“__disable_irq()” (“CPSID I” instruction) and trigger the reset. If the step for disabling

interrupt is skipped, a Data Memory Barrier (DMB) instruction could be used instead.

Although this is not strictly required in the Cortex-M0 and Cortex-M0þ processors

(because there is no write buffer in these processor), the DSB/DMB is included for better

software portability.

The disabling of interrupt is optional; if an interrupt is generated when the system reset

request is set, and if the actual reset is delayed due to reset controller design, there can be

System Control and Low-Power Features 227

chances that the processor will enter the exception handler as the system reset start. In

most cases it is not an issue, but we can prevent this from happening by setting the

exception mask register PRIMASK to disable interrupts before setting the

SYSRESETREQ bit.

When writing to AIRCR, the upper 16 bits of the write value should be set to 0x05FA, a

key to prevent accidentally resetting the system.

The “while” loop after the write prevents the processor from executing more instructions

after the reset request has been issued.

The same reset request code can be written in assembly. In the following example code,

the step to setting up PRIMASK is optional:

DSB ; Data Synchronization Barrier
CPSID i ; Set PRIMASK
LDR R0,=0xE000ED0C ; AIRCR register address
LDR R1,=0x05FA0004 ; Set System reset request
STR R1,[R0] ; write back value

Loop
B Loop ; dead loop, waiting for reset

9.4 Using the Vector Table Relocation Feature

The Cortex�-M0þ processor allows the vector table to be relocated using the Vector Table

Offset Register, VTOR, see Section 9.2.4. There are a number of scenarios that relocating

the vector table is very useful:

Scenarios #1, Boot loaderdA number of microcontrollers have a boot loader or boot

firmware in a separated boot loader ROM. Before executing the application code in the

flash memory, the processor first executes a small program in the boot ROM. In such case,

the processor needs to boot up with the vector table in the boot ROM, execute boot code

and then program VTOR to use the vector table in user’s flash memory and branch to the

start-up code in the user’s flash memory (Figure 9.3).

To switch from the boot loader to the reset handler in the user’s application, the boot

loader might execute the following code:

LDR R0,=0xE000ED08 ; Set R0 to VTOR address
LDR R1,=0x00010000 ; User’s flash memory based address
STR R1, [R0] ; Define beginning of user’s flash memory

; as vector table
LDR R0,[R1] ; Load initial MSP value
MOV SP, R0 ; Set SP value (assume MSP is selected)
LDR R0,[R1, #4] ; Load reset vector
BX R0 ; Branch to reset handler in user’s flash

228 Chapter 9

Scenarios #2, Dynamic changes of exception vectorsdthe second common usage of the

VTOR is to allow an exception vector to be changed in different stages of the program

execution. In this scenario, we need to copy the whole vector table from the program

image to SRAM, and then modify the exception vector when needed. Care must be taken

to ensure that the memory space allocated for vector table is not overlapped with the

SRAM space used by the rest of the applications (e.g., stack, data variable space).

Example code to copy the vector table from 0x00000000 to 0x20000000:

// Note that the use of memory barrier instructions shown below are
// based on architecture recommendations.
// Define a macros for word access
#define HW32_REG(ADDRESS) (*((volatile unsigned long *)(ADDRESS)))
#define VTOR_NEW_ADDR 0x20000000
int i; // loop counter
// Copy original vector table to SRAM first before programming VTOR
for (i=0;i<48;i++){ // Assume maximum number of exception is 48

// Copy each vector table entry from flash to SRAM
HW32_REG((VTOR_NEW_ADDR + (i<<2))) = HW32_REG((i<<2));
}

__DMB(); // Data Memory Barrier
// to ensure write to memory is completed

SCB->VTOR = VTOR_NEW_ADDR; // Set VTOR to the new vector table
//location

__DSB(); // Data Synchronization Barrier to ensure all
// subsequence instructions use the new configuration

Scenarios #3, Loading of application image to RAMdthe third scenario where VTOR is

useful is that an application could be stored on off chip memory storage (e.g., SD card)

0x00000000

CODE
region

User
Flash

Boot ROM

System booted up with boot
ROM’s vector table and

execute boot ROM’s firmware

Processor fetch reset
vector from boot loader

and start executing
boot loader

CODE
region

User
flash

Vector table in user’s flash memory is
selected just before switching to user’s

application in flash memory

Boot loader:
1) program VTOR to
point to user flash
vector table, then
2) read the reset vector
in the user’s vector
table and
3) branch to user’s
reset handler.

0x00010000
Vector Table for user

application

Vector Table for Boot
loader

Boot ROM

VTOR = 0 at start up VTOR programmed to 0x00010000 by boot
ROM code before branch to user application

Figure 9.3
Use of VTOR by boot loader.

System Control and Low-Power Features 229

and need to be loaded into the memory system and execute. In this case, after copying the

program image to RAM or SRAM, the boot code that load the image can then set up the

VTOR, and branch to the loaded application similar to scenario #1.

9.5 Low-Power Features
9.5.1 Overview

A number of low-power features are available in the Cortex�-M0 and Cortex-M0þ
processors. In addition, microcontroller vendors usually also implement a number of low-

power modes in their Cortex-M0/M0þ-based microcontroller products. This section

focuses mostly on the low-power features provided by the Cortex-M0 and Cortex-M0þ
processors. Details for microcontroller-specific low-power features are usually available in

user manuals or application notes available from the microcontroller vendor Web sites, or

in example software packages. Some examples of using device-specific low-power features

are covered in Chapter 19.

In general, the Cortex-M processors include the following low-power features:

• Two architectural sleep modes: normal sleep and deep sleep. The sleep modes can be

further extended with vendor-specific speed control features. Within the processor, both

sleep modes behave similarly. However, the rest of the microcontroller can typically

reduce power by applying different level of device-specific power reduction methods

based on these two modes.

• Two instructions for entering sleep modes: WFE and WFI. Both can be used with

normal sleep and deep sleep modes.

• Sleep-On-Exit (from exception) feature: allowing interrupt driven applications to stay in

sleep mode as often as possible.

• Optional Wake-up Interrupt Controller (WIC): this optional feature allows the clocks of

the processor to be completely turned off during sleeps. When this feature is used with

state retention technology, found in certain modern silicon implementation processes,

the processor can enter a power-down state with extremely low-leakage power, and it is

still able to wake up and resume operations almost immediately.

• Low-power design implementation: various design techniques were used to reduce the

power consumption as much as possible. Since the gate count is also very low, the static

leakage power of the processor is tiny compared to most other 32-bit microcontrollers.

In addition, various characteristics of the Cortex-M processors also help to reduce power

consumption:

• High performance: the Cortex-M0 and Cortex-M0þ processors performance is often

several times higher than many popular 8-bit/16-bit microcontrollers. This allows the

same computational tasks to be carried out in shorter time and the microcontroller can

230 Chapter 9

stay in sleep modes for longer period of time. Alternately, the microcontroller can run at

a slower clock frequency to perform the same required processing task to reduce power.

• High-code density: By having a very efficient instruction set, the required program size

can be reduced and as a result you can use a Cortex-M0 or Cortex-M0þ-based micro-

controller with smaller flash memory to reduce power consumption and cost.

Because the processor is only a small part of a microcontroller, to get the best energy

efficiency and maximum battery life out of a microcontroller product, it is necessary to

understand not only the processor but also the rest of the microcontroller. Most

microcontroller vendors provide application notes and software libraries to make this

easier for software developers.

9.5.2 Sleep Modes

Most microcontrollers support at least one type of sleep mode to allow the power

consumption to be reduced when no processing is required. In the Cortex-M processors,

sleep mode support is included as part of the processor architecture.

The Cortex-M Processors have two sleep modes defined in the architecture:

• Normal sleep

• Deep sleep.

Chip designers can add additional control registers and additional power control capability

to further extend the number of sleep modes. The exact meaning and behaviors of these

sleep modes depend on the implementation of the microcontrollers. Microcontroller

vendors can use various power saving measures to reduce the power of the microcontroller

during active states as well as sleep. Typically, the method for reducing power during

sleep includes the following:

• stopping some or all of the clock signals

• reducing the clock frequency to some of the logic

• reducing voltage to various parts of the microcontroller

• turning off the power supply to some parts of the microcontroller

The sleep modes can be entered by three different methods:

• execution of a WFE instruction

• execution of a WFI instruction

• using the Sleep-On-Exit feature (this is covered in detail in Section 9.5.5)

When entering sleep, whether the normal sleep mode or the deep sleep mode will be used is

determined by a control bit called SLEEPDEEP. This bit is located in the System Control

Register (SCR), see Section 9.2.6 of the SCB region, which contains the control bits for the

System Control and Low-Power Features 231

low-power features of the Cortex-M Processors (see Table 9.9). Users of CMSIS compliant

device drivers can access to the SCR using the register name “SCB->SCR”.

Different sleep modes and different sleep operation types can result in various

combinations as shown in Figure 9.4.

9.5.3 Wait-for-Event and Wait-for-Interrupt

Overview

There are two instructions that can cause a Cortex-M processor to enter sleep: WFE

and WFI.

WFE:

• Enter sleep conditionally

• Suitable for idle loops or idle threads in real-time operating system

WFI:

• Enter sleep unconditionally

• Suitable for interrupt driven applications

Both instructions can be used to enter either normal sleep or deep sleep modes depending

on the value of the SLEEPDEEP bit in the SCR. The WFE can be woken up by interrupt

requests as well as events and debug requests, while WFI can be woken up by interrupt

requests or debug requests only (see Table 9.12).

Architecturally, a DSB instruction should be used before executing WFE/WFI. However,

with the simplistic nature of the pipeline in the Cortex-M0 and Cortex-M0þ processors,

omitting the memory barrier would not cause any issue. But if the software needs to be

reusable on other ARM� processors, the DSB instruction should be used.

Execution of
WFE

Execution of
WFI

Sleep-on-exit

SLEEPDEEP = 0
(normal sleep)

SLEEPDEEP = 1
(deep sleep)

Normal sleep.
Wait-for-event
(incl. interrupt)

Deep sleep.
Wait-for-event
(incl. interrupt)

Normal sleep.
Wait-for-interrupt

Normal sleep.
Wait-for-interrupt

Deep sleep.
Wait-for-interrupt

Deep sleep.
Wait-for-interrupt

Figure 9.4
Combination of sleep modes and sleep entering methods.

232 Chapter 9

Wait-for-Event

When the WFE instruction is used to enter sleep, it can be woken up by interrupts as well

as a number of different events including:

• New pending interrupts (only when SEVONPEND bit in SCR is set)

• External event requests

• Debug events

Inside a Cortex-M processor, there is a single-bit event register. When the processor is

running, this register can be set to one when an event occurs and this information is stored

until the processor executes a WFE instruction. The event register can be set by any of the

following events:

• An interrupt request arrives and need servicing

• Exception entrance and exception exit

• New pending interrupts (only when SEVONPEND bit in SCR is set), even if the in-

terrupts are disabled

• An external event signal from on-chip hardware (device specific)

• Execution of an SEV (Send Event) instruction

• Debug event

When multiple events occur while the processor is awake, they will be treated as just one

event because the event register is only one bit.

This event register is cleared when the stored event is used to wake up the processor from

a WFE instruction. If the event register was set when the WFE instruction is executed,

the event register will be cleared and the WFE will be completed immediately without

entering sleep. If the event register was cleared when executing WFE, the processor will

enter sleep, and the next event will wake up the processor, with the event register

remaining cleared. The operation is summarized in Figure 9.5.

Table 9.12: WFE and WFI wake-up characteristics

Sleep type Wake-up descriptions

WFE Wake up when an interrupt occurs and requires processing, or
Wake up when an event occurs (including debug requests), or
The processor does not enter sleep due to an event occurred
before the WFE instruction executed, or
Termination of sleep mode by reset.

WFI Wake up when an interrupt occurs and requires processing, or
Wake up when there is a debug request, or
Termination of sleep mode by reset.

System Control and Low-Power Features 233

The WFE is useful for reducing power in polling loops. For example, a peripheral with

event generation function can work with WFE so that the processor wakes up upon

completion of peripheral’s task, as shown in Figure 9.6.

Since the processor can be woken up by different events, the processor must still check the

peripheral status after being woken up to see if the task has completed.

If the SEVONPEND bit in the SCR is set, any new pending interrupts, generate an event

and wake up the processor. If an interrupt is already in pending state when WFE is

entered, a new interrupt request for the same interrupt does not cause the event to be

generated and the processor will not be woken.

Wait-for-Interrupt

The WFI instruction can be woken up by interrupt requests that are a higher priority than

the current priority level, or by debug requests (see Figure 9.7).

WFE
executed

Event latch is
set?

Yes

Clear event latch and
continue to next

instruction

No

SLEEPDEEP
bit is set?

Yes

No

Deep sleep,
Wait-for-Event

Normal sleep,
Wait-for-Event

Exit sleep mode and
continue to next

instruction

Event or
Interrupt
occurred

Event or
Interrupt
occurred

Figure 9.5
WFE operation.

A peripheral is
programmed to carry

out a task

Read peripheral
status

Task completed?

Yes
No

Without WFE, a polling loop
consume power and result in lower

 energy efficiency

With WFE, power consumption by
the polling loop is greatly reduced

A peripheral is programmed
to carry out a task, with event

output when the task is
completed

Read peripheral
status

Task completed?

Yes
No

WFE

Figure 9.6
WFE usage.

234 Chapter 9

There is one special case of WFI operation: During WFI sleep, if an interrupt is blocked

by PRIMASK, but otherwise has a higher priority than the current exception priority level,

it can still wake up the processor, but the interrupt handler will not be executed until the

PRIMASK is cleared.

This characteristic allows some parts of the microcontroller to be turned off by software

(e.g., peripheral bus clock), and the software can turn it back on after waking up before

executing the interrupt service routine. This is cover in the next section (Section 9.5.4).

9.5.4 Wake-up Conditions

When a WFI instruction is executed or when the processor enters sleep mode using the

Sleep-On-Exit feature, the processor stops instruction execution and wakes up when an

(higher priority) interrupt request arrives and needs to be serviced. If the processor enters

sleep in an exception handler, and if the newly arrived interrupt request has the same or

lower priority as the current exception, the processor will not wake up and will remain in

pending state. The processor can also be woken up by a halt request from debugger, or by

a reset.

When the WFE instruction is executed, the action of the processor depends on the current

state of an event latch inside the processor:

• If the event latch was set, the event latch will be cleared and the WFE completes

without entering sleep.

• If the event latch was cleared, the processor will enter sleep mode until an event takes

place.

An event could be any of the following:

• an interrupt request arriving which needs servicing

• entering or leaving an exception handler

WFI
executed

SLEEPDEEP
bit is set?

Yes

No

Deep sleep,
Wait-for-Interrupt

Normal sleep,
Wait-for-Interrupt

Exit sleep mode and
continue to next

instruction, or halt

Interrupt or
halt debug
occurred

Interrupt or
halt debug
occurred

Figure 9.7
WFI operation.

System Control and Low-Power Features 235

• a halt debug request

• an external event signal from on-chip hardware (device specific)

• if the SEVONPEND (Send-Event-On-Pend) feature is enabled and a new pending inter-

rupt occurs

• execution of the SEV (Send Event) instruction

The event latch inside the processor can hold an event which happened in the past, so an old

event can cause the processor to wake up from a WFE instruction. Therefore usually the WFE

is used in an idle loop or polling loop as it might or might not cause entering of sleep mode.

WFE can also be woken up by interrupt requests if they have a higher priority than the

current interrupt’s priority level, or when there is a new pending interrupt request and the

SEVONPEND bit (Send event on pending) is set. The SEVONPEND feature can wake up

the processor from WFE sleep even if the priority level of the newly pended interrupt is at

the same or lower level than the current interrupt. However, in this case, the processor will

not execute the interrupt handler and will resume program execution from the instruction

following the WFE.

The wake-up conditions of the WFE and WFI instructions are illustrated in Table 9.13.

Table 9.13: WFI and WFE sleep wake-up behavior

WFI behavior Wake up ISR execution

PRIMASK cleared
IRQ priority > current level
IRQ priority <¼ current level

Y
N

Y
N

PRIMASK set (interrupt disabled)
IRQ priority > current level
IRQ priority <¼ current level

Y
N

N
N

WFE behavior Wake up ISR execution

PRIMASK cleared, SEVONPEND cleared
IRQ priority > current level
IRQ priority <¼ current level

Y
N

Y
N

PRIMASK cleared, SEVONPEND set to 1
IRQ priority > current level
IRQ priority <¼ current level, or IRQ
disabled(SETENA ¼ 0)

Y
Y

Y
N

PRIMASK set (interrupt disabled),
SEVONPEND cleared
IRQ priority > current level
IRQ priority <¼ current level

N
N

N
N

PRIMASK set (interrupt disabled),
SEVONPEND set to 1
IRQ priority > current level
IRQ priority <¼ current level

Y
Y

N
N

236 Chapter 9

The wake-up behavior of Sleep-On-Exit is same as WFI sleep.

Some of you might wonder why when PRIMASK is set, it allows the processor to wake

up but without executing the interrupt service routine. This arrangement allows the

processor to execute system management tasks (for example, restore clock to peripherals)

before execute the interrupt service routine, as shown in Figure 9.8.

In summary, the similarities and differences between WFI and WFE are shown in Table 9.14.

9.5.5 Sleep-On-Exit Feature

One of the low-power features of the Cortex-M processors is called Sleep-On-Exit. When

this feature is enabled, the processor automatically enters a WFI sleep mode when exiting

an exception handler and if no other exception is waiting to be processed.

This feature is useful for applications where the processor activities are interrupt-driven.

For example, the software flow could be like the flow chart in Figure 9.9.

processing

Set PRIMASK

WFICPS

Program system
controller to

switch off certain
clock signals

Enter sleep
routine

Enter sleep

IRQ
Program system

controller to
restore clock

signals

CPS

Clear PRIMASK

ISR execute

Sleep

Figure 9.8
Use of PRIMASK with sleep.

Table 9.14: WFI and WFE comparisons

WFI and WFE

Similarities • Wake up on interrupt requests that are enabled and with higher
priority than current level

• Can be woken up by debug events
• Can be used to produce normal sleep or deep sleep

Differences • Execution of WFE does not enter sleep if the event register was
set to 1, while execution of WFI always results in sleep.

• New pending of a disabled interrupt can wake up the processor
from WFE sleep if SEVONPEND is set.

• WFE can be woken up by an external event signal.
• WFI can be woken up by an enabled interrupt request when
PRIMASK is set.

System Control and Low-Power Features 237

The resulting activities of the processor are illustrated in Figure 9.10.

The Sleep-On-Exit feature reduces the active cycles of the processor and also the energy

consumed by the stacking and unstacking of processes between the interrupts. Each time

the processor finishes an interrupt service routine and enters sleep, it does not have to

Start

Initialization

Enable
Sleep-On-Exit

feature

Execute WFI

Loop

First time the
processor enter

sleep

The processor
enter sleep

automatically
after each
interrupt

processing

ISR1 (Interrupt
Service Routine)

ISR2 (Interrupt
Service Routine)

ISR3 (Interrupt
Service Routine)

Sleep

Figure 9.9
Sleep-On-Exit program flow.

Power

Power up

Time

Enter sleep

IRQ

IRQ exit
(Enter sleep

automatically)

Initialization

Sleep Sleep

IRQ handler

Thread

IRQ

IRQ exit
(Enter sleep

automatically)

IRQ handler

Sleep

Sleep-On-Exit
is enabled

Execute WFI
Stacking No

unstacking

Figure 9.10
Sleep-On-Exit operation.

238 Chapter 9

carry out the unstacking process because it knows that these registers will have to be

stacked again when another interrupt request arrives next time.

The Sleep-On-Exit feature is controlled by the SLEEPONEXIT bit in the SCR. Setting

this bit in an interrupt driven application is usually carried out as the last step of the

initialization process. Otherwise the processor might enter sleep during the initialization

of the processor, if an interrupt occurs during this stage.

9.5.6 Wake-up Interrupt Controller

Designers of microcontrollers using Cortex-M processors can optionally include a WIC

in their design. The WIC is a small interrupt detection logic that mirrors the interrupt

masking function in the NVIC. The WIC allows the power consumption of the processor

to be further reduced by stopping all the clock signals to the processor or even putting the

processor into a state retention state. When an interrupt is detected, the WIC sends a

request to a power management unit (PMU) inside the microcontroller to restore power

and clock signals to the processor, and then the processor can wake up, resume operation

and process the interrupt request.

An important advantage of the WIC feature is that it is transparent to the software. The

WIC itself does not contain any programmable registers, it has an interface that couples to

the NVIC of the Cortex-M0/M0þ processor and the interrupt mask information is

transferred from the processor to the WIC automatically during sleep. In some cases

(depending on the design of the microcontroller device) the WIC is activated only in deep

sleep mode (SLEEPDEEP bit is set), and you might also need to program additional

control registers in a device-specific PMU in the microcontroller to enable the WIC mode

deep sleep.

The WIC enables the Cortex-M processors to reduce standby power consumption using a

technology called State Retention Power Gating (SRPG). With SRPG, the leakage power

of a sequential digital system during sleep can be minimized by powering off most parts

of the logic, leaving a small memory element in each flip-flop to retain the current state.

This is shown in Figure 9.11.

When working with the WIC, a Cortex-M processor implemented with SRPG technology

can be powered down during deep sleep to minimize the leakage current of the

microcontroller. During WIC mode deep sleep, the interrupt detection operation is handed

over to the WIC. Since the state of the processor is retained in the flip-flops, the processor

can wake up and resume operations almost immediately. The operation is illustrated in

Figure 9.12. In practice, the use of SRPG power down can increase the interrupt latency

slightly, depending on how long it takes for the voltage on the processor to be stabilized

after the power-up sequence.

System Control and Low-Power Features 239

Not all Cortex-M processor based microcontrollers support the WIC feature. The

reduction of power using the WIC depends on the application and the semiconductor

process being used.

When the WIC mode deep sleep is used, the SysTick timer is stopped and it would be

necessary to set up a separate peripheral timer to wake up the processor periodically if

your application requires an embedded OS and need the OS to operate continuously. Also,

when developing simple applications without any embedded OS and if WIC mode deep

D Q

D type
flip-flops

logicInputs logic

Clock

Outputs

Power
gating

Vcc

Ground

Power
control

from PMU

Clock
buffers

Power to most parts of the system
is turned off during sleep

Power to state retention
elements is always on

State
retention
element

Figure 9.11
SRPG technology allows most parts of a digital system to be powered down.

WIC Interrupt masks

Cortex-M0

IRQ

NMI

IRQ

NMI

1. Program enable WIC
mode deep sleep

2. Deep sleep mode is
entered (e.g. WFE/WFI)

3. Interrupt mask copied to
WIC by hardware interface

PMU

4. Power Management Unit
put the processor in state

retention power down state

6. An interrupt
occurred

5. Processor in power
down state

7. WIC alert the PMU and
power restored to the

processor

Wake-up

9. Processor wake up
and process the interrupt
request

status

8. WIC hold the interrupt
request until processor is
ready

controls

Figure 9.12
Illustration of WIC mode deep sleep operations.

240 Chapter 9

sleep is required, and if a periodic interrupt is needed, then it would be necessary to use a

peripheral timer for periodic interrupt generation instead of the SysTick timer.

Please note that in the Cortex-M0 and Cortex-M0þ processors, the WIC can be used in

both sleep and deep sleep modes. In the Cortex-M3 and Cortex-M4 processors, the WIC

feature is only available in deep sleep.

System Control and Low-Power Features 241

CHAPTER 10

Operating System Support Features
10.1 Overview of OS Support Features

The Cortex�-M0 and Cortex-M0þ processors include a number of features targeting at

embedded Operating System (OS) support. These include:

• A System Tick (SysTick) timer, which is, a 24-bit down counter that can be used to

generate a SysTick exception at regular intervals. The SysTick timer can also be used as

a generic timer peripheral if not using an OS.

• Two stack pointers: The Main Stack Pointer (MSP) and a second stack pointer called

the Process Stack Pointer (PSP). This arrangement allows the stack of the applications

and the OS kernel to be separated.

• A SVCall exception and SVC instruction. The SVC is used by applications to access

OS services via the exception mechanism.

• A PendSV exception. The PendSV can be used by an OS, device drivers, or the applica-

tion to generate OS service requests that can be deferred.

This chapter describes each of these features and provides some example usages. The OS

support features in the Cortex-M processor family are consistent across the whole product

range. So the feature describes here can also be found in other Cortex-M processors. This

makes porting of OS across the Cortex-M processor family very easy.

10.2 Introduction to Operating Systems in Embedded World

Before the details of the hardware features are introduced, it worth covering some

background of Operating Systems used in microcontrollers.

When the term “Operating System” is mentioned, most people will first think of desktop

operating systems like Windows and Linux or OS used by tablets and smart phones. These

operating systems require a powerful processor, a large amount of memory, and other

hardware features in order to operate. For embedded devices, the type of OS being used is

very different. Most embedded operating systems can run on very low-power

microcontrollers with a small amount of memory (relative to desktop computers) and run

at a much lower clock frequency. For example, the Keil� RTX which will be covered in

later part of this book (Chapter 20, Programming with Embedded OS) requires around

from 4 KB of program code space and around 0.5 KB of SRAM. Many of these embedded

systems do not even have a display or keyboard, and the embedded OS does not require

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00010-2

Copyright © 2015 Elsevier Inc. All rights reserved. 243

http://dx.doi.org/10.1016/B978-0-12-803277-0.00010-2

those hardware. However, it is straight forward to add some display interfaces and user

interface devices as part of the application.

In the world of embedded applications, many OS are used for managing multiple tasks. In

this situation, the OS might divide the processor execution time into a number of time slots

and execute different tasks in each slot. At the end of each time slot, the OS task scheduler is

executed and then the execution might be switched to a different task at the beginning of the

next time slot. The switching of tasks is commonly known as context switching (Figure 10.1).

The length of each time slot depends on the hardware as well as the OS design. Some

embedded OS switch tasks several hundred times per second.

Some embedded OS also define priority levels for each task so that a high-priority task

will be executed before lower priority tasks. If the task has a higher priority than others,

an OS might execute the task for a number of time slots continuously until the task

reaches an idle state. Note that the priority definition in an OS is completely separated

from the exception priority (i.e., the interrupt priority level). The definition of task priority

is based on the OS design and varies between different OS.

Besides from supporting multitasking, an embedded OS might also provide the functions

of resource management, memory management, power management, and an Application

Programming Interface (API) for accessing peripherals, hardware, and communication

channels (Figure 10.2).

Use of an embedded OS is not always beneficial. The use of an embedded OS requires

extra program memory for the OS kernel and increases overhead in execution cycles. Most

simple applications do not require an embedded OS. However, in complex embedded

applications which demand execution of tasks in parallel, using an OS can make the

software design much easier and reduce the chance of a system design error.

Some of the embedded OS are called Real-Time OS (or RTOS) because they provide

deterministic behaviors. For example, a certain hardware event can trigger a task to be

executed within a certain time.

Task A Task B Task C Task AStart up and
initiailization

Time

Context switching

Figure 10.1
Multitasking and context switching.

244 Chapter 10

A number of embedded OS are already available for the Cortex�-M0 and Cortex-M0þ
processors. For example, the Keil Microcontroller Development Kit (MDK) provides an

RTX kernel which is easy to use and free of charge (the RTX source code is open access

with a BSD open source license). In addition, FreeRTOS (www.freertos.org), embOS from

SEGGER (www.segger.com), mC/OS-II and mC/OS-III from Micrimm (micrium.com), and

ThreadX from Express Logic (www.rtos.com) are some of the popular OS which are

supported on the Cortex-M0 and Cortex-M0þ processors.

Since the Cortex-M processors do not support virtual memory feature (there is no Memory

Management Unit (MMU)), they cannot run feature rich OS like Android or Linux.

However, there is a special version of Linux called mCLinux which targeted at embedded

devices without an MMU, and therefore mCLinux could be used on a Cortex-M processor,

including Cortex-M0 and Cortex-M0þ Processors. However, like all Linux-based systems,

the mCLinux requires several megabytes of memory space and therefore not suitable for

most microcontroller devices.

10.3 The SysTick Timer

In order to allow an OS to carry out periodical context switching to support multi-

tasking, the program execution must be interrupted by a hardware device like a timer.

When the timer interrupt is triggered, an exception handler that handles OS task

scheduling is executed. The handler might also carry out other OS maintenance tasks.

HardwareProcessor

Embedded OS

Task A Task B Task C

Device Drivers

Peripherals

Embedded OS handles
task scheduling

Embedded OS kernel
access to SysTick and

other hardware features
which are targeted for OS

support

OS manages shared
hardware resources and

power management

Tasks access OS
features via API

Non-shared hardware
resources can be
accessed by an

application task directly via
a device driver

Figure 10.2
Example roles of an embedded OS.

Operating System Support Features 245

http://www.freertos.org
http://www.segger.com
http://micrium.com
http://www.rtos.com

For the Cortex�-M processors, a simple timer called SysTick is included inside the

processor to perform the function of generating this periodic interrupt request.

The SysTick has a 24-bit down counter. It reloads automatically after reaching zero and

the reload value is programmable. When reaching zero, the timer can generate a SysTick

exception (exception number 15). This exception event triggers the execution of SysTick

exception handler, which is a part of the OS software.

For systems that does not required an OS, the SysTick timer can be used for other

purposes like a generic timer peripheral for time keeping, timing measurement, or as a

interrupt source for tasks that need to be executed periodically. The SysTick exception

generation is programmable. If the exception generation is disabled, the SysTick timer can

still be used with polling method, for example, by checking the current value of the

counter or polling of a counter flag.

10.3.1 SysTick Registers

The SysTick counter is controlled by four registers (Figure 10.3) located in the System

Control Space (SCS) memory region, as listed in Table 10.1. For users of CMSIS

compliant device driver libraries, the SysTick registers can be accessed by the register

definitions included in CMSIS-CORE.

0xE000E010

16

0

SysTick Control and Status Register

23

Reload value SysTick Reload Value Register0xE000E014

Current Value SysTick Current Value Register0xE000E018

TENMS SysTick Calibration Value Register0xE000E01C

31 30

Enable
TickInt
Clk Source

012

Count
Flag

Skew

NoRef

023

023

Figure 10.3
The SysTick registers.

246 Chapter 10

Table 10.1: SysTick register names in CMSIS

Register CMSIS Name Details Address

SysTick Control and Status
Register

SysTick->CTRL Table 10.2 0xE000E010

SysTick Reload Value Register SysTick->LOAD Table 10.3 0xE000E014
SysTick Current Value Register SysTick->VAL Table 10.4 0xE000E018
SysTick Calibration Value
Register

SysTick->CALIB Table 10.5 0xE000E01C

Table 10.2: SysTick control and status register (0xE000E010)

EBits Field Type Reset value Descriptions

31:17 Reserved - - Reserved
16 COUNTFLAG RO 0 Set to 1 when the SysTick timer reaches zero. Clear to

0 by reading of this register.
15:3 Reserved - - Reserved
2 CLKSOURCE R/W 0/1 Value of 1 indicates that the core clock is used for the

SysTick timer. Otherwise a reference clock frequency
(depending on MCU design) would be used.

1 TICKINT R/W 0 SysTick interrupt enable. When this bit is set, the
SysTick exception is generated when the SysTick timer
count down to 0.

0 ENABLE R/W 0 When set to 1 the SysTick timer is enabled. Otherwise
the counting is disabled.

Table 10.3: SysTick reload value register (0xE000E014)

Bits Field Type Reset value Descriptions

31:24 Reserved - - Reserved
23:0 RELOAD R/W Undefined Specify the reload value of the SysTick timer.

Table 10.4: SysTick current value register (0xE000E018)

Bits Field Type Reset value Descriptions

31:24 Reserved - - Reserved
23:0 CURRENT R/W Undefined On read returns the current value of the SysTick timer. Write

to this register with any value to clear the register and the
COUNTFLAG to 0. (This does not cause SysTick exception to
generate).

Operating System Support Features 247

10.3.2 Setting up SysTick

From architectural point of view the reload value and current values of the SysTick timer

are undefined at reset, the SysTick setup code needs to be in a certain sequence

(Figure 10.4) to prevent unexpected results.

For users of CMSIS compliant device driver libraries, a function called

SysTick_Config(uint32_t ticks) is available that enables SysTick exception to occur

regularly. For example:

SysTick_Config(1000); // setup SysTick exception for every 1000 CPU cycles.

Alternatively you can also program the SysTick by accessing the SysTick registers

directly:

SysTick->CTRL = 0; // Disable SysTick
SysTick->LOAD = 999; // Count down from 999 to 0
SysTick->VAL = 0; // Clear current value to 0
SysTick->CTRL = 0x7; // Enable SysTick enable SysTick

// exception and use processor clock

The SysTick timer can be used with polling method or by interrupt. For programs that use

a polling method, they can read the SysTick Control and Status Registers to detect the

COUNTFLAG (bit 16). If the flag is set, the SysTick counter has counted down to 0.

Table 10.5: SysTick calibration value register (0xE000E01C)

Bits Field Type Reset value Descriptions

31 NOREF RO - If it is read as 1, it indicates SysTick always uses core clock for
counting as no external reference clock is available. If it is 0,
then an external reference clock is available and can be used.
The value is MCU design dependent.

30 SKEW RO - If set to 1, the TENMS bit field is not accurate. The value is
MCU design dependent.

29:24 Reserved - - Reserved
23:0 TENMS RO - Ten millisecond calibration value. The value is MCU design

dependent. If this read as zero, it means calibration value is
not available.

Disable SysTick
(Optional)

Program Reload
value register

Clear Current
value register Enable SysTickStart Done

Figure 10.4
Setup sequence for the SysTick Timer.

248 Chapter 10

For example, if we want to toggle a LED connected to an output port every 100 CPU

cycles, we can develop a simple application that uses the SysTick timer with a polling

loop, as shown in Figure 10.5. The polling loop reads the SysTick Control and Status

Register and toggle the LED when 1 is detected in the counter flag. Since the flag get

cleared automatically when the SysTick Control and Status Register is read, there is no

need to clear the counter flag.

You might wonder why the value of 99 is written into the Reload value register, and

not 100. This is because the counter counts from 99 down to 0. To obtain a periodic

counter reload, or exception, from the SysTick timer, the reload value should be

programmed to the interval value minus 1.

The SysTick Calibrate Value Register can be used to provide information for calculating the

desired reload value for the SysTick. If a timing reference is available on the microcontroller,

the TENMS field in the register may provide the tick count for 10 ms.

Start

Initialize I/O ports

Disable SysTick

Set SysTick Reload
value to 99

Write to Current
value to clear it

Read SysTick
Control & Status

Register

Count Flag = 1

Toggle LED

Yes

No

Enable SysTick

Figure 10.5
A simple example of using SysTick with polling.

Operating System Support Features 249

However, timing reference might not be available in some of the microcontrollers, you

might find the scenarios describe in Table 10.6 on the microcontroller you use.

Users of CMSIS compliant device driver libraries can also use a variable called

SystemCoreClock (for CMSIS version 1.3 and after) or SystemFrequency (for CMSIS

version 1.0 to version 1.2) to determine the processor clock speed for reload value

calculation. This software variable can be linked to clock control functions in the

device driver libraries to provide the actual processor clock frequency being used.

Please note that this variable might not have been initialized at the beginning of the

“main()” program. To update this value to reflect current clock frequency setup, the

“SystemCoreClockUpdate()” function should be used.

10.3.3 Using SysTick Timer for Timing Measurement

If the SysTick timer is not used by the application code or by the OS, it can be used as a

simple solution for measuring number of clock cycles required for a processing task. For

examples, the following setup code can be used to carry out timing measurement if the

number of clock cycle is less than 16.7 million cycles:

unsigned int START_TIME, STOP_TIME, DURATION;
SysTick->CTRL = 0; // Disable SysTick
SysTick->LOAD = 0xFFFFFF; // Count down from maximum value
SysTick->VAL = 0; // Clear current value to 0
SysTick->CTRL = 0x5; // Enable SysTick, and use processor clock
while (SysTick->VAL==0); // Wait until SysTick reloaded
START_TIME = SysTick->VAL; // Read start time value
processing(); // Processing function being measured
STOP_TIME = SysTick->VAL; // Read stop time value
SysTick->CTRL = 0; // Disable SysTick
if ((SysTick->CTRL & 0x10000)==0) // if no overflow

DURATION = START_TIME e STOP_TIME; // Calculate total cycles
else

printf (“Timer overflowed\\n”);

Table 10.6: Scenarios where SysTick calibration value register showing timing

reference is not available/not accurate

Scenarios of the SysTick

Calibration Value Explanations

NOREF bit is set to 1 There is no separate reference clock, and SysTick can
only run on the processor clock. In this case the
CLKSOURCE (bit 2 of SysTick->CTRL) is fixed to 1 so
only the processor clock can be used.

TENMS is set to 0 Calibration value information is not available.
SKEW bit is set to 1 Calibration value information is not accurate.

250 Chapter 10

Since the SysTick is a down counter, the value of START_TIME is larger than the value

of STOP_TIME. The above example code assumes that the SysTick does not overflow

during the execution of the processing task. If the duration is more than 16.7 million

cycles (224 ¼ 16,777,216), a SysTick interrupt handler has to be used to count the number

of times the timer overflowed.

10.3.4 Using SysTick Timer in Single Shot Mode

Apart from generating regular interrupts and timing measurement, the SysTick timer can

also be used for producing short delays in a single shot mode configuration. For example,

in the “main()” program, the following code can be used:

// Program SysTick timer to generate an interrupt after 0xFFFFFF cycles.
SysTick->CTRL = 0; // Disable SysTick
SysTick->LOAD = 0xFFFFFF; // Delay value
SysTick->VAL = 0x0;
SysTick->CTRL = 0x7; // Enable SysTick with exception generation

// and use core clock as source
__WFI(); // Enter sleep

Inside the SysTick exception handler, we need to disable the SysTick timer to prevent

further SysTick exception being triggered. And if the delay value is short, we should also

clear the SysTick exception pending status in case the next SysTick exception has already

been triggered.

// SysTick handler to disable SysTick
void SysTick_Handler(void)
{

// Disable SysTick
SysTick->CTRL = 0;
// Clear SysTick pending status in case it has already been triggered
SCB->ICSR = SCB->ICSR j (1<<25); // Set PENDSTCLR

return;
}

Please note that the delay from the time SysTick is enabled to the time SysTick exception

handler started to execute include a delay called interrupt latency (see Section 8.13).

If a SysTick is used to create a relatively short delay, the interrupt latency should take into

account when setting the SysTick reload value.

Operating System Support Features 251

10.4 Process Stack and PSP

The Cortex�-M0 and Cortex-M0þ processors (also applicable to Cortex-M3/M4/M7) have

two Stack Pointers (SPs):

• the MSPduse at start-up and in exception handlers, including OS operations.

• the PSPdtypically use by application tasks in a multitasking system

Both of them are 32-bit registers and can be referenced as R13, but only one is used at

one time, depending on the value in the CONTROL special register and the current mode

(Handler or Thread). The MSP is the default SP and initialized at reset by loading the

value from the first word of the memory. For simple applications, we can use MSP all the

time. In this case, we only have one stack region.

For system with an embedded OS, or in systems that required high reliability and

therefore require separation of stacks for different parts of the software, we can define

multiple stack regions (Figure 10.6): one for the OS kernel and exceptions and the others

for different tasks.

Overall, the reasons for separating the SPs and use PSP for application tasks/threads

included thefollowing:

• To enable easier context switching,

• Enhance reliability (in this arrangement stack corruption in an application task is less

likely to affect stack use by OS kernel),

Stack for
OS kernel and

exception handlers

Stack for kernel,
exception handlers

Task A Stack for Task A

Task B Stack for Task B

Task C Stack for Task C

RAM

Memory
Address

Data and heap
memory

Figure 10.6
Separate memory ranges for OS and application tasks.

252 Chapter 10

• To reduce the overall stack size required (stack regions for application tasks do not need

to support the stack usage by exception handlers).

During context switching, the SP for the exiting application task in the PSP will have to

be saved and the PSP will then change to the SP location for the next task.

Very often the OS kernel code requires a stack to operate, and the context switching

requires switching of SP. As a result, having two SPs and separating the kernel stack from

others makes it easier for OS operations, because it avoids SP updates from affecting OS

kernel data accesses.

The separation of stack memory for different tasks and OS kernel reduces the chance of a

stack error. Although a rogue task can corrupt data in the RAM (e.g., stack overflow), an

embedded OS can check the SP value during context switching to detect stack errors. An

OS can also include MPU support to limit stack usage of each task. As a result it can help

to improve the reliability of an embedded system.

In a system with an embedded OS, the OS kernel has to keep track of the SP values for

each task during context switching, and switch over the PSP value to allow each task to

have their own stack, as shown in Figure 10.7.

As covered in Chapter 4, the selection of the pointer is determined by the current mode of

the Cortex-M processor and the value of the CONTROL register. When the processor

OS
kernel,

interrupts

Task A

Task B

Task C

RAM

Memory
Address

Task A Task B Task C Task AStart up and
initiailization Task B

Time

Context switching

MSP
initialized

Task A SP
initialized Task A

SP saved
Task A SP
restored

Task B SP
initialized Task B SP

saved

Task C SP
initialized

Stack grow

Stack for OS
kernel &

exceptions
(MSP)

Stack for
Task A
(PSP)

Stack for
Task B
(PSP)

Stack for
Task C
(PSP)

PSP switching by
context switching code

Task C SP
saved

Task A
SP saved

Task B SP
restored

Task B SP
saved

Switch to
Task B SP

Switch to
Task C SP

Figure 10.7
MSP and PSP activities with simple OS running three tasks.

Operating System Support Features 253

comes out of reset, it is in thread mode, the CONTROL register’s value is 0, and the MSP

is selected as the default SP.

From the default state, the current SP selection can be changed to use PSP by

programming the CONTROL register. Note that an Instruction Synchronization Barrier

(ISB) instruction should be used (an architectural recommendation) after programming the

CONTROL register bit 1 to 1. You can also switch back to use MSP by clearing bit 1 of

the CONTROL register, providing that the processor is still in privileged state.

Figure 10.8 describes the stack pointer switching flows in exception entry and exit

sequences. If an exception occurs, the processor will enter handler mode and the MSP will

be selected. The stacking process that pushes R0eR3, R12, LR, PC, and xPSR can be

carried out using either MSP or PSP, depending on the value of CONTROL register before

the exception, as explained in Chapter 8.

When an exception handler is completed, the PC is loaded with the EXC_RETURN value.

Depending on the value of lowest 4 bits of the EXC_RETURN, the processor can return to

Thread mode with MSP selected, Thread mode with PSP selected, or Handler mode with

MSP selected. The value of the CONTROL register is updated to match bit 2 of the

EXC_RETURN value.

Reset

Thread mode,
CONTROL[1] = 0

MSP == SP

Setting CONTROL[1] to 1 Thread mode,
CONTROL[1] = 1

PSP == SPSetting CONTROL[1] to 0

Handler mode

MSP == SP

Exception

Stacking
using main

stack

Exception

Stacking
using process

stackException Return

EXC_RETURN = ?
0xFFFFFFFD

Exception
(nested)

0xFFFFFFF1

0xFFFFFFF9

Unstacking
using main

stack

Unstacking
using main

stack

Unstacking
using process

stack

Figure 10.8
Switching of stack pointer selection by software or exception entry/exit.

254 Chapter 10

The value of MSP and PSP can be accessed using the MRS and MSR instructions. In

general, changing the value of the currently selected SP in C language is a bad idea

because access to local variables and function parameters can be dependent on the SP

value. If it is changed, the values of these variables cannot be accessed.

If you are using CMSIS compliant device driver libraries, you can access the value of the

MSP and PSP with the following functions (Table 10.7):

To implement the context switching sequence as in Figure 10.7, the following procedures

can be used. Please note that there are various different ways to implement an embedded

OS, the following illustration is only an example.

Table 10.7: CMSIS-CORE functions for accessing MSP and PSP

Functions Description

Uint32_t __get_MSP(void) Read the current value of the Main Stack Pointer
void __set_MSP(uint32_t topOfMainStack) Set the value of the Main Stack Pointer
uint32_t __get_PSP(void) Read the current value of the Process Stack Pointer
void __set_PSP(uint32_t topOfProcStack) Set the value of the Process Stack Pointer

Stack frame

Time

Thread mode

Reset

MSP
initialized by

reset
sequence

SVC
instruction
executed

OS initialization (Handler mode)

Task
memories
initialized

Initial stack
frame create

at top of
stack A

R0

PSR

PC

Set PSP to
stack frame

starting
address

Set other
registers in

register bank

Starting address of Task A

Exception
Return with

EXC_RETURN
= 0xFFFFFFFD

Thread mode – Task A

Memory

Top of task A’s stack

Stack frame load
into register bank

Figure 10.9
Initialization of a task in a simple OS by creating a stack frame and then switch

to it using exception return.

Operating System Support Features 255

First, we need to be able to switch from thread into OS code running in handler mode.

Typically this can be carried out with an SVC instruction, which is cover in the next

section (Section 10.5). Then we need to set up a stack frame in the memory, and use this

stack frame in an exception return mechanism to jump to the starting point of the first

thread (task A). The sequence is illustrated in Figure 10.9.

We also need to have the code to handle context switching. When an application task is

interrupted by an exception, the registers R0eR3, R12 are already saved. We need to add

code to save R4eR11 to the stack, and then save the current value of the PSP so that we

can resume the task later. The operation is illustrated in Figure 10.10.

Section 10.7 of this chapter shows example codes to create a simple multi-tasking

system.

10.5 SVCall Exception

In order to build a complete OS, we need a few more features from the processor. The first

one is a software interrupt mechanism to allow tasks to trigger a dedicated OS exception.

In ARM� processors this is called Supervisor Call (SVCall). An instruction called SVC is

available for trigging an SVCall exception. Typically, when the SVC instruction is

executed, the SVCall exception is triggered and the processor will execute the SVCall

exception handler immediately, unless an exception with a higher or same priority arrived

at the same time and is being served first.

Time

Thread mode – Task A

SysTick
exception

OS (Handler mode)

Save task
A registers
(R4-R11)

Save PSP
(Task A SP)
to task data

structure

Task
scheduling

Set PSP to
Task B SP

Restore
task B

registers
(R4-R11)

OS (Handler mode)

Exception return with
EXC_RETURN =

0xFFFFFFFD

Thread mode – Task B

Figure 10.10
Example context switching from one task to another in a simple OS.

256 Chapter 10

The SVCall exception can be used as a gateway for applications to access a system service

provided by the OS. An application can pass parameters to the SVCall handler inside the

OS for different services, as shown in Figure 10.11.

In some development environments, SVCall can make the access to OS functions easier as

the accesses to OS functions do not require any address information. Therefore the OS and

the applications can be compiled and delivered separately. The application can interact

with the OS by calling the correct OS service and providing the required parameters.

The SVC instruction contains an 8-bit immediate value. This immediate value can be

extracted by the SVCall handler to determine which OS service is required. The syntax for

SVC instruction in assembly is given below:

SVC #0x3 ; Call SVC service 3

Traditional ARM development tools support a slightly different syntax (without the “#” sign).

SVC 0x3 ; Call SVC service 3

This syntax can still be used. But for new projects the newer syntax should be used.

In C language, there is no standard way to access SVC functions. In ARM development

tools (including Development Studio 5 and Keil� MDK), you can use the __svc keyword.

This topic is covered in more depth in Section 10.7.

If you were a user of ARM7TDMI or similar classic ARM processors, you might notice

that the SVC is very similar to SWI instruction on these processors. In fact, the binary

encoding of SVC is identical to the SWI Thumb� instruction. However, this instruction is

Application

SVC API

OS Kernel

Device
Drivers Peripherals

Hardware

Services Services Services

Operating System

Figure 10.11
SVC as a gateway to system services in OS.

Operating System Support Features 257

renamed to SVC in newer architectures and the SVC handler code is different from SWI

handler code for the ARM7TDMI.

Due to the interrupt priority behavior of the Cortex�-M processors, the SVC instruction

can only be used in thread mode or exception handlers that have a lower priority then the

SVC itself. Otherwise, a HardFault exception would be generated. As a result, you cannot

use the SVC instruction inside another function accessed by an SVCall Handler as it has

the same priority level. Also, you also cannot use an SVC instruction inside an NMI

handler or the HardFault handler.

10.6 PendSV

The PendSV is an exception type which can be activated by setting a pending status bit in

the System Control Block (SCB). Unlike SVCall, PendSV activation can be deferred.

Therefore you can set its pending status even when you are running an exception handler

with a higher priority level than the PendSV exception. The PendSV exception is useful for

the following:

• Context switching operation in an embedded OS

• Separating an interrupt processing task into two halves:

• The first half must be executed quickly and is handled by a high-priority interrupt

service routine (ISR)

• The second half is less-timing critical and can be handled by a deferred PendSV

handler with a lower priority. Therefore it allows other high-priority interrupt

requests to be processed quickly.

The second use of PendSV is fairly easy to understand, and more details of such usage are

covered in Section 10.7.2 with a programming example. The use of PendSV for context

switching is more complex. In a typical OS design, context switching can be triggered by

the following:

• Task scheduling during a SysTick handler

• A task waiting for data/event calling an SVCall service to swap in another task

Usually, the SysTick exception is set up as a medium- or high-priority exception. As a result,

the SysTick handler (part of the OS) can be invoked even if another interrupt handler is

running. However, the actual context switching should not be carried out while an ISR routine

is running. Otherwise the interrupt service would be broken into multiple parts. Traditionally,

if the OS detected that an ISR is running (e.g., by looking into the stack xPSR), it will not

carry out the context switching and wait until next OS tick (as shown in Figure 10.12).

By deferring the context switching to the next SysTick exception, the IRQ handler can

complete the execution. However, if the IRQ is generated periodically with a regular

258 Chapter 10

interval and the IRQ rate coincides with the pattern of task switching activities, then some

tasks might receive a larger share of processing time, or in some cases the context switching

cannot be carried out for a long period, for example, if the IRQ occurs too frequently.

In order to solve this problem, the actual context switching process can be separated from

the SysTick handler and implemented in a low-priority PendSV handler. By setting the

priority of the PendSV exception to the lowest priority level, the PendSV handler can only

be executed when there is no other interrupt service is running.

Take the activities in Figure 10.13 as an example; the OS task scheduler is triggered by

the SysTick exception periodically for task scheduling. The OS task scheduler sets the

pending state of the PendSV exception (lowest priority) before exiting the exception. If

there is no IRQ handler running, the PendSV handler starts immediately after the SysTick

exception exit and carries out the context switching. If an IRQ is running when the

SysTick exception occurred, then the PendSV exception must wait until the IRQ handler

finished before it can start because the PendSV is programmed to the lowest priority level.

When all the IRQ activities have been completed, the PendSV handler can then carry out

the required context switching.

10.7 Advanced Topics: Using SVC and PendSV in Programming

In practice, the SVCall and PendSV exceptions are rarely used directly without OS. For

applications with an embedded OS, an API of the OS normally handles these for you.

Task A Task B Task C Task A Task B

Time

Context switching

Thread mode

Handler mode

SysTick
(High priority)

IRQ (Medium
priority)

Task C

IRQ

No context switching

OS OSOS OS OS

Figure 10.12
Without PendSVdContext switching is not carried out if the OS detects and ISR is running.

Operating System Support Features 259

Nevertheless, the information about using SVCall and PendSV can still be useful for

developers for debugging software.

Note: This section covers programming techniques that can be difficult for beginners.
For beginners, you can skip the rest of this chapter and study other parts of this book first,
and revisit this section once you are family with the programming environment.

The SVC instruction is not natively supported in C language. For C language development

with ARM� tool chains (KEIL� Microcontroller Development Kit for ARM, or ARM

Development Studio 5), the SVC instruction can be generated using __svc function or

inline assembly. In GNU Compiler Collection and some other tool chains, this can be

generated using inline assembly.

10.7.1 Using the SVC Exception

SVC (SuperVisor Call) is commonly used in an OS environment for application tasks to

access to system service provided by the OS. In general, using the SVC involves the

following process:

1. Set up optional input parameters to pass to SVC handler in registers (e.g., R0eR3)

based on programming practice outlined by AAPCS

2. Execute the SVC instruction

Task A Task B Task C Task A

Time

Context switching
in PendSV

Thread mode

Handler mode

SysTick
(High priority)

IRQ (Medium
priority)

IRQ

OS OSOS OS OS

PendSV
(Low priority)

Task B Task C

Interrupt
event

Context
switching
after ISR

Figure 10.13
With PendSVdContext switching can be carried out after IRQ handler is completed.

260 Chapter 10

3. The SVC exception handler starts execution and can optionally extract address of the

stack frame using SP values

4. Using extracted stack frame address, the input parameters which are stored as stacked

registers can be located and read by the SVC exception handler.

5. Optionally, the SVC exception handler can also track the immediate value in the

executed SVC instruction using the stacked PC value in the stack frame.

6. The SVC exception handler then carry out the require processing.

7. If the SVC exception handler needs to return a value back to the application task that

made the SVC call, it needs to put the return value back onto the stack frame, usually at

where the stacked R0 is located.

8. The SVC exception handler executes an exception return, and the contents of the stack

frame are restored to the register bank.

9. The modified stacked R0 value in the stack frame, which contains the return value of

the SVC handler, is loaded into R0 and can be used by the application task as the return

value.

You might wonder why we need to extract the input parameters from the stack frame,

instead of just using the values in the register bank. The reason is that if another

exception with priority level higher than SVC exception occurred during stacking, the

other exception handler would be executed first and it could change the values in registers

R0eR3 and R12 before the SVC handler is entered. (In Cortex�-M processors,

exceptions handlers can be normal C functions and therefore these registers can be

changed.)

Similarly, the return value has to be put into the stack frame. Otherwise, the value

stored into R0 will be lost during the unstacking process of returning from the

exception.

In the next step, we will see how to do all these in a programming example. The following

example is based in Keil MDK, and can also be used on ARM DS-5.

First, we need to ensure that the vector table already has the “SVC_Handler” defined. If

you are using CMSIS-based software packages from microcontroller vendors, the

“SVC_Handler” definition should be included in the vector table already. Otherwise, you

might need to add this to the vector table.

Secondly, we need to be able to put the input parameters into the right registers and

execute the SVC instruction. With Keil MDK or ARM DS-5, the “__svc” keyword can be

used to define the SVC function including the SVC number (the immediate value in the

SVC instruction), the input parameters and the return parameter definitions. You can

Operating System Support Features 261

define multiple SVC functions with different SVC numbers. For example, the following

code defined three SVC function prototypes:

int __svc(0x00) svc_service_add(int x, int y);
int __svc(0x01) svc_service_sub(int x, int y);
int __svc(0x02) svc_service_incr(int x);

After the SVC functions are defined, we can then use it in our application code. For example:

z = svc_service_add(x, y);

The code for the SVC handler is separated into two parts in the following example:

• The first part is an assembly wrapper code to extract the starting address of exception

stack frame and put it to register R0 as input parameter for the second part.

• The second part extracts the SVC number and input parameters from the stack

frame and carries out the SVC operation in C. The program code might also need to

deal with error conditions that an SVC instruction is executed with invalid SVC

number.

The first half of the SVC handler has to be carried out in assembly because we cannot tell

the stack frame starting location from a C base SVC handler. Even we can find out the

current value of the SPs, we do not know how many registers would have been pushed

onto the stack at the beginning of C handler.

Using the embedded assembly feature in ARM compilation tools, the first part of the SVC

handler can be written as:

// SVC handler - Assembly wrapper to extract
// stack frame starting address
__asm void SVC_Handler(void)
{

MOVS r0, #4
MOV r1, LR
TST r0, r1
BEQ stacking_used_MSP
MRS R0, PSP ; first parameter - stacking was using PSP
LDR R1,=__cpp(SVC_Handler_main)
BX R1

stacking_used_MSP
MRS R0, MSP ; first parameter - stacking was using MSP
LDR R1,=__cpp(SVC_Handler_main)
BX R1

}

We use BX instruction to branch instead of using “B __cpp(SVC_Handler_main)” in case

the linker rearranged the positioning of the function order, the BX instruction will still be

able to reach the branch destination.

262 Chapter 10

The second part of the SVC handler used the extracted stack frame starting address as the

input parameter and used it as a pointer to an integer array to access the stacked register

values. The example code is listed below:

svc_demo.c

#include <stdio.h>

// Define SVC function
int __svc(0x00) svc_service_add(int x, int y);
int __svc(0x01) svc_service_sub(int x, int y);
int __svc(0x02) svc_service_incr(int x);

void SVC_Handler_main(unsigned int * svc_args);

// Function declarations
int main(void)
{

int x, y, z;

UART_Config(); // Initialize UART for printf

x = 3; y = 5;
z = svc_service_add(x, y);
printf ("3+5 = %d \n", z);

x = 9; y = 2;
z = svc_service_sub(x, y);
printf ("9-2 = %d \n", z);

x = 3;
z = svc_service_incr(x);
printf ("3++ = %d \n", z);

while(1);
}

// SVC handler - Assembly wrapper to extract
// stack frame starting address
__asm void SVC_Handler(void)
{

MOVS r0, #4
MOV r1, LR
TST r0, r1
BEQ stacking_used_MSP
MRS R0, PSP ; first parameter - stacking was using PSP
LDR R1,=__cpp(SVC_Handler_main)
BX R1

Continued

Operating System Support Features 263

stacking_used_MSP
MRS R0, MSP ; first parameter - stacking was using MSP
LDR R1,=__cpp(SVC_Handler_main)
BX R1

}

// SVC handler - main code to handle processing
// Input parameter is stack frame starting address
// obtained from assembly wrapper.
void SVC_Handler_main(unsigned int * svc_args)
{

// Stack frame contains:
// r0, r1, r2, r3, r12, r14, the return address and xPSR
// - Stacked R0 = svc_args[0]
// - Stacked R1 = svc_args[1]
// - Stacked R2 = svc_args[2]
// - Stacked R3 = svc_args[3]
// - Stacked R12 = svc_args[4]
// - Stacked LR = svc_args[5]
// - Stacked PC = svc_args[6]
// - Stacked xPSR= svc_args[7]

unsigned int svc_number;
svc_number = ((char *)svc_args[6])[-2];
switch(svc_number)

{
case 0: svc_args[0] = svc_args[0] + svc_args[1];

break;
case 1: svc_args[0] = svc_args[0] - svc_args[1];

break;
case 2: svc_args[0] = svc_args[0] + 1;

break;
default: // Unknown SVC request

break;
}

return;
}

The program also requires additional support code for Universal Asynchronous Receiver/

Transmitter (UART) hardware initialization and printf support (more on this will be

covered in Chapter 18, Programming Examples). After the program executes, the UART

outputs the expected results generated from the SVC functions.

The priority level of the SVC exception is programmable. To assign a new priority level to

the SVC exception, we can use the CMSIS-CORE function NVIC_SetPriority. For

example, if we want to set SVC priority level to 0x80, we can use:

NVIC_SetPriority(SVCall_IRQn, 0x2);

The function automatically shifts the priority level value to the implemented bit of the

priority level register (0x2<<6 equals 0x80).

264 Chapter 10

10.7.2 Using the PendSV Exception

Unlike the SVCall, the PendSV exception is triggered by writing to the Interrupt Control

State Register (address 0xE000ED04, see Table 9.6). If the PendSV exception is blocked

due to insufficient priority level, it will wait until the current priority level drops or the

blocking (e.g., PRIMASK) is removed.

To put PendSV exception into pending state, we can use the following C code:

SCB->ICSR = SCB->ICSR j (1<<28); // Set PendSV pending status

The priority level of the PendSV exception is programmable. To assign a new priority

level to the PendSV exception, we can use the CMSIS-CORE function NVIC_SetPriority.

For example, if we want to set PendSV priority level to 0xC0, we can use:

NVIC_SetPriority(PendSV_IRQn, 0x3); // Set PendSV to lowest level

The function automatically shifts the priority level value to the implemented bit of the

priority level register (0x3<<6 equals 0xC0).

Unlike the SVCall, the PendSVexception is not synchronous, which means after the

instruction that sets the PendSVexception pending status is executed, the processor can still

execute a number of instructions before the exception sequence takes place. For this reason,

PendSV can only work as a subroutine without any input parameters and output return values.

The most important usage of the PendSV exception is for OS operations such as context

switching in an OS environment, please refer to the next section 10.8 for example.

For systems without OS, the PendSV exception can also be used, for example, for

deferring certain interrupt service. For example, an interrupt service can need a fair

amount of time to process. The first portion of the processing might need high priority, but

if the whole ISR is executed with high-priority level, other interrupt services would be

blocked out for a long time. In these cases, we can partition the interrupt service

processing into two halves (Figure 10.14):

• The first half is the time critical part that needs to be executed quickly with high

priority. It is put inside the normal ISR. At the end of the ISR, it sets the pending status

of the PendSV.

• The second half contains the remaining processing work needed for the interrupt service.

It is placed inside the PendSV handler and is executed in low exception priority.

The following code demonstrates the triggering and setup for PendSV exception. It sets up

a timer exception at high priority and the PendSV exception at lower priority. Each time

the high-priority timer exception is triggered, the timer handler only executes for a short

period of time, carries out essential tasks and sets the pending status of PendSV. The

PendSV then executed after the timer handler completes and reports to the terminal that

the timer exception has been executed.

Operating System Support Features 265

pendsv_demo.c

#include <stdio.h>

int main(void)
{

UartConfig(); // Initialize UART

NVIC_SetPriority(SysTick_IRQn, 0x0); // Set Timer to highest level
NVIC_SetPriority(PendSV_IRQn , 0x3); // Set PendSV to lowest level

// Program timer interrupt with CMSIS-Core SysTick function
SysTick_Config(0xFFFFFFUL); // Maximum delay for this example
while(1);

}

void PendSV_Handler(void)
{ // Execute at low priority

printf ("[PendSV] Timer interrupt triggered\n");
return;

}

void SysTick_IRQHandler(void)
{ // Execute at high priority

SCB->ICSR = SCB->ICSR j (1<<28); // Set PendSV pending status
return;

}

With this arrangement, the processing task required by the timer exception is split into two

halves. Since the “printf” process can take long time, it is executed by the PendSV at a

low priority so that other higher- or medium-priority exceptions can take place while printf

is running. This type of interrupt processing method can be applied to many applications

to help improving the interrupt response of embedded systems.

Time

Exception
Priority

Thread

ISR A

First part of the
interrupt service A

(time critical)

Pending Status of
PendSV is set before
exception return

IRQ A
PendSV

Second part of the interrupt service A
(less urgent, not time critical)

IRQ B

PendSV

ISR B

Thread

Other interrupt requests can be
served, and does not get
blocked by non-urgent
processing in ISR A

Figure 10.14
Using PendSV to partition an interrupt service into two halves.

266 Chapter 10

10.8 Advanced Topics: Context Switching in Action

To demonstrate the context switching operation in a real example, here we use a simple

task scheduler that switches between four tasks in a round robin arrangement. If multiple

LEDs are available, each of the tasks toggles one of the LED at different speed.

The context switching operation is carried out by the PendSV exception handler. Since the

exception sequence already saved registers R0eR3, R12, LR, Return Address and xPSR,

the PendSV only needs to store R4eR11 to the process stack (Figure 10.15).

The code for the project can be implemented as:

Example code for a multi-tasking system with 4 tasks
- LED and UART control code not shown here

#include "stdio.h"

/* Macros for word accesses */
#define HW32_REG(ADDRESS) (*((volatile unsigned long *)(ADDRESS)))

void LED_Config(void);
__INLINE static void LED_On (uint32_t led);
__INLINE static void LED_Off (uint32_t led);

Continued

Exception
Stack Frame
(R0-R3, R12,
LR, PC, xPSR)
for Task A

Memory

STM(IA)PSP

Task A stack

When PendSV is entered Task A context is
saved

Exception
Stack Frame
(R0-R3, R12,
LR, PC, xPSR)
for Task A

Memory

PSP array[]

Task A stack

R4-R11 for
Task A

PSP

Task B’s SP

Task A’s SP

Exception
Stack Frame
(R0-R3, R12,
LR, PC, xPSR)
for Task B

Task B stack

R4-R11 for
Task B

Memory

LDM(IA)

Exception
Stack Frame
(R0-R3, R12,
LR, PC, xPSR)
for Task B

Task B stack

PSP

Memory

Store PSP
value

Load PSP value
for next task

Point to Task B
context

Task B context is
restored

Figure 10.15
Context switching from one task to another.

Operating System Support Features 267

// UART functions
extern void UART_config(void);
extern void UART_echo(void);

void task0(void); // Toggle LED0
void task1(void); // Toggle LED1
void task2(void); // Toggle LED2
void task3(void); // UART echo
void Task_Init(uint32_t task_id, uint32_t PC, uint32_t PSP_value);

// Stack for each task (2Kbytes each - 256 x 8 bytes)
long long task0_stack[256], task1_stack[256], task2_stack[256], task3_stack[256];

// Data variables use by OS
uint32_t curr_task=0; // Current task
uint32_t next_task=1; // Next task
uint32_t PSP_array[4]; // Process Stack Pointer for each task

int main(void)
{

// Configure LED outputs
LED_Config();
UART_config();

printf("Context Switching demo 1:\n");
Task_Init(0, ((unsigned long) task0),

((unsigned int) task0_stack) + (sizeof task0_stack) - 16*4);
Task_Init(1, ((unsigned long) task1),

((unsigned int) task1_stack) + (sizeof task1_stack) - 16*4);
Task_Init(2, ((unsigned long) task2),

((unsigned int) task2_stack) + (sizeof task2_stack) - 16*4);
Task_Init(3, ((unsigned long) task3),

((unsigned int) task3_stack) + (sizeof task3_stack) - 16*4);

NVIC_SetPriority(PendSV_IRQn , 0x3); // Set PendSV to lowest level
NVIC_SetPriority(SysTick_IRQn, 0x0); // Set Timer to highest level

curr_task = 0; // Switch to task #0 (Current task)
__set_PSP((PSP_array[curr_task] + 16*4)); // Set PSP to top of task 0 stack

SysTick_Config(48000); // 1000 Hz SysTick interrupt on 48MHz core clock
__set_CONTROL(0x3); // Switch to use Process Stack, unprivileged state
__ISB(); // Execute ISB after changing CONTROL (architectural
recommendation)
task0(); // Start task 0, do not return

// Should not be here
printf ("ERROR: task execution fail\n");
while (1);

}
/*---*/

268 Chapter 10

void Task_Init(uint32_t task_id, uint32_t PC_value, uint32_t PSP_value)
{

// Process Stack Pointer (PSP) value
PSP_array[task_id] = PSP_value;
// Stack Frame format
// -----------------------
// 15 - xPSP
// 14 - Return Address
// 13 - LR
// 12 - R12
// 8-11 - R0 - R3
// -------
// 4-7 - R8 - R11
// 0-3 - R4 - R7
// -------
HW32_REG((PSP_array[task_id] + (14<<2))) = PC_value; // initial PC
HW32_REG((PSP_array[task_id] + (15<<2))) = 0x01000000; // initial xPSR
return;

}
/*---*/
__asm void PendSV_Handler(void)
{ // Context switching code

// Simple version - assume all tasks are unprivileged
// -------------------------
// Save current context
MRS R0, PSP // Get current process stack pointer value
SUBS R0, #32 // Allocate 32 bytes for R4 to R11
STMIA R0!,{R4-R7} // Save R4 to R7 in task stack (4 regs)
MOV R4, R8 // Copy R8 to R11 to R4 to R7
MOV R5, R9
MOV R6, R10
MOV R7, R11
STMIA R0!,{R4-R7} // Save R8 to R11 in task stack (4 regs)
SUBS R0, #32
LDR R1,=__cpp(&curr_task)
LDR R2,[R1] // Get current task ID
ADDS R2, R2 // Array offset = ID value x 4 (2 adds)
ADDS R2, R2
LDR R3,=__cpp(&PSP_array)
STR R0,[R3, R2] // Save PSP value into PSP_array
// -------------------------
// Load next context
LDR R4,=__cpp(&next_task)
LDR R4,[R4] // Get next task ID
STR R4,[R1] // Set curr_task = next_task
ADDS R4, R4 // Array offset = ID value x 4 (2 adds)
ADDS R4, R4
LDR R0,[R3, R4] // Load PSP value from PSP_array
ADDS R0, #16

Continued

Operating System Support Features 269

LDMIA R0!,{R4-R7} // Load R8 to R11 from task stack (4 regs)
MOV R8, R4 // Copy to R8 - R11 to R4 to R7
MOV R9, R5
MOV R10, R6
MOV R11, R7
MSR PSP, R0 // Set PSP to next task
SUBS R0, #32
LDMIA R0!,{R4-R7} // Load R4 to R7 from task stack (4 regs)
BX LR // Return
ALIGN 4

}
/*---*/
void SysTick_Handler(void) // 1KHz
{

// Simple task round robin scheduler
switch(curr_task) {

case(0): next_task=1; break;
case(1): next_task=2; break;
case(2): next_task=3; break;
case(3): next_task=0; break;
default: next_task=0;

printf ("ERROR: illegal task\n");
while(1);

}
if (curr_task!=next_task){ // Context switching needed

SCB->ICSR j= SCB_ICSR_PENDSVSET_Msk; // Set PendSV to pending
}

return;
}
/*--

Tasks
--/

void task0(void) // Toggle LED #0
{

int i;
while (1) {

LED_On(0);
for (i=0;i<0xFFFFF;i++){ __NOP();}
LED_Off(0);
for (i=0;i<0xFFFFF;i++){ __NOP();}
}// end while

}
/* ----------------------------- */
void task1(void) // Toggle LED #1
{

int i;
while (1) {

LED_On(1);
for (i=0;i<0x1FFFFF;i++){ __NOP();}

270 Chapter 10

LED_Off(1);
for (i=0;i<0x1FFFFF;i++){ __NOP();}

}// end while
}
/* ----------------------------- */
void task2(void) // Toggle LED #2
{
int i;

while (1) {
LED_On(2);
for (i=0;i<0x2FFFFF;i++){ __NOP();}
LED_Off(2);
for (i=0;i<0x2FFFFF;i++){ __NOP();}

}// end while
}
/* ----------------------------- */
void task3(void)
{
// Only 3 LEDs on this board, so task 3 have no LED
// process UART echo instead
while (1) {

UART_echo();
}// end while

}

The example also shows a simple method to start the first task:

curr_task = 0; // Switch to task #0 (Current task)
__set_PSP((PSP_array[curr_task] + 16*4)); // Set PSP to top of task 0 stack
...
__set_CONTROL(0x3); // Switch to use Process Stack, unprivileged state
__ISB(); // Execute ISB after changing CONTROL (architectural recommendation)
task0(); // Start task 0

Using this method, the PSP is set up to task 0 before task0 is executed, and we enter task0

directly. In this arrangement, it is not strictly required to initialize the stack frame for task

0 (after the printf message), but we included the task0 initialization code there so that all

the tasks set up have the same look and feel.

With this simple design, you can use either run all tasks in unprivileged state by setting

CONTROL to 3, or run all tasks in privileged state by setting CONTROL to 2. The

execution of ISB is a recommendation in the architecture.

This simple OS example calls the first task directly, which is not very flexible in coding

because in real world the OS developer created the OS will not know which task should

be started first. Another limitation of the first example is that we assumed all the tasks are

Operating System Support Features 271

executed in same unprivileged/privileged state. In some applications, we might need to run

some of the tasks in privileged state and some in unprivileged state. To do this:

• We need to define a way to store the privilege level for each task (potentially we can

use the LSB of the PSP_array[] because lowest 2 bits of the SPs are always 0.

• We also need to define the initial privilege level for each task in task initialization stage.

• We need to modify the context switching code to save and restore the value of the

CONTROL register at context switch.

In the second example, we modify the simple OS to use bit 0 of PSP_array to hold the

privilege level of each task, and change the way the OS start the first task.

Instead of directly calling “task0” to start the first task in the system, we start the OS

initialization with an SVCall exception and use exception return to start the first task

(task0). In this way, OS code can then be independent of the application, as the first task

could then be any of the tasks. The SVC mechanism shown in the example is using __svc

keyword, a feature in the ARM� C compiler tool chain. For other tool chains you will

need to edit the source code to use inline assembly to insert the SVC instruction.

Note: with this implementation the stack initialization for task0 would be necessary.

The code for the project can be implemented as:

Example code for a multi-tasking system with 4 tasks
- LED and UART control code not shown here

#include "stdio.h"

/* Macros for word accesses */
#define HW32_REG(ADDRESS) (*((volatile unsigned long *)(ADDRESS)))

void LED_Config(void);
__INLINE static void LED_On (uint32_t led);
__INLINE static void LED_Off (uint32_t led);

// UART functions
extern void UART_config(void);
extern void UART_echo(void);

void task0(void); // Toggle LED0
void task1(void); // Toggle LED1
void task2(void); // Toggle LED2
void task3(void); // UART echo
void Task_Init(uint32_t task_id, uint32_t PC, uint32_t PSP_value, uint32_t
Unprivileged);
void __svc(0x00) OS_Init(void); // OS initialization (SVC service use by main)
void SVC_Handler_C(unsigned int * svc_args);
void OS_start(void);// OS startup code (called by SVC handler)

272 Chapter 10

// Stack for each task (2Kbytes each - 256 x 8 bytes)
long long task0_stack[256], task1_stack[256],

task2_stack[256], task3_stack[256];

// Data variables use by OS
uint32_t curr_task=0; // Current task
uint32_t next_task=1; // Next task
uint32_t PSP_array[4]; // Process Stack Pointer for each task

// bit 0 indicate the task should execute in unprivileged state
uint32_t svc_exc_return; // EXC_RETURN use by SVC

int main(void)
{

// Configure LED outputs
LED_Config();
UART_config();

printf("Context Switching demo 2:\n");
OS_Init(); // Use SVC service to start the OS

// Should not be here
printf ("ERROR: task execution fail\n");
while (1);

}
/*---*/
/* Assembly wrapper for SVC handler

- also allow OS to change EXC_RETURN value */
__asm void SVC_Handler(void)
{

MOVS R0, #4 // Extract stack frame location
MOV R1, LR
TST R0, R1
BEQ stacking_used_MSP
MRS R0, PSP ; first parameter - stacking was using PSP
B SVC_Handler_cont

stacking_used_MSP
MRS R0, MSP ; first parameter - stacking was using MSP

SVC_Handler_cont
LDR R2,=__cpp(&svc_exc_return) // Save current EXC_RETURN
MOV R1, LR
STR R1,[R2]
BL __cpp(SVC_Handler_C) // Run C part of SVC_Handler
LDR R2,=__cpp(&svc_exc_return) // Load new EXC_RETURN
LDR R1,[R2]
BX R1
ALIGN 4

}
/*---*/
/* SVC handler to select OS services - only one implemented :

SVC #0 for starting the OS
*/

Continued

Operating System Support Features 273

void SVC_Handler_C(unsigned int * svc_args)
{

uint8_t svc_number;
svc_number = ((char *) svc_args[6])[-2]; // Memory[(Stacked PC)-2]
switch(svc_number) {

case (0): // OS init
puts ("SVC #0: OS Initization\n");
OS_start();
break;

default:
puts ("ERROR: Unknown SVC service number");
printf("- SVC number 0x%x\n", svc_number);
while(1);

} // end switch
}
/*---*/
void OS_start(void)
{

Task_Init(0, ((unsigned long) task0),
(((unsigned int) task0_stack) + (sizeof task0_stack) - 16*4),

TASK_LEVEL_UNPRIVILEGED);
Task_Init(1, ((unsigned long) task1),

(((unsigned int) task1_stack) + (sizeof task1_stack) - 16*4),
TASK_LEVEL_UNPRIVILEGED);

Task_Init(2, ((unsigned long) task2),
(((unsigned int) task2_stack) + (sizeof task2_stack) - 16*4),

TASK_LEVEL_UNPRIVILEGED);
Task_Init(3, ((unsigned long) task3),

(((unsigned int) task3_stack) + (sizeof task3_stack) - 16*4),
TASK_LEVEL_UNPRIVILEGED);

NVIC_SetPriority(PendSV_IRQn , 0x3); // Set PendSV to lowest level
NVIC_SetPriority(SysTick_IRQn, 0x0); // Set Timer to highest level

curr_task = 0; // Switch to task #0 (Current task)
__set_PSP((PSP_array[curr_task] + 8*4)); // Set PSP to R0 of task 0 stack

svc_exc_return = 0xFFFFFFFDUL; // Return to Thread and use PSP
SysTick_Config(48000); // 1000 Hz SysTick interrupt on 48MHz core clock
if (PSP_array[curr_task] & 1) {

__set_CONTROL(0x3); // Switch to use Process Stack, unprivileged state
} else {

__set_CONTROL(0x2); // Switch to use Process Stack, privileged state
}
__ISB(); // Execute ISB after changing CONTROL (architectural
recommendation)
return;

}
/*---*/

274 Chapter 10

void Task_Init(uint32_t task_id, uint32_t PC_value,
uint32_t PSP_value, uint32_t Unprivileged)

{
// Process Stack Pointer (PSP) value, and bit 0
// for privileged/unprivileged info
PSP_array[task_id] = PSP_value j Unprivileged;
// Stack Frame format
// -----------------------
// 15 - xPSP
// 14 - Return Address
// 13 - LR
// 12 - R12
// 8-11 - R0 - R3
// -------
// 4-7 - R8 - R11
// 0-3 - R4 - R7
// -------
HW32_REG(PSP_value + (14<<2)) = PC_value; // initial Program Counter
HW32_REG(PSP_value + (15<<2)) = 0x01000000; // initial xPSR
return;

}
/*---*/
__asm void PendSV_Handler(void)
{ // Context switching code

// Tasks can be privileged or unprivileged
// -------------------------
// Save current context
MRS R0, PSP // Get current process stack pointer value
SUBS R0, #32 // Allocate 32 bytes for R4 to R11
STMIA R0!,{R4-R7} // Save R4 to R7 in task stack (4 regs)
MOV R4, R8 // Copy R8 to R11 to R4 to R7
MOV R5, R9
MOV R6, R10
MOV R7, R11
STMIA R0!,{R4-R7} // Save R8 to R11 in task stack (4 regs)
SUBS R0, #32
MRS R1, CONTROL // Extract bit 0 of CONTROL
MOVS R2, #1
ANDS R1, R1, R2
ORRS R0, R0, R1 // Merge CONTROL[0] in bit 0 of R0
LDR R1,=__cpp(&curr_task)
LDR R2,[R1] // Get current task ID
ADDS R2, R2 // Array offset = ID value x 4 (2 adds)
ADDS R2, R2
LDR R3,=__cpp(&PSP_array)
STR R0,[R3, R2] // Save PSP value & CONTROL[0] into PSP_array
// -------------------------
// Load next context
LDR R4,=__cpp(&next_task)
LDR R4,[R4] // Get next task ID

Continued

Operating System Support Features 275

STR R4,[R1] // Set curr_task = next_task
ADDS R4,R4 // Array offset = ID value x 4 (2 adds)
ADDS R4,R4
LDR R0,[R3, R4] // Load PSP value from PSP_array
MOVS R1, #1
ANDS R1, R1, R0 // Extract CONTROL[0]
MSR CONTROL, R1
MOVS R1, #3
BICS R0, R0, R1 // Clear lowest 2 bits of PSP
ADDS R0, #16
LDMIA R0!,{R4-R7} // Load R8 to R11 from task stack (4 regs)
MOV R8, R4 // Copy from R4 - R7 to R8 - R11
MOV R9, R5
MOV R10, R6
MOV R11, R7
MSR PSP, R0 // Set PSP to next task
SUBS R0, #32
LDMIA R0!,{R4-R7} // Load R4 to R7 from task stack (4 regs)
BX LR // Return
ALIGN 4

}
/*---*/
void SysTick_Handler(void) // 1KHz
{

// Simple task round robin scheduler
switch(curr_task) {

case(0): next_task=1; break;
case(1): next_task=2; break;
case(2): next_task=3; break;
case(3): next_task=0; break;
default: next_task=0;

printf ("ERROR: illegal task\n");
while(1);

}
if (curr_task!=next_task){ // Context switching needed

SCB->ICSR j= SCB_ICSR_PENDSVSET_Msk; // Set PendSV to pending
}

return;
}
/*--

Tasks
---/
void task0(void) // Toggle LED #0
{

int i;
while (1) {

LED_On(0);
for (i=0;i<0xFFFFF;i++){ __NOP();}
LED_Off(0);

276 Chapter 10

for (i=0;i<0xFFFFF;i++){ __NOP();}
}// end while

}
/* ----------------------------- */
void task1(void) // Toggle LED #1
{

int i;
while (1) {

LED_On(1);
for (i=0;i<0x1FFFFF;i++){ __NOP();}
LED_Off(1);
for (i=0;i<0x1FFFFF;i++){ __NOP();}

}// end while
}
/* ----------------------------- */
void task2(void) // Toggle LED #2
{
int i;

while (1) {
LED_On(2);
for (i=0;i<0x2FFFFF;i++){ __NOP();}
LED_Off(2);
for (i=0;i<0x2FFFFF;i++){ __NOP();}

}// end while
}
/* ----------------------------- */
void task3(void)
{
// Only 3 LEDs on this board, so task 3 have no LED
// process UART echo instead
while (1) {

UART_echo();
}// end while

}

Operating System Support Features 277

CHAPTER 11

Fault Handling

11.1 Fault Exception Overview

In ARM� processors, if a program goes wrong and the processor detects a fault, then a

fault exception occurs. On the Cortex�-M0/M0þ processors, there is only one exception

type that handles faults: the HardFault exception.

The HardFault exception is almost the highest priority exception type, with a priority level

of �1. Only the Non-Maskable Interrupt (NMI) can preempt the HardFault exception.

When the HardFault handler is triggered, we know that the microcontroller is in trouble

and corrective action is needed. The HardFault handler is also useful for debugging

software during the software development stage. By setting a breakpoint in the HardFault

handler (or use a debug feature called vector catch to halt the processor at HardFault), the

program execution stops when a fault occurs. By examining the content of the stack, often

we can back trace the location of the fault and try to identify the reason for the failure.

This behavior is very different from most 8-bit and 16-bit microcontrollers. In these

microcontrollers, often the only safety net is a watchdog timer. However, it takes time for

a watchdog timer to trigger, and often there is no way to determine how the program went

wrong.

11.2 What Can Cause a Fault?

There are a number of possible reasons for a fault to occur. For the Cortex�-M0 and

Cortex-M0þ processors, we can group these possible causes into two areas: Memory

related and Program Errors (Table 11.1).

For memory related faults, the error response from the bus system can also be caused by a

number of different reasons:

• Address being accessed is invalid. In such case the bus interconnect component should

generate an error response back to the processor to indicate an error.

• The bus slave cannot accept the transfer because the transfer type is invalid (depending

on bus slave design).

• The bus slave cannot accept the transfer because it is not enabled or initialized (for

example, a microcontroller might generate an error response if a peripheral is accessed

but the clock for the peripheral bus is turned off).

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00011-4

Copyright © 2015 Elsevier Inc. All rights reserved. 279

http://dx.doi.org/10.1016/B978-0-12-803277-0.00011-4

When the direct cause (e.g., program code segment) of the HardFault exception is located,

it might still take some effort to locate the source of the problem. For example, a bus error

can be caused by an incorrect pointer manipulation, a stack memory corruption, a memory

overflow, an incorrect memory map setup, or other reasons.

11.3 Analyze a Fault

Depending on the type of fault, very often it is straightforward to locate the instruction

that caused the HardFault exception. In order to do that, we need to know the register

contents when the HardFault exception is entered and the register contents that were

pushed to the stack just before the HardFault handler starts. These values include the

return program address, which usually tells us the instruction address that caused the fault.

If a debugger is available, we can create a HardFault exception handler that includes a

breakpoint instruction, which halts the processor. Alternatively, we can use the debugger to

set a breakpoint at the beginning of the HardFault handler, so that the processor halts

automatically when a HardFault is entered. After the processor is halted due to a

HardFault, we can then try to locate the fault by the following flow (Figure 11.1).

Table 11.1: Faults that trigger HardFault exceptions

Fault classification Fault condition

Memory related • Bus error (can be program accesses or data accesses).
• Bus error generated by bus infrastructure due to attempt to access an
invalid address.

• Bus error generated by bus slave.
• Attempt to execute program from memory region marked as nonexecutable
(see memory attribute in Chapter 7).

• Attempt to access registers in System Control Space at unprivileged access
level (not applicable to Cortex�-M0 processor).

• Memory access violated the memory permission defined in the Memory
Protection Unit (MPU) settings (MPU is an optional component in the
Cortex-M0þ processor, see Chapter 12 for more information).

Program error • Execution of undefined instruction.
• Trying to switch to ARM� state (Cortex-M processors only support Thumb�

instructions).
• Attempt to generate an unaligned memory access (not allowed in ARMv6-M
architecture).

• Attempt to execute an SVC (SuperVisor Call) instruction when the SVCall
exception priority level is the same or lower than the current exception level.

• Invalid EXC_RETURN value during exception return.
• Attempt to execute a breakpoint instruction (BKPT) when debug is not
enabled (no debugger attached).

280 Chapter 11

To aid the analysis, we should also generate a disassembly listing of the compiled image,

and locate the fault using the stacked program counter (PC) value found on the stack

frame. If the faulting address is a memory access instruction, you should also check

the register value (or stacked register value) to see if the memory access operated on the

correct address. Besides from checking the address range, we should also check if the

address of the memory access is aligned correctly.

Apart from the stacked PC (return address) value, the stack frame also contains other

stacked register values, which can be useful for debugging. For example, the stacked

interrupt program status register (IPSR) (within the xPSR) indicates that if the processor

was running an exception handler, and if the stacked execution PSR (EPSR) shows the

processor state is not Thumb� state, it could indicate that the LSB of an exception vector

is not set to 1 correctly. (If the T bit of EPSR is 0, the fault is caused by accidentally

switching to ARM� state.)

Start

IPSR = 3?

Yes

No Processor is not in
HardFault exception, it is
halted by other breakpoint

or watch point.

Bit 2 of LR
(EXC_RETURN) is 0?

Yes

Main Stack Pointer (MSP)
was used for stacking

Process Stack Pointer (PSP)
was used for stacking

MSP pointed to valid
stack memory region?

PSP pointed to valid
stack memory region?

No

NoNo

seYseY
Investigate stack pointer
setup in vector table and

in project.

Investigate possible stack
leak in program code.

Investigate any program
code that modify stack

pointer directly

Stack frame starting at
MSP. Stacked PC is
located at MSP+0x18

Stack frame starting at
PSP. Stacked PC is
located at PSP+0x18

Create disassembled code of
the execution image and see

where the stacked PC is.R2

R3

R0

R1

PC

xPSR

R12

LR

Stack
Frame

Stack Pointer

Memory
Address

Stacked PC
at SP+0x18

Figure 11.1
Identifying the program address of a fault event.

Fault Handling 281

The stacked LR might also provide information like the return address of the faulting

function. If the fault happened within an exception handler, it could show whether the

value of the EXC_RETURN was accidentally corrupted.

In addition, the current register values can provide various clues that can help identify the

cause of a fault. Apart from the current stack pointer values, the current Link Register

(R14) value might also be useful. If the LR shows an invalid EXC_RETURN value, it

could mean that the value of LR was modified incorrectly during an exception handler

before the HardFault is triggered.

The CONTROL register can also be useful. In simple applications without an OS, usually

the Processor Stack Pointer (PSP) is not used and the CONTROL register should always

be zero in such cases. If the CONTROL register value was set to 0x2/0x3 (bit 1 set to 1,

indicates that PSP is used in Thread state), it could mean LR has been modified

incorrectly during a previous exception handler, or a stack corruption has taken place

which incorrectly modified the value of EXC_RETURN.

11.4 Accidental Switching to ARM� State

A number of common program errors that cause HardFault are due to accidentally

switching to ARM state. Usually this can be detected by checking the values of the

stacked xPSR. If the T (Thumb�) bit is cleared, then the fault was caused by an accidental

switch to ARM state.

The common errors that cause this problem are given in Table 11.2.

Table 11.2: Various causes of accidental switching to ARM� state

Error Descriptions

Use of incorrect libraries The linking stage might have accidentally pulled in libraries compiled
with ARM instructions (for ARM7TDMI). Check linker script setting
and disassembled code of the compiled image to see if the C libraries
are correct.

Functions not being declared
correctly

If you are using GNU assembly tools and the project contains multiple
files, you need to make sure that the functions being called from a
different file are declared correctly. Otherwise any such calls might
result in an accidental state change.

LSB of vector in the vector
table set to 0

The vector in the vector table should have the LSB set to 1 to indicate
Thumb� state. If the stacked PC is pointing to the beginning of an
exception handler and the stacked xPSR has the T bit cleared to 0, the
error is likely to be in the vector table.

Function pointer with LSB
set to 0

If a function pointer is declared with the LSB set to 0, calling the
function will also cause the processor to enter a HardFault.

282 Chapter 11

11.5 Error Handling in Real Applications

In real applications, the embedded systems will be running without a debugger attached

and stopping the processor is not acceptable for many applications. In most cases, the

HardFault exception handler can be used to carry out safety actions and then reset the

processor. For example, the following steps can be carried out.

• Perform application specific safety actions (e.g., perform shut down sequence in a

motor controller).

• Optionally the system can report the error within a user interface, and then reset the

system using the SYSRESETREQ (System Reset Request) in the Application Interrupt

and Reset Control Register (AIRCR, see Chapter 9, Table 9.8), or other system control

methods specific to the microcontroller.

Since a HardFault could be caused by an error in the stack pointer value, a HardFault handler

programmed in C language might not perform correctly because C generated code might

require stack memory to operate. Therefore, for safety critical systems, ideally the HardFault

handler should be programmed in assembly language, or use an assembly language wrapper

to check if the stack pointer is in a valid memory range before entering a C routine.

11.6 Error Handling During Software Development

Typically, the development tools provide various debug functionality to help debug

software issues. For example, if the Cortex�-M0þ processor is used and the Micro Trace

Buffer (MTB) feature is available on the chip, the development tool might be able to make

use of such feature to enable software developers to locate fault information quickly. For

users of the Cortex-M0 processor, the MTB feature is not available and so other debug

analysis methods might be needed. (More information of using MTB is covered in Chapter

13, Debug Features).

The HardFault handler can be used to report debug information during software

development. This could be done using a user interface (e.g., LCD module), a simple

UART interface, or if the development tool supports semihosting (see Chapter 18,

Programming Examples), you could just use simple “printf” for such purpose.

In order to simplify coding effort, the error reporting function is typically written in C. If

the HardFault handler needs to report debug information such as the extracted faulting

program address, as shown in Figure 11.1, we will also need an assembly wrapper to

determine the address location of the stack frame.

The assembly language wrapper code extracts the address of the exception stack frame and

passes it to the C section of the HardFault handler, which displays the stack frame

Fault Handling 283

(Figure 11.2). Otherwise, there is no easy way to locate the stack frame inside the C

handler. Although you can access the stack pointer value using inline assembly, embedded

assembly, a named register variable, or an intrinsic function, the value of the stack pointer

could change when entering the C function itself.

The assembly code for such an assembly wrapper can be implemented using embedded

assembly if using Keil� MDK-ARM� or ARM DS-5�, for example:

Assembly wrapper using embedded assembler in Keil� MDK

// HardFault handler wrapper in assembly
// It extracts the location of stack frame and passes it to handler
// in C as a pointer. We also extract the LR value as second
// parameter.
__asm void HardFault_Handler(void)
{

MOVS r0, #4
MOV r1, LR
TST r0, r1
BEQ stacking_used_MSP
MRS R0, PSP ; first parameter - stacking was using PSP
B get_LR_and_branch

stacking_used_MSP
MRS R0, MSP ; first parameter - stacking was using MSP

Branch to C handler
for reporting

Bit 2 of LR
(EXC_RETURN) is 0?

Yes

Main Stack Pointer (MSP)
was used for stacking

Process Stack Pointer (PSP)
was used for stacking

Stack Frame located in
valid memory region?

No

No

Yes

Put Stack Frame
address in R0

Dead loop / self reset /
Halt (using BKPT

instruction)

Figure 11.2
Assembly wrapper for HardFault handler.

284 Chapter 11

get_LR_and_branch
MOV R1, LR ; second parameter is LR current value
LDR R2,=__cpp(hard_fault_handler_c)
BX R2

}

The handler in C accepts the parameters from the assembly wrapper and extracts the stack

frame contents and LR values.

HardFault handler to report stacked register values

// HardFault handler in C, with stack frame location and LR value
// extracted from the assembly wrapper as input parameters
void hard_fault_handler_c(unsigned int * hardfault_args, unsigned lr_value)
{

unsigned int stacked_r0;
unsigned int stacked_r1;
unsigned int stacked_r2;
unsigned int stacked_r3;
unsigned int stacked_r12;
unsigned int stacked_lr;
unsigned int stacked_pc;
unsigned int stacked_psr;

stacked_r0 = ((unsigned long) hardfault_args[0]);
stacked_r1 = ((unsigned long) hardfault_args[1]);
stacked_r2 = ((unsigned long) hardfault_args[2]);
stacked_r3 = ((unsigned long) hardfault_args[3]);
stacked_r12 = ((unsigned long) hardfault_args[4]);
stacked_lr = ((unsigned long) hardfault_args[5]);
stacked_pc = ((unsigned long) hardfault_args[6]);
stacked_psr = ((unsigned long) hardfault_args[7]);

printf ("[HardFault handler]\n");
printf ("R0 = %x\n", stacked_r0);
printf ("R1 = %x\n", stacked_r1);
printf ("R2 = %x\n", stacked_r2);
printf ("R3 = %x\n", stacked_r3);
printf ("R12 = %x\n", stacked_r12);
printf ("Stacked LR = %x\n", stacked_lr);
printf ("Stacked PC = %x\n", stacked_pc);
printf ("Stacked PSR = %x\n", stacked_psr);
printf ("Current LR = %x\n", lr_value);
while(1); // endless loop

}

Fault Handling 285

The C handler can only work if the stack pointer is still pointing to a valid RAM/SRAM

memory region because (a) it extracts debug information from the stack, and (b) the

handler codes generated from C compilers often require a valid stack memory

configuration to operate. Alternatively, you can carry out the debug information reporting

entirely in assembly code. Doing this in assembly language is not too difficult when you

have access to an assembly routine for text output. Several examples of assembly text

outputting routines can be found in Chapter 21. Details about embedded assembly

programming (used in the assembly wrapper) can also be found in this chapter.

11.7 Lockup

The Cortex�-M0 and Cortex-M0þ processors can enter a lockup state if another fault

occurs during the execution of a HardFault exception handler, or when a fault occurs

during the execution of an NMI handler. This is because when these two exception

handlers are executing, the priority level does not allow the HardFault handler to preempt.

During the lockup state, the processor stops executing instructions and asserts a LOCKUP

status signal. Depending on the implementation of the microcontroller, the LOCKUP

status signal can be programmed to reset the system automatically, rather than waiting for

a watchdog timer to time out and reset the system.

The lockup state prevents the failed program from corrupting more data in the memory or

data in the peripherals. During software development, this behavior can help us debug the

problem as the memory contents might contain vital clues about how the software failed.

11.7.1 Causes of Lockup

There are a number of conditions that can cause lockup in the Cortex�-M0 or Cortex-M0þ
processor (or ARMv6-M architecture).

• Fault occurred during NMI handler

• Fault occurred during HardFault handler (also referred as double fault)

• Bus error response during reset sequence (when trying to obtain initial SP value/reset

vector)

• Bus error response during unstacking of xPSR during exception return using MSP

(Main Stack Pointer) for the unstacking

• SVC instruction execution inside NMI handler or HardFault handler (insufficient priority)

Use of an SVC instruction in an NMI or HardFault handler can cause a lockup because

the SVC all priority level is always lower than these handlers and therefore blocked. Since

this program error cannot be handled by the HardFault exception (the priority level is

already �1 or �2), the system enters lockup state.

286 Chapter 11

The lockup state can also be caused by a bus system error during the reset sequence.

When the first two words of the memory are fetched and if a bus fault happens in one

of these accesses, it means the processor cannot determine the initial stack pointer

value (the HardFault handler might need the stack as well), or the reset vector is

unknown. In these cases, the processor cannot continue normal operation and must

enter the lockup state.

If a bus error response occurs during exception entrance (stacking), this does not cause a

lockup even when entering a HardFault or NMI exception, see Figure 11.3. However, once

the HardFault exception or NMI exception handler is started, a bus error response can

cause a lockup. As a result, in safety critical systems, a HardFault handler written in C

might not be the best arrangement because the C compiler might insert stack operations at

the beginning of the handler code. E.g.:

HardFault_Handler
PUSH {R4, R5} ; This can cause lock up if the MSP is corrupted

.

For exception exit (unstacking), it is possible to cause a lockup if a bus error response is

received during the unstacking process of the xPSR using MSP, see Figure 11.3. In such

cases, the xPSR cannot be determined and so the correct priority level of the system is

unknown. As a result, the system is locked up and cannot be recovered apart from

resetting it or halting it for debug.

-1 / -2

0 to 0xC0,
or thread

Priority

HardFault or NMI handler

Stacking Unstacking

Fault occurring here cause
lock up Fault occurring

here might cause
lock up

Fault occurring
here do not cause

lock up

Time

Fault occurring
here does not
cause lock up

Figure 11.3
Lockup condition during exception sequences.

Fault Handling 287

11.7.2 What Happens During a Lockup?

If the lockup is caused by a double fault, the priority level of the system stays at �1. If

an NMI exception occurred, it is possible for the NMI to preempt and execute. After the

NMI is completed, the exception handler is terminated and the system returns to the

lockup state.

Otherwise, in other lockup scenarios the system cannot be recovered and must be reset or

restored using a debugger attached to it. The LOCKUP signal can be used by

microcontroller designers or system-on-chip designer to reset the system via a configurable

setting in the reset controller.

11.8 Preventing Lockup

Lockup and HardFault exceptions might look scary to some embedded developers. There

are various reasons why embedded systems can go wrong but the lockup and HardFault

mechanisms can prevent the problem from getting worse. The sources of errors or

problems that can cause any embedded microcontroller system to crash are

• unstable power supply or electromagnetic interference,

• flash memory corruption,

• an error in external interface signals,

• component damage due to operating conditions or natural aging process,

• incorrect clock generation arrangement or poor clock signal quality,

• software errors

The HardFault and lockup behaviors allow error conditions to be detected and help

debugging. Although we cannot fully prevent all the potential issues listed above, we can

take various measures in software to improve the reliability of an embedded system.

First, we should keep the NMI exception handler and HardFault exception handler as

simple as possible. Some tasks associated with the NMI exception or HardFault exception

can be separated into a different exception like PendSV, and executed after the urgent

parts of the exception handling are complete. By making the NMI and HardFault handler

shorter and easier to understand, we can also reduce the risk of accidentally using SVC

instruction in these handlers.

Second, for safety critical applications, you might want to use an assembly wrapper to

check the SP value before entering the HardFault handler in C (Figure 11.4).

If necessary, we can program the entire HardFault handler in assembly. In such cases, we

can avoid some stack memory accesses to prevent lockup if the stack pointer is corrupted

and pointing to an invalid memory location.

288 Chapter 11

Similarly, if the NMI handler is very simple, we can program the NMI handler in

assembly language and use just R0eR3, R12 if we want to avoid stack memory accesses

because these registers are already stacked. But in most cases, a stack pointer error would

probably trigger the HardFault exception fairly quickly so there is no need to worry about

programming the NMI in C language.

11.9 Comparison with Fault Handling in ARMv7-M Architecture

Since the Cortex�-M0 and Cortex-M0þ processors are designed to target ultra-low power

applications, it does not include some of the additional fault analysis features found in

processors using the ARMv7-M architecture.

Table 11.3 lists the major differences between the fault handling features in ARMv6-M

and ARMv7-M processors. The most significant difference is that the ARMv7-M

architecture supports an extra three fault exception types, which are configurable.

The additional fault exceptions in ARMv7-M architecture have programmable priority

levels and enable some of the faults to be dealt with using lower priority exception

handlers, while high priority interrupt services are still serviced. These fault exceptions are

disabled by default, so all fault events are managed by HardFault handlers. When enabled,

if the fault event occurs when the current priority is lower than the corresponding

configurable fault exception, the corresponding configurable fault handler is executed.

Otherwise, it will escalate to the HardFault handler.

Additional fault status registers are also available to provide information about what

caused the fault. These registers can be used by the fault handlers or the debugger, to

provide fault details to the software developers.

Start

HardFault
handler

SP valid?

Call main
body of

handler in C

YN

Deal with
stack error

first

Return

Figure 11.4
Adding of SP checking in assembly wrapper.

Fault Handling 289

Table 11.3: Comparison for fault handling features in various Cortex�-M processors

ARM6-M

(Cortex�-M0,

Cortex-M0þ
processors)

ARM7-M

(Cortex-M3,

Cortex-M4

processors)

ARM7-M

(Cortex-M7

processor) Notes

HardFault exception Y Y Y For faults at start-up
sequence or fault escalation
(configurable fault exception
not available)

Bus Fault exception e Y Y For bus error response and
unprivileged access to system
control space

MemManage Fault
exception

e Y Y For MPU access violation and
execution from XN memory

Usage Fault exception e Y Y For other software-generated
fault

Fault Status Registers
for debugger

Y Y Y Debug Fault Status Register
(DFSR) indicates the source
of a debug event

Fault Status Registers
for application software

e Y Y Fault Status Registers that
provide hints about the cause
of the fault

Fault Address Registers e Y Y A register to indicate the
memory address that is
associated with a BusFault/
MemManage fault event

Auxiliary Fault Status
Register

e Y e For additional device-specific
fault information

Auxiliary Bus Fault
Status Register

e e Y Indicates which bus interface
triggered a bus fault

290 Chapter 11

CHAPTER 12

Memory Protection Unit

12.1 What is MPU?

The Memory Protection Unit (MPU) is a programmable block inside the processor that

defines memory attributes (e.g., cacheable, bufferable, see Section 7.8) and memory access

permissions. It is an optional feature for the Cortex�-M0þ, Cortex-M3, Cortex-M4, and

Cortex-M7 processors, but is not available on the Cortex-M0 processor. As it is optional,

some of the Cortex-M0þ microcontrollers have the MPU feature (e.g., the STM32L053

microcontroller used in the STM32L0 Discovery board) and some do not (to reduce

silicon area and power consumption).

Unlike most other features, the MPU does not bring performance gains to embedded

applications. MPU is used to detect problems in the system (e.g., when an application task

behaves erroneously by trying to access a memory location which is invalid or

disallowed). If a problem is detected, the HardFault exception is triggered. If the

application is working perfectly, the MPU should never trigger any fault exception. In fact,

many of the microcontroller applications do not need MPU.

However, as we know it, things can go wrong from time to time. In those cases, the MPU

can be used to make an embedded system more robust, and in some cases make the

system more secure by:

• Preventing application tasks from corrupting stack or data memory used by other tasks

and the OS kernel,

• Preventing unprivileged tasks from accessing certain peripherals that can be critical to

the reliability or security of the system,

• Defining SRAM or RAM space as nonexecutable (eXecute Never, XN) to prevent code

injection attacks.

You can also use the MPU to define other memory attributes such as “cacheable” which

can be exported to system level cache unit or memory controllers. These system level

components can then make use of the memory attribute information to decide how a

memory access should be handled.

By default, the MPU is disabled, and the memory access permission and memory

attributes are defined by the default memory map as outlined in Chapter 7. The same

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00012-6

Copyright © 2015 Elsevier Inc. All rights reserved. 291

http://dx.doi.org/10.1016/B978-0-12-803277-0.00012-6

applies to Cortex-M processors without MPU. In such case, the default memory attributes

would be used.

The MPU contains a number of configuration registers, and these registers must be

programmed to define memory regions and the MPU must be enabled before being used.

If the MPU is not enabled, the behavior of the processor is the same as though no MPU

is present.

12.2 MPU Use Cases

You might wonderddo I need to use the MPU in my applications?

Simple/beginner’s projectdIf you are creating simple I/O control applications, or if you

are a beginner starting to learn microcontroller programming, it is unlikely that you should

need to use the MPU in your project unless the microcontroller device you are using have

system level cache and need the MPU to define cache behaviors.

Internet of thingsdIf you are creating Internet-related applications, or application that can

be exposed to an untrusted communication interface, the MPU can be useful to help

improve the security. For example, by defining memory ranges that are used as

communication buffers as nonexecutable address spaces to prevent code injection attacks.

Industrial control applicationsdIf you are creating applications that need to have high

reliability, the MPU is very useful for defining stack restrictions in a multitasking

system, and to detect unexpected faults (e.g., detection of unexpected accesses to certain

memory spaces).

Automotive applicationsdthe MPU is commonly used in the automotive segment. In some

of the commonly used automotive certification processes, e.g., ISO26262, it is essential to

demonstrate that software elements does not interfere each other, and therefore the MPU is

needed to handle memory partitioning.

We can classify the MPU usages into a range of use cases.

Security management

• Software components that are not trusted, or have a higher risk of being compromised

should be executed in unprivileged level, and the MPU can be used to restrict the

memory spaces that these components can access to. The memory access permissions

can also be applied to peripherals.

• RAM spaces that are used as communication buffers can contain malicious code

injected through communication interface. MPU can be used to define these memory

spaces as nonexecutable.

292 Chapter 12

System reliability

• In a multitasking system, the MPU can be used to define the valid memory space

for the stack of an application task. If an application task malfunctioned and

consumed more stack space than it should, the MPU can limit the stack usage so

that the task will not be able to corrupt stack space used by other application tasks

or the OS data.

• In systems without embedded OS, the MPU can be used to define a non-accessible

memory space at the end of the stack memory space so that a stack overflow can be

detected.

• In applications that have high functional safety requirements, the MPU can be used for

memory partitioning to ensure software components cannot affect each other. For

example, an application task running in unprivileged state cannot corrupt data or stack

used by the OS or other tasks.

• Some applications might copy program code into SRAM for execution, or copy the

vector table in the SRAM for faster access. After the program code or vector table has

been copied, the memory space can be defined as read only to prevent these memory

spaces getting changed accidentally.

Memory attributes management

• You can use the MPU to define which memory space should be cached, and the cache

behavior (e.g., write-through vs write-back).

• You can use the MPU setting to override the default memory types for certain memory

space.

Note: The MPU settings only affect the access right of program code running on the same

processor. In a multiprocessor system, MPU settings on one processor do not affect the

access right of another processor.

Some of the embedded OS have built-in support for the MPU. In such case, the MPU

configuration can be switched dynamically each time the OS switches context. So,

different application tasks can have different MPU configurations.

For systems that do not use any embedded OS or if the embedded OS used does not

support the MPU, the MPU can still be used with a static configuration.

In practice, it is not always possibly to completely isolate the memory space of

each software components. For example, many of the runtime library functions could

be shared, and data variables are placed together if the software components are

compiled together. However, stack spaces of different application tasks can be

separated easily and stack protection is often critical in applications that require

functional safety.

Memory Protection Unit 293

12.3 Technical Introduction

The MPU works by defining a number of memory regions and restrict the memory

accesses into these regions. The restrictions apply to both data and instruction accesses

when the MPU is enabled. If the processor tries to access to a memory location not

covered with a defined memory region, or if the access violated the memory access

permission set by the memory region, the HardFault exception would be triggered and the

access would be blocked before the access reach the memory system. The HardFault

exception handler can then decide what to do next, for example, if the system should be

reset or just terminate the offending task in an OS environment.

The MPU in the Cortex�-M0þ processor supports up to eight programmable memory

regions and an optional background region. Each programmable region can have its own:

• starting addresses,

• sizes, and

• settings (memory attributes, access permissions).

Some of the details for the MPU in the Cortex-M0þ are the same as in the MPU in the

Cortex-M3 and Cortex-M4 processors, which also support eight programmable regions.

The MPU in the Cortex-M7 processor can support 8 or 16 regions, depending on the

choice of the chip designers. Details about the comparisons of the MPU are covered in

Section 12.9.

In ARMv6-M and ARMv7-M architectures, MPU regions can be overlapped. If a memory

location falls in two programmed MPU regions, the memory access attributes and

permission will be based on the highest-numbered region. For example, if a transfer

address is within the address range defined for region 1 and region 4, the region 4 settings

will be used.

By default, the MPU access permissions are bypassed when the processor is running Non-

Maskable Interrupt (NMI) or HardFault handler. For example, the MPU might be used as a

mechanism to detect stack limit by allocating a small SRAM space at the bottom of the

stack as non accessible. When the stack limit is reached, the HardFault handler can bypass

the MPU restriction and utilize the reserved SRAM space for fault handling.

12.4 MPU Registers

The MPU contains a number of memory mapped registers. These registers are located in

the System Control Space (SCS). The CMSIS-CORE header file has defined a data

structure for MPU registers to allow them to be accessed easily. A summary of these

registers is shown in Table 12.1.

294 Chapter 12

As in other registers in the SCS, the MPU registers are privileged accesses only.

They prevent the unprivileged programs to bypass the security management imposed

using MPU.

In ARM� ARMv6-M architecture, the MPU registers can be accessed by 32-bit memory

access instructions only.

12.4.1 MPU Type Register

The first register is the MPU Type register. The MPU Type register can be used to

determine whether the MPU is fitted. If the DREGION field is read as 0, the MPU is not

implemented (see Table 12.2).

Table 12.1: Summary of the MPU registers

Addresses Registers

CMSIS-CORE

symbol Functions

0xE000ED90 MPU Type Register MPU->TYPE Provides information about
the MPU

0xE000ED94 MPU Control Register MPU->CTRL MPU enable/disable and
background region control

0xE000ED98 MPU Region Number Register MPU->RNR Select which MPU region to be
configured

0xE000ED9C MPU Region Base Address
Register

MPU->RBAR Defines base address of a MPU
region

0xE000EDA0 MPU Region Base Attribute
and Size Register

MPU->RASR Defines size and attributes of a
MPU region

Table 12.2: MPU Type Register (MPU->TYPE, 0xE000ED90)

Bits Name Type Reset value Description

23:16 IREGION R 0 Number of instruction regions
supported by this MPU;
because ARMv6-M architecture
uses a unified MPU, this is
always 0.

15:8 DREGION R 0 or 8 Number of regions supported
by this MPU; in the Cortex�-
M0þ processors, this is either
0 (MPU not present) or 8
(MPU present).

0 SEPARATE R 0 This is always 0 as the MPU is
unified.

Memory Protection Unit 295

12.4.2 MPU Control Register

The MPU is controlled by a number of registers. The first one is the MPU Control

Register (see Table 12.3). This register has three control bits. After reset, the reset value of

this register is zero, which disables the MPU. To enable the MPU, the software should first

set up the settings for each MPU regions, and then set the ENABLE bit in the MPU

Control Register.

The PRIVDEFENA bit in the MPU Control Register is used to enable the background

region (region “minus 1”). By using PRIVDEFENA and if no other regions are set up,

privileged programs will be able to access all memory locations, and only unprivileged

programs will be blocked. However, if other MPU regions are programmed and enabled,

they can override the background region. For example, for two systems with similar region

setups but only one with PRIVDEFENA set to 1 (the right-hand side in Figure 12.1), the

one with PRIVDEFENA set to one will allow privileged access to background regions.

The HFNMIENA is used to define the behavior of the MPU during execution of NMI,

HardFault handlers, or when FAULTMASK is set. By default, the MPU is bypassed

(disabled) in these cases. This allows the HardFault handler and the NMI Handler to

execute even if the MPU was set up incorrectly.

Setting the enable bit in the MPU Control Register is usually the last step in the MPU

setup code. Otherwise, the MPU might generate faults accidentally before the region

configuration is done. In many cases, especially in embedded OS with dynamic MPU

configurations, the MPU should be disabled at the start of the MPU configuration routine

to make sure that the HardFault will not be triggered accidentally during configuration of

MPU regions.

Table 12.3: MPU Control Register (MPU->CTRL, 0xE000ED94)

Bits Name Type Reset value Description

2 PRIVDEFENA R/W 0 Privileged default memory map enable.
When set to 1 and if the MPU is enabled,
the default memory map will be used for
privileged accesses as a background
region. If this bit is not set, the
background region is disabled and any
access not covered by any enabled region
will cause a fault.

1 HFNMIENA R/W 0 If set to 1, it enables the MPU during the
HardFault handler and NMI handler;
otherwise, the MPU is not enabled for the
HardFault handler and NMI.

0 ENABLE R/W 0 Enables the MPU if set to 1.

296 Chapter 12

12.4.3 MPU Region Number Register

The next MPU Control Register is the MPU Region Number register (see Table 12.4),

before each region is set up, write to this register to select the region to be programmed.

12.4.4 MPU Region Base Address Register

The starting address of each region is defined by the MPU Region Base Address register

(see Table 12.5). Using the VALID and REGION fields in this register, we can skip the

step of programming the MPU Region Number register. This can reduce the complexity of

the program code, especially if the whole MPU setup is defined in a lookup table.

Region 0

Region 1

Region 2

Region 3

PRIVDEFENA = 0 PRIVDEFENA = 1

0

4 GB

Region 0

Region 1

Region 2

Region 0
permission

Access not
allowed

Region 1
permission

Region 2
permission

Region 3
permission

override
region 2

Access not
allowed

0

4 GB

Region 0
permission

Privileged
accesses only

Region 1
permission

Region 2
permission

Region 3
permission

override
region 2

Privileged
accesses only

Region -1

Region -1

Region 3

Figure 12.1
The effect of the PRIVDEFENA bit (background region enable).

Table 12.4: MPU Region Number Register (MPU->RNR, 0xE000ED98)

Bits Name Type Reset value Description

7:0 REGION R/W e Select the region that is being programmed. Since
eight regions are supported in the MPU, only bit
[2:0] of this register is implemented.

Memory Protection Unit 297

12.4.5 MPU Region Base Attribute and Size Register

The properties of each region also need to be defined. This is controlled by the MPU

Region Base Attribute and Size register (see Table 12.6).

The REGION SIZE field (5 bits) in the MPU Region Base Attribute and Size register

determines the size of the region (see Table 12.7).

The Sub-Region Disable field (bit[15:8] of the MPU Region Base Attribute and Size

register) is used to divide a region into eight equal subregions and then to define each as

Table 12.5: MPU Region Base Address Register (MPU->RBAR, 0xE000ED9C)

Bits Name Type Reset value Description

31:N ADDR R/W e Base address of the region; N is dependent on the
region sizedfor example, a 64-kB size region will have
a base address field of [31:16].

4 VALID R/W e If this is 1, the REGION defined in bit[3:0] will be
used in this programming step; otherwise, the region
selected by the MPU Region Number register is used.

3:0 REGION R/W e This field overrides the MPU Region Number register
if VALID is 1; otherwise it is ignored. Since eight
regions are supported in the Cortex�-M3 and Cortex-
M4 MPU, the region number override is ignored if the
value of the REGION field is larger than 7.

Table 12.6: MPU Region Base Attribute and Size Register (MPU->RASR, 0xE000EDA0)

Bits Name Type Reset value Description

31:29 Reserved e e e
28 XN R/W e Instruction Access Disable (1 ¼ Disable

instruction fetch from this region; an
attempt to do so will result in a memory
management fault)

27 Reserved e e e
26:24 AP R/W e Data Access Permission field
23:22 Reserved e e e
21:19 TEX R/W e Type Extension fielddalways 0 in

ARMv6-M
18 S R/W e Shareable
17 C R/W e Cacheable
16 B R/W e Bufferable
15:8 SRD R/W e Sub-Region Disable
7:6 Reserved e e
5:1 REGION SIZE R/W e MPU Protection Region size
0 ENABLE R/W e Region enable

298 Chapter 12

enabled or disabled. If a subregion is disabled and overlaps another region, the access

rules for the other region are applied. If the subregion is disabled and does not overlap

any other region, access to this memory range will result in a HardFault exception.

The data Access Permission (AP) field (bit[26:24]) defines the AP of the region

(see Table 12.8).

The XN (Execute Never) field (bit[28]) decides whether an instruction fetch from this

region is allowed. When this field is set to 1, all instructions fetched from this region will

generate a HardFault exception when they enter the execution stage.

The TEX (Type Extension), S (Shareable), B (Bufferable), and C (Cacheable) fields (bit

[21:16]) are more complex. These memory attributes are exported to the bus system

Table 12.7: Encoding of REGION SIZE field for different memory region sizes

REGION size Size REGION size Size

b00000 Reserved b10000 128 KB
b00001 Reserved b10001 256 KB
b00010 Reserved b10010 512 KB
b00011 Reserved b10011 1 MB
b00100 Reserved b10100 2 MB
b00101 Reserved b10101 4 MB
b00110 Reserved b10110 8 MB
b00111 256 byte b10111 16 MB
b01000 512 byte b11000 32 MB
b01001 1 KB b11001 64 MB
b01010 2 KB b11010 128 MB
b01011 4 KB b11011 256 MB
b01100 8 KB b11100 512 MB
b01101 16 KB b11101 1 GB
b01110 32 KB b11110 2 GB
b01111 64 KB b11111 4 GB

Table 12.8: Encoding of AP field for various access permission configurations

AP Value Privileged access User access Description

000 No access No access No access
001 Read/Write No access Privileged access only
010 Read/Write Read only Write in a user program generates a fault
011 Read/Write Read/Write Full access
100 Unpredictable Unpredictable Unpredictable
101 Read only No access Privileged read only
110 Read only Read only Read only
111 Read only Read only Read only

Memory Protection Unit 299

together with each instruction and data accesses, and the information can be used by the

bus system such as write buffers or cache units, as shown in Figure 12.2.

Although the Cortex�-M0þ processor do not include cache controllers, the

implementation follows the ARMv6-M architecture, which can support external cache

controllers on the system bus level, including advanced memory systems with caching

capabilities. Therefore, the region access properties S, B, and C fields should be

programmed correctly to support different types of memory or devices. The

definition of these bit fields are shown in Table 12.9. There is also a TEX field which

Cortex-M0+
Processor

Processor
Core MPU

Memory
accesses

Memory
accesses

System
Level
Cache

Memory
Controller Memory

Memory accesses a ributes

Microcontroller

Memory
accesses

Memory
accesses

Figure 12.2
Memory attributes can be exported to system-level components like L2 cache and memory

controller.

Table 12.9: Memory attributes (TEX is always 0 in ARMv6-M architecture)

TEX C B Description Region shareability

b000 0 0 Strongly ordered (transfers carry out and complete in
programmed order)

Shareable

b000 0 1 Shared device (write can be buffered) Shareable
b000 1 0 Outer and inner write-through; no write allocate [S]
b000 1 1 Outer and inner write-back; no write allocate [S]
b001 0 0 Outer and inner non-cacheable

(not supported)
[S]

b001 0 1 Reserved Reserved
b001 1 0 Implementation defined (not supported) e
b001 1 1 Outer and inner write-back; write and read allocate

(not supported)
[S]

b010 0 0 Nonshared device (not supported) Not shared
b010 0 1 Reserved Reserved
b010 1 X Reserved Reserved
b1BB A A Cached memory; BB ¼ outer policy, AA ¼ inner policy

(not supported)
[S]

Note: [S] indicates that shareability is determined by the S-bit field (shared by multiple processors).

300 Chapter 12

enables two levels of cache attributes. However, this is not supported in ARMv6-M

architecture and therefore is always set to 0 in the Cortex-M0þ processor.

However, in many microcontrollers, these memory attributes are not used by the bus

system and only the B (Bufferable) attribute affects the write buffer in some of the

peripheral bus bridge designs.

If the microcontroller device you use supports cache, you will need to set up the memory

attributes correctly based on the type of memory or devices in the memory regions. In

most cases, the memory attributes can be configured as shown in Table 12.10.

The shareable attribute is important for multiprocessor systems with caches. In

these systems, if a transfer is marked as shareable, then the cache system might

need to do extra work to ensure data coherency between the caches for different

processors (Figure 12.3). In single processor systems, the shareable attribute is normally

not used.

Table 12.10: Commonly used memory attributes in microcontrollers

Type Memory type Commonly used memory attributes

ROM, flash
(program memories)

Normal memory Nonshareable, write-through
C ¼ 1, B ¼ 0, TEX ¼ 0, S ¼ 0

Internal SRAM Normal memory Shareable, write-through
C ¼ 1, B ¼ 0, TEX ¼ 0, S ¼ 1/S ¼ 0

External RAM Normal memory Shareable, write-back
C ¼ 1, B ¼ 1, TEX ¼ 0, S ¼ 1/S ¼ 0

Peripherals Device Shareable devices
C ¼ 0, B ¼ 1, TEX ¼ 0, S ¼ 1/S ¼ 0

CPU CPU

Cache Cache

Bus

Memory

Cache coherency
management

Figure 12.3
Cache coherency in multiprocessor systems need shareable attribute.

Memory Protection Unit 301

12.5 Setting Up the MPU

Most simple applications do not require MPU. By default, the MPU is disabled and the

system works as if the MPU is not present. Before using the MPU, you need to work out

what memory regions the program or application tasks need to (and are allowed to) access.

• Program code for privileged applications including handlers and OS kernel, typically

privileged accesses only.

• Data memory including stack for privileged applications including handlers and OS

kernel, typically privileged accesses only.

• Program code for unprivileged applications (application tasks), full access.

• Data memory including stack for unprivileged applications (application tasks), full

accesses.

• Peripherals that are for privileged applications including handlers and OS kernel, privi-

leged accesses only.

• Peripherals that can be used by unprivileged applications (application tasks), full

accesses.

The MPU is designed to be optimized for minimum silicon size and minimum power. As a

result, there are some restrictions on the memory region configurations:

• The size of the memory region must be a power of 2, ranges from 256 bytes to 4 GB.

• The starting address of a memory region must be aligned to an integer multiple value of

the region size.

When defining the address and size of the memory region, one must be aware of these two

restrictions. For example, if the region size is 4 KB (0x1000), the starting address must be

“N x 0x1000” where N is an integer (see Figure 12.4).

4KB region aligned
to mul plica on

of region size
0x08004000

0x08005000

0x08006000

Allowed

4KB region not
aligned to

mul plica on of
region size

0x08004000

0x08005000

0x08006000

Not
AllowedsserddAsserddA

Figure 12.4
Memory Protection Unit region addresses must be aligned to integer multiplication of the

region sizes.

302 Chapter 12

If the goal for using the MPU is to prevent unprivileged tasks from accessing certain

memory regions, the background region feature is very useful as it reduces the setup

steps required. You only need to set up the region setting for unprivileged tasks, and

privileged tasks and handlers have full access to other memory spaces using the

background region.

There is no need to set up memory regions for Private Peripheral Bus (PPB) address

ranges (including SCS) and the Vector table. Accesses to PPB (including MPU, NVIC,

SysTick, ITM) are always allowed in privileged state, and vector fetches are always

permitted by the MPU.

The HardFault handler (void HardFault_Handler(void)) should always be defined if you are

going to use the MPU.

By default, the vector table in startup code should contain the exception vector definition

for the HardFault handler. If you are using vector table relocation feature, you might need

to ensure that the vector table is set up accordingly. More information about using fault

handlers is covered in Chapter 11.

To help setting the MPU, we define a number of constant values:

#define MPU_DEFS_RASR_SIZE_256B (0x07 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_512B (0x08 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_1KB (0x09 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_2KB (0x0A << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_4KB (0x0B << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_8KB (0x0C << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_16KB (0x0D << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_32KB (0x0E << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_64KB (0x0F << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_128KB (0x10 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_256KB (0x11 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_512KB (0x12 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_1MB (0x13 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_2MB (0x14 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_4MB (0x15 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_8MB (0x16 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_16MB (0x17 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_32MB (0x18 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_64MB (0x19 << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_128MB (0x1A << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_256MB (0x1B << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_512MB (0x1C << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_1GB (0x1D << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_2GB (0x1E << MPU_RASR_SIZE_Pos)
#define MPU_DEFS_RASR_SIZE_4GB (0x1F << MPU_RASR_SIZE_Pos)

Memory Protection Unit 303

#define MPU_DEFS_RASE_AP_NO_ACCESS (0x0 << MPU_RASR_AP_Pos)
#define MPU_DEFS_RASE_AP_PRIV_RW (0x1 << MPU_RASR_AP_Pos)
#define MPU_DEFS_RASE_AP_PRIV_RW_USER_RO (0x2 << MPU_RASR_AP_Pos)
#define MPU_DEFS_RASE_AP_FULL_ACCESS (0x3 << MPU_RASR_AP_Pos)
#define MPU_DEFS_RASE_AP_PRIV_RO (0x5 << MPU_RASR_AP_Pos)
#define MPU_DEFS_RASE_AP_RO (0x6 << MPU_RASR_AP_Pos)
#define MPU_DEFS_NORMAL_MEMORY_WT (MPU_RASR_C_Msk)
#define MPU_DEFS_NORMAL_MEMORY_WB (MPU_RASR_C_Msk j MPU_RASR_B_Msk)
#define MPU_DEFS_NORMAL_SHARED_MEMORY_WT (MPU_RASR_C_Msk j MPU_RASR_S_Msk)
#define MPU_DEFS_NORMAL_SHARED_MEMORY_WB (MPU_DEFS_NORMAL_MEMORY_WB j MPU_RASR_S_Msk)
#define MPU_DEFS_SHARED_DEVICE (MPU_RASR_B_Msk)
#define MPU_DEFS_STRONGLY_ORDERED_DEVICE (0x0)

For a simple case of only four required regions, the MPU setup code can be written as a

simple loop, with the configuration for the MPU->RBAR and MPU->RASR coded as a

constant table:

// ---
int mpu_setup(void)
{

uint32_t i;
uint32_t const mpu_cfg_rbar[4] = {

0x08000000, // Flash address for STM32L0
0x20000000, // SRAM
IOPPERIPH_BASE, // GPIO base address
USART1_BASE // USART base address
};

uint32_t const mpu_cfg_rasr[4] = {
(MPU_DEFS_RASR_SIZE_64KB j MPU_DEFS_NORMAL_MEMORY_WT j
MPU_DEFS_RASE_AP_FULL_ACCESS j MPU_RASR_ENABLE_Msk), // Flash

(MPU_DEFS_RASR_SIZE_8KB j MPU_DEFS_NORMAL_MEMORY_WT j
MPU_DEFS_RASE_AP_FULL_ACCESS j MPU_RASR_ENABLE_Msk), // SRAM

(MPU_DEFS_RASR_SIZE_4KB j MPU_DEFS_SHARED_DEVICE j
MPU_DEFS_RASE_AP_FULL_ACCESS j MPU_RASR_ENABLE_Msk), // GPIO A to GPIO D
(MPU_DEFS_RASR_SIZE_2KB j MPU_DEFS_SHARED_DEVICE j
MPU_DEFS_RASE_AP_FULL_ACCESS j MPU_RASR_ENABLE_Msk) // USART

};
if (MPU->TYPE==0) {return 1;} // NO MPU: Return 1 to indicate error
__DMB(); // Make sure outstanding transfers are done
MPU->CTRL = 0; // Disable the MPU
for (i=0;i<4;i++) { // Configure only 4 regions

MPU->RNR = i; // Select which MPU region to configure
MPU->RBAR = mpu_cfg_rbar[i]; // Configure region base address register
MPU->RASR = mpu_cfg_rasr[i]; // Configure region attribute and size register
}

for (i=4;i<8;i++) {// Disabled unused regions
MPU->RNR = i; // Select which MPU region to configure
MPU->RBAR = 0; // Configure region base address register
MPU->RASR = 0; // Configure region attribute and size register
}

304 Chapter 12

MPU->CTRL = MPU_CTRL_ENABLE_Msk; // Enable the MPU
__DSB(); // Memory barriers to ensure subsequence data & instruction
__ISB(); // transfers using updated MPU settings
return 0; // No error

}
// ---

A simple check was added in the beginning of the function to detect if the MPU is

present. If the MPU is not available, the function exits with a value of 1 to indicate the

error. Otherwise it returns 0 to indicate successful operations.

The example code also programs unused MPU regions to make sure that unused MPU

regions are disabled. This is important for systems that configure MPU dynamically

because an unused region could have been programmed to be enabled previously.

The flow for this simple MPU setup function is illustrated by Figure 12.5.

Check MPU Type register
to see if MPU exist and

there are enough regions
Error

No
Yes

Disable MPU

Select region #i
Program region
base address

and configuration

Enable MPU

MPU setup
completed

Region selection and
programming of region

registers can be combined
in one step

Loop n times

Select region #i

Disable unused
regions

Loop 8-n times

Figure 12.5
Example steps to set up the Memory Protection Unit (MPU).

Memory Protection Unit 305

To simplify the operation, the selection of MPU region to be programmed can be merged

into the programming of MPU->RBAR, as shown in the following code:

// ---
int mpu_setup(void)
{

uint32_t i;
uint32_t const mpu_cfg_rbar[4] = {

// Flash address for STM32L0
(0x08000000j MPU_RBAR_VALID_Msk j (MPU_RBAR_REGION_Msk & 0)),
// SRAM
(0x20000000j MPU_RBAR_VALID_Msk j (MPU_RBAR_REGION_Msk & 1)),
// GPIO base address
(IOPPERIPH_BASEj MPU_RBAR_VALID_Msk j (MPU_RBAR_REGION_Msk & 2)),
// USART base address
(USART1_BASEj MPU_RBAR_VALID_Msk j (MPU_RBAR_REGION_Msk & 3))
};

uint32_t const mpu_cfg_rasr[4] = {
(MPU_DEFS_RASR_SIZE_64KB j MPU_DEFS_NORMAL_MEMORY_WT j
MPU_DEFS_RASE_AP_FULL_ACCESS j MPU_RASR_ENABLE_Msk), // Flash

(MPU_DEFS_RASR_SIZE_8KB j MPU_DEFS_NORMAL_MEMORY_WT j
MPU_DEFS_RASE_AP_FULL_ACCESS j MPU_RASR_ENABLE_Msk), // SRAM

(MPU_DEFS_RASR_SIZE_4KB j MPU_DEFS_SHARED_DEVICE j
MPU_DEFS_RASE_AP_FULL_ACCESS j MPU_RASR_ENABLE_Msk), // GPIO A to GPIO D

(MPU_DEFS_RASR_SIZE_2KB j MPU_DEFS_SHARED_DEVICE j
MPU_DEFS_RASE_AP_FULL_ACCESS j MPU_RASR_ENABLE_Msk) // USART

};
if (MPU->TYPE==0) {return 1;} // Return 1 to indicate error
__DMB(); // Make sure outstanding transfers are done
MPU->CTRL = 0; // Disable the MPU
for (i=0;i<4;i++) { // Configure only 4 regions

MPU->RBAR = mpu_cfg_rbar[i]; // Configure region base address register
MPU->RASR = mpu_cfg_rasr[i]; // Configure region attribute and size register
}

for (i=4;i<8;i++) {// Disabled unused regions
MPU->RNR = i; // Select which MPU region to configure
MPU->RBAR = 0; // Configure region base address register
MPU->RASR = 0; // Configure region attribute and size register
}

MPU->CTRL = MPU_CTRL_ENABLE_Msk; // Enable the MPU
__DSB(); // Memory barriers to ensure subsequence data & instruction
__ISB(); // transfers using updated MPU settings
return 0; // No error

}
// ---

306 Chapter 12

These configuration methods shown so far assume that we know the required settings in

advance. If not, we might need to create some generic functions to make the MPU

configuration easier. For example, we can create the following C functions:

// ---
// Enable MPU with input options
// Options can be MPU_CTRL_HFNMIENA_Msk or MPU_CTRL_PRIVDEFENA_Msk
void mpu_enable(uint32_t options)
{

MPU->CTRL = MPU_CTRL_ENABLE_Msk j options; // Disable the MPU
__DSB(); // Ensure MPU settings take effects
__ISB(); // Sequence instruction fetches using update settings
return;

}
// Disable the MPU.
void mpu_disable(void)
{

__DMB(); // Make sure outstanding transfers are done
MPU->CTRL = 0; // Disable the MPU
return;

}
// Function to disable a region (0 to 7)
void mpu_region_disable(uint32_t region_num)
{

MPU->RNR = region_num;
MPU->RBAR = 0;
MPU->RASR = 0;
return;

}
// Function to enable a region
void mpu_region_config(uint32_t region_num, uint32_t addr, uint32_t size, uint32_t
attributes)
{

MPU->RNR = region_num;
MPU->RBAR = addr;
MPU->RASR = size j attributes;
return;

}

After these functions are created, we can configure the MPU using these functions:

int mpu_setup(void)
{

if (MPU->TYPE==0) {return 1;} // NO MPU: Return 1 to indicate error
mpu_disable();

Memory Protection Unit 307

mpu_region_config(0, 0x08000000, MPU_DEFS_RASR_SIZE_64KB,
MPU_DEFS_NORMAL_MEMORY_WT j MPU_DEFS_RASE_AP_FULL_ACCESS j
MPU_RASR_ENABLE_Msk), // Region 0 - Flash

mpu_region_config(1, 0x20000000, MPU_DEFS_RASR_SIZE_8KB,
MPU_DEFS_NORMAL_MEMORY_WT j MPU_DEFS_RASE_AP_FULL_ACCESS j
MPU_RASR_ENABLE_Msk), // Region 1 - SRAM

mpu_region_config(2, IOPPERIPH_BASE, MPU_DEFS_RASR_SIZE_4KB,
MPU_DEFS_SHARED_DEVICE j MPU_DEFS_RASE_AP_FULL_ACCESS j
MPU_RASR_ENABLE_Msk), // Region 2 - GPIO A to GPIO D

mpu_region_config(3, USART1_BASE, MPU_DEFS_RASR_SIZE_2KB,
MPU_DEFS_SHARED_DEVICE j MPU_DEFS_RASE_AP_FULL_ACCESS j
MPU_RASR_ENABLE_Msk), // Region 3 - USART

mpu_region_disable(4);// Disabled unused regions
mpu_region_disable(5);
mpu_region_disable(6);
mpu_region_disable(7);
mpu_enable(0); // Enable the MPU with no additional option
return 0; // No error

}

12.6 Memory Barrier and MPU Configuration

In the examples shown, we have added a number of memory barrier instructions in the

MPU configuration code.

• Data Memory Barrier (DMB). This is used before disabling the MPU to ensure that

there is no reordering of data transfers and if there is any outstanding transfer, we

wait until the transfer is completed before writing to the MPU Control Register

(MPU->CTRL) to disable the MPU.

• Data Synchronization Barrier (DSB). This is used after enabling the MPU to ensure that

the subsequent ISB instruction is executed only after the write to the MPU Control

Register is completed. This also ensures all subsequent data transfers use the new

MPU settings.

• Instruction Synchronization Barrier (ISB). This is used after the DSB to ensure the pro-

cessor pipeline is flushed and subsequent instructions are refetched again with updated

MPU settings.

The use of these memory barriers are based on architecture recommendations. Omitting

these memory barriers on the Cortex�-M0þ processor rarely causes any failure due to

simple nature of the processor pipeline: the processor can only handle one data transfer at

any time. The only case where an ISB is really needed is when the MPU settings are updated

and the subsequent instruction access can only be carried out using the new MPU settings.

However, from software portability point of view, these memory barriers are important

because it allows the software to be reused on all Cortex-M processors.

308 Chapter 12

If the MPU is used by an embedded OS and the MPU configuration is done inside the

context switching operation, which is typically within the PendSV exception handler, the

ISB instruction is not required from architecture point of view because the exception

entrance and exit sequence also has the ISB effect.

Additional information about the use of memory barriers on the Cortex-M processors can

be found on ARM� application note 321, A Programmer Guide to the Memory Barrier

instruction for ARM Cortex-M Family Processor (reference 8).

12.7 Using Sub-Region Disable

The Sub-Region Disable (SRD) feature is used to divide an MPU region into eight equal

parts and set each of them enabled or disabled individually. This feature can be used in a

number of ways:

12.7.1 Allow Efficient Memory Separation

The SRD enables more efficient memory usage while allowing protection to be

implemented. For example, assumed that task A needs 5 KB of stack and task B needs

3 KB of stack, and the MPU is used to separate the stack space, the memory arrangement

without SRD feature will need 8 KB for task A’s stack and 4 KB for task B’s stack, as

shown in Figure 12.6.

Stack for
Task A
(5KB)

0x20008000

0x20010000

Stack for
Task B
(3KB)

8K Region
when running

Task A

4K Region
when running

Task B

Figure 12.6
Without Sub-Region Disable, more memory space could be wasted because of region size and

alignment requirements.

Memory Protection Unit 309

With the SRD, we can reduce the memory usage by overlapping the two memory regions,

and use SRD to prevent the application task to access the other task’s stack space, as

shown in Figure 12.7.

12.7.2 Reduce the Total Number of Regions Needed

When defining peripheral access permissions, very often you might find that some

peripherals need to be accessed by unprivileged tasks and some must be protected and

have to be privileged access only. To implement the protection without SRD, we might

need to use a large number of regions.

Since the peripherals usually have the same address size, we can easily apply SRD to

define the access permissions. For example, we can define a region (or use the background

region feature) to enable privileged accesses to all peripherals. Then define a higher

numbered region which overlapped the peripheral address space as FULL ACCESS

(accessible by unprivileged task), and use SRD to mask out the peripherals that has

privileged access only. A simple illustration is shown in Figure 12.8.

12.8 Considerations When Using MPU

A number of aspects need to be considered when using the MPU. In many cases, when the

MPU is used with an embedded OS, it is highly desirable to have MPU support built-in

Stack for
Task A
(5KB)

0x20008000

0x20010000
Stack for

Task B
(3KB)

8K Region when
running Task A, with

SRD = 11100000
so that Task B stack

is not accessible

4K Region when
running Task B, with

SRD = 00000011
so that Task A stack is

not accessible

Figure 12.7
With Sub-Region Disable (SRD), regions can be overlapped but still separated for better memory

usage efficiency.

310 Chapter 12

with the OS being used. For example, a special version of FreeRTOS (called

FreeRTOS-MPU, www.freertos.org), and the OpenRTOS from Wittenstein High Integrity

Systems (www.highintegritysystems.com) can make use of the MPU features. It is also

possible to use the MPU with a static configuration with other RTOS, and use the stack

limit detection feature for stack overflow detection.

12.8.1 Program Code

In most cases, it can be difficult to isolate the program memory into different MPU

regions for different tasks because the tasks can share various functions, including

runtime library functions and device driver library functions. Also, if the application

tasks and the OS are compiled together, it can be difficult to have clear and well-

aligned address boundaries between each of the application tasks and the OS kernel,

which is needed for setting up the MPU regions. Typically the program memory (e.g.,

flash) can be defined as just one region, and might be configured with read only

access permission.

12.8.2 Data Memory

If the application tasks and OS are compiled together in one go, it is likely that some of

the data used by the application tasks and the OS will be mixed together. It is then

impossible to isolate the access permissions of individual data elements. You might need

Memory
Space

Device #7
(Unprivileged accessible)

Device #6
(Privileged only)

Device #5
(Privileged only)

Device #2
(Privileged only)

Sub Region
Disable

0

1

1

0

0

1

0

0

Background
Privileged Region

Foreground Full Access Region
with subregion disable set to

0x64 (01100100)

Privileged

Privileged

Privileged

Full Access

Full Access

Full Access

Full Access

Full Access

Device #4
(Unprivileged accessible)

Device #3
(Unprivileged accessible)

Device #1
(Unprivileged accessible)

Device #0
(Unprivileged accessible)

Figure 12.8
Using Sub-Region Disable to control access right to separate peripherals.

Memory Protection Unit 311

http://www.freertos.org
http://www.highintegritysystems.com

to compile the tasks separately and then use linker scripts or other methods to place the

data sections in the RAM manually. However, heap memory space might be needed to be

shared and cannot be protected using MPU.

Isolation of stack memory is usually easier to handle. You can reserve memory space in

the linking stage and force the application tasks to use the reserved space for stack

operations. Different embedded OS and tool chains have different ways to allocate stack

spaces.

12.9 Comparing with the MPU in the Cortex®-M3/M4/M7 Processors

The optional MPU in the Cortex-M0þ processor is fairly similar to the MPU in the

Cortex-M3, Cortex-M4 and Cortex-M7. There are a few differences, so if an MPU

configuration software has to be used on Cortex-M0þ as well as on Cortex-M3/M4/M7

Processors, the following areas (see Table 12.11) need to be taken care of.

The MPU memory attributes in ARMv6-M only support one level of cache policy.

Therefore the TEX field is always 0 in the Cortex-M0þ processor. On the ARMv7-M

architecture, the TEX can be set to non-zero value and enable separated inner and outer

cache schemes.

In addition, in ARMv7-M architecture, there is a configurable fault exception for handling

MPU-generated fault exception called MemManage fault (Memory Management Fault),

and additional fault status registers for easier diagnosis of the causes of the fault. By

default, the MemManage fault is disabled so that the HardFault would still be used, but

Table 12.11: Comparison of MPU features in Cortex�-M0þ processor to Cortex-M3/M4/M7

processors

ARMv6-M (Cortex-M0þ) ARMv7-M (Cortex-M3/M4/M7)

Number of regions 8 8 (all)/16 (Cortex-M7 only)
Unified I & D regions Y Y
Region address Y Y
Region size 256 bytes to 4 GB

(can use SRD to get to 32 bytes)
32 bytes to 4 GB

Region memory attributes S, C, B, XN TEX, S, C, B, XN
Region Access Permission (AP) Y Y
Sub-Region Disable (SRD) 8 bits 8 bits
Background region Yes (programmable) Yes (programmable)
MPU bypass for NM/HardFault Yes (programmable) Yes (programmable)
Alias of MPU registers N Y
MPU registers accesses Word size only Word/Halfword/Byte
Fault exception HardFault only HardFault/MemManage

312 Chapter 12

the MemManage fault can be enabled at runtime with a configurable priority level to allow

more flexible fault management.

Although the ARMv7-M architecture allows a smaller region size (down to 32 bytes), in

ARMv6-M with can use the 256 byte region size with Sub-Region Disable to set 32 byte

subregions. In ARMv7-M architecture sub-Region Disable cannot be used if the region

size is 128 bytes or less. So you get the same effective minimum region size.

Overall, the MPUs support similar level of memory protection features, and the software

porting between the two MPU types should be straight forward. However, the ARMv7-M

architecture supports a range of fault status registers that help fault handlers to manage the

fault events. This is not available in the ARMv6-M architecture. As a result, in most cases

a HardFault event in the Cortex-M0þ processor is considered as nonrecoverable (or fatal)

which require a reset or task termination, whereas in ARMv7-M architecture, it is possible

to recover from some of the MPU-related fault situations.

Memory Protection Unit 313

CHAPTER 13

Debug Features

13.1 Software Development and Debug Features

During software development, we often need to examine the operation of program

execution in detail, to understand why a program does not work as expected, or to ensure

correct operations. Although it is possible to provide some visibility of the program’s

operation using various peripheral interfaces such as using a UART to generate debug

messages, the level of details you can get through these interfaces is limited. In addition, it

is not always possible to debug some of the issues, especially if the program crashed

before the interface peripheral is initialized, or if the failure mechanism can be affected by

debug message reporting code.

As a result, the ARM� Cortex�-M processors integrate a number of debug features to

make it easier for software developers to find out what is happening inside the processors.

The debug features on the processor is only part of the story. We also need the following

items to support the debug operations (Figure 13.1).

• Debugger software on the debug host (e.g., personal computer) is needed to enable the

software developers to extract the debug information.

• Debug adaptor (typically a hardware unit) that connects between the debug host and the

microcontroller. Sometimes the adaptor is integrated in the development board.

• Debug interface on the microcontrollers.

Debug Host
(Personal Computer)

Debug Adaptor

USB connection

Debugger
software

Debug
connection

Microcontroller

Development
board

Figure 13.1
A classic microcontroller development environment.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00013-8

Copyright © 2015 Elsevier Inc. All rights reserved. 315

http://dx.doi.org/10.1016/B978-0-12-803277-0.00013-8

For some of the Cortex-M3, Cortex-M4, and Cortex-M7 microcontrollers, you might have

an additional trace interface for additional debug information to be sent to the debug host

in real time. The Cortex-M0 and Cortex-M0þ processors do not have such trace interface

and therefore will not be covered in this book.

In this chapter, we will cover a number of debug terms and some of these are listed in

Table 13.1. Note these terms are not standardized across all microcontroller architectures,

so the terms used by some microcontroller vendors can be different.

During software development, some of the debug features like breakpoint, watchpoints,

and single stepping are often needed. These debug features are now part of modern

processor design and part of the ARMv6-M and ARMv7-M architecture.

All the debug and trace features on the Cortex-M0 and Cortex-M0þ processor are

designed so that the debug operations can be performed on a target platform via a low-pin

count serial interface. In addition to debug operations, this interface can also be used for

device programming (in-system programmable). This is different from some older

Table 13.1: Common debug terminologies related to ARM® microcontrollers

Terms Descriptions

Halt Stopping of program execution due to a debug event (e.g., breakpoint or
watchpoint), or due to user debug request.

Breakpoint Program execution reaches an address marked as a breakpoint, causing a
debug event to be generated, which halts the processor.

Hardware breakpoint A hardware comparator is used to compare the current program address to a
reference address setup by the debugger. When the processor fetches and
executes an instruction from this address, the comparator generates a debug
event signal to stop the processor.

Software breakpoint A BreakPoint instruction (BKPT) is inserted to the program memory so that
program execution halts when it get to this address.

Watchpoint A data or peripheral address can be marked as a watched variable, and an
access to this address causes a debug event to be generated, which halts
program execution.

Debugger A piece of software running on a debug host (e.g., a personal computer) that
communicates with the debug system in a microcontroller, usually via a USB
adaptor (or an in-circuit debugger), so that the debug features of the
microcontroller can be accessed.

In-Circuit Debugger A piece of hardware that connects between the debug host (e.g., a personal
computer) and the microcontroller. Usually the connection to the debug
host is USB or ethernet, and the connection to the microcontroller is JTAG
or Serial Wire protocol. Various terminologies are used for In-Circuit
Debuggers: USB-JTAG adaptor, In-Circuit Emulator (ICE), JTAG/SW
emulator, Run-Time Control Unit, etc.

Profiling A feature in debugger that collects statistics of program execution. This is
very useful for performance analysis and software optimization.

316 Chapter 13

generation microcontrollers that require an emulator to emulate the microcontroller, or in

some other microcontroller products that require the microcontroller to be programmed,

prior to insertion in the target platform.

Another difference between ARM-based microcontrollers and some other microcontrollers

is that there is no need for a debug agent (a small piece of debug support software)

running on the processor to perform the debug operations. When the debug features are

accessed, the processor hardware performs the debug operation. As a result, the debug

operations do not require any program size overhead and does not affect any data in

memory including the stack.

13.2 Debug Interface
13.2.1 JTAG and Serial Wire Debug Communication Protocol

In order to access the debug features on the microcontroller, a debug interface is needed.

For ARM� Cortex�-M0 and Cortex-M0þ microcontrollers, this interface can either be the

JTAG (Joint Test Action Group) protocol or the Serial Wire debug protocol (Figure 13.2).

JTAGdMany microcontrollers support a serial protocol called JTAGdJoint Test Action

Group. JTAG protocol is an industry standard protocol (IEEE 1149.1) and can be used for

various functions such as chip-level or PCB-level testing, as well as access to debug fea-

tures inside microcontrollers. While JTAG is sufficient for many debug usage scenarios, it

needs at least 4 pins: TCK, TDI, TMS, and TDO, while the reset signal nTRST is optional.

Serial Wire DebugdThe Serial Wire debug protocol only needs two pins: SWCLK and

SWDIO. The Serial Wire debug protocol provides the same debug access features and

also supports parity error detection, which enables better reliability in systems with

higher electrical noises. Therefore the Serial Wire debug protocol is very attractive for

many microcontroller vendors and users.

TCK

TMS
TDO

TDI

nTRST (optional)

Debug

JTAG Debug interface

Debug

Serial Wire Debug interface

SWCLK (share with TCK)

SWDIO (share with TMS)

Figure 13.2
JTAG and Serial Wire debug interface.

Debug Features 317

Both protocols transfer the control information and data in serial bit sequences. Many

debug adaptors can support both protocols and they can share the same debug connector

layout (see appendix F, Debug Connector Arrangements).

JTAG is a four-pin or five-pin serial debug protocol that is commonly used for digital

component testing. The interface contains the following signals (Table 13.2).

Although the JTAG interface is commonly used and well supported, using four or five pins

for debug operations is too many for some microcontrollers with low-pin counts. As a result,

ARM developed the Serial Wire debug protocol, which uses only two pins (Table 13.3).

Although only two signals are required, the Serial Wire debug protocol can

offer better performance than JTAG and can provide the same processor debug

functionality. The Serial Wire debug protocol is already supported by most in-circuit

debuggers and debugger software tools that support the ARM Cortex-M processor

family.

Typically Cortex-M0 and Cortex-M0þ microcontrollers only support one of these debug

protocols to reduce power: mostly Serial Wire debug protocol because fewer pins are

needed.

The debug interface allows the following:

• The flash memory to be reprogrammed easily without the need to remove it from the

circuit board.

• Applications to be debugged and tested.

Table 13.2: Signals for JTAG debug connection

JTAG Signal Descriptions

TCK Clock signal
TMS Test Mode Select signaldcontrols the protocol state

transition.
TDI Test Data Indserial data input
TDO Test Data Outdserial data output
nTRST Test resetdActive-low asynchronous reset for a JTAG state

control unit called the TAP controller. The nTRST signal is
optional. Without nTRST, the TAP controller can be reset
with five cycles of TMS pulled high.

Table 13.3: Signals for Serial Wire debug connection

Serial Wire signal Descriptions

SWCLK Clock signal
SWDIO Data input/outputdbidirectional data and control communication

318 Chapter 13

• Production testing (e.g., a self-test application can be downloaded to the microcontroller

memory and executed, or boundary scan could be carried out via JTAG connection if it

is implemented in the microcontroller).

13.2.2 Cortex-M Processor and CoreSight™ Debug Architecture

Unlike most other processors, in ARM Cortex processors the debug interface and the

debug features of the processor are implemented in separate units. The processor design

contains a generic parallel bus interface that allows all the debug features to be accessed.

A separate debug interface block (called Debug Access Port in ARM documentation) is

used to convert a debug interface protocol to the parallel bus interface (Figure 13.3). This

arrangement is part of the CoreSight� debug architecture and it makes the ARM Cortex

processors debug solution flexible.

The use of the CoreSight debug architecture brings a number of advantages to the Cortex-

M0/M0þ processor and other processors in the Cortex-M processor family:

• By separating the debug interface from the main processor logic, the choice of debug

interface protocol is much more flexible, without affecting the underlying debug fea-

tures on the main processor logic.

• Multiple processors can share the same debug interface block, allowing a much more

scalable debug system. Other test logic can also be added to the system easily, as the

internal connection is a simple parallel bus interface.

• The design is consistent between all Cortex-M processors, making it easy for tool

vendors to support the whole Cortex-M processor family with one tool chain.

Details of the CoreSight debug architecture can be found in the ARM Web site.

Figure 13.3
Debug interface connection inside the processor.

Debug Features 319

For normal software development, it is not necessary to have an in-depth understanding of

CoreSight technology. For readers who would like to have a brief overview of the

CoreSight technology, a document called “CoreSight Technical Introduction” (ARM EPM

039795, reference 13) provides a good overview of the CoreSight Debug Architecture. In

addition, the ARM Debug Interface v5.2 (ARM IHI 0031C, reference 14) provides

detailed information on the Serial Wire debug protocol.

13.2.3 Design Considerations with Debug Interface

Many microcontroller products have the JTAG or Serial wire interface pin shared with the

peripheral interface or other I/O pins. When the debug interface pins are used for I/O,

usually by programming certain peripheral control registers to switch the usage to I/O, the

debugger cannot connect to the processor. Therefore when designing an embedded system,

you should avoid using the debug interface pins as I/O if you want to allow the system to

be debugged easily.

In some cases, if the pins are switched from debug mode to I/O very quickly after the

program starts, this could lock out the debugger completely. This is due to the debugger not

having enough time to connect and halt the processor before the pin usage is switched.

As a result, you cannot debug the application and cannot reprogram the flash memory. From

another point of view, you might be able to use it as a feature to block other people from

accessing the program code in the chip. However, this arrangement is not guaranteed to be

secure and can be worked around if the microcontroller’s design has a special boot mode

that can disable the application. Some microcontrollers have read-back protection features

to prevent access to the program images, which is a more secure solution. For details of

such features, please refer to the documentation from your microcontroller vendor.

13.3 Debug Features Overview

The Cortex�-M0 and Cortex-M0þ processors support a number of useful debug features.

For example:

• Halting, resume, and single stepping of program execution

• Access to processor core registers and special registers

• Hardware breakpoints (up to four comparators)

• Software breakpoints (BKPT instruction)

• Data watchpoints (up to two comparators)

• On-the-fly memory access (system memory can be accessed without stopping the processor)

• PC sampling for basic profiling

• Support JTAG or Serial Wire debug protocol

In addition, the Cortex-M0þ processor supports:

• Instruction trace using a debug component called Micro Trace Buffer (MTB)

320 Chapter 13

Theses debug features are vital for software development, and can be used for other tasks

like flash programming and product testing.

The debug features of the Cortex-M0 and Cortex-M0þ processors are based on the ARM�

CoreSight debug architecture. They are consistent between all Cortex-M processors,

making it easy for a debug tool to support all Cortex-M processors with little modification.

It is also very scalable, making it possible to build complex multiprocessor products using

the CoreSight debug architecture.

The designs of the Cortex-M0 and Cortex-M0þ processors allow the debug features to be

configurable. For example, system-on-chip designers can remove some or all of the debug

features, to reduce the circuit size for ultra-low power applications like wireless sensors. If

a debug interface is implemented, debugger software can also read various registers to

detect which debug features are implemented.

13.4 Debug System

The debug features on Cortex�-M0 and Cortex-M0þ processors are controlled by a

number of debug components. These debug components are connected together via an

internal bus system. However, application code running on the Cortex-M processor

cannot access these components (this is different from the Cortex-M3/M4/M7 processor,

where debug components can be accessed by application software). The debug

components can only be accessed by the debugger that connects to the microcontroller

(Figure 13.4).

There are a number of debug components in the Cortex-M0/Cortex-M0þ-based systems

(Table 13.4).

The debug system also allows access to the system’s memory map including flash, SRAM,

and peripherals. The accesses to the system memory can be carried out even when the

processor is running. By accessing the Application Interrupt and Reset Control Register in

the System Control Block (SCB), the debugger can also request a system reset to reset the

microcontroller.

Additional information about the debug components is covered in appendix E.

13.5 Halt Mode and Debug Events

The Cortex�-M0 and Cortex-M0þ processors have a halt mode that stops the program

execution and allows processor registers and memory space to be accessed by the

debugger. During halt mode:

• Instruction execution is stopped.

• SysTick timer stops counting.

Debug Features 321

• If the processor was in sleep mode, it wakes up from the sleep mode before halt.

• Registers in the processor’s register bank, as well as special registers, can be accessed

by the debugger (both read and write).

• Memory and peripheral contents can be accessed (this can be done without halting the

processor).

Table 13.4: Debug components in the Cortex®-M0/Cortex-M+ processor systems

Debug components Descriptions

Processor core
debug registers

Debug features inside the processor core are accessible by a few debug
control registers. They provide:
• Halting, single step, resume execution
• Access to the core’s registers when the processor is halted
• Control of the vector catch feature

BP unit The BreakPoint unit provides up to 4 breakpoint address comparators.
DWT unit The Data Watchpoint unit provides up to 2 data address comparators. It also

allows the debugger to sample the program counter regularly for profiling.
ROM table A small lookup table that enables a debugger to detect the available debug

components in the system. The table lists the address of each debug
component and the debugger can then identify the available debug features
by checking the Identification registers of these components.

MTB The Micro Trace Buffer supports instruction trace by allocating a small part of
the SRAM for storing program flow changes.

Debug
Interface

Serial wire
or JTAG

Debug
control

registers

Processor core

BP unit

DWT unit

ROM table

AHB
Bus

interface

Cortex-M0/M0+
Processor

Flash
memory

SRAM

Peripherals

NVIC,
SCB

Microcontroller

MTB

Note: MTB is available on Cortex-M0+ only
Trace interface

Internal
bus

Figure 13.4
Debug components in Cortex�-M0/Cortex-M0þ microcontrollers.

322 Chapter 13

• Interrupts can still enter pending state.

• You can resume program execution, carry out single step operation, or reset the

microcontroller.

When a debugger is connected to the Cortex-M0 or Cortex-M0þ processor, it first

programs a debug control register in the processor to enable the debug system. This step

cannot be done by the application running on the microcontroller. After the debug system

is enabled, the debugger can then stop the processor, download the application to the

microcontroller flash memory if required, reset the microcontroller and then we can test

the application.

The Cortex-M0 or Cortex-M0þ processor enters halt mode when:

• Debug is enabled by a debugger, and

• A debug event occurs.

There are various sources of debug events. They can be generated by either hardware or

software (Figure 13.5).

Debugger asserts
halt request

Watchpoint

Hardware Breakpoint

Vector Catch events

Hardware debug
request (on-chip /

external)

Execution of
Breakpoint instruction

Debug
Events

HALT

Ignore

Debug
Enabled

HardFault

Completion of a
single step operation

Debug
Disabled

Debug
Disabled

Debug
Enabled

Figure 13.5
Debug events on Cortex�-M0/Cortex-M0þ processor.

Debug Features 323

A debugger can stop the program execution by writing to debug control registers. On an

embedded system with multiple processors, it is also possible to stop multiple processors

at the same time using a hardware debug request signal and distribute the debug request

using an on-chip debug event communication system.

The program execution can be stopped by hardware breakpoints, software breakpoints,

watchpoints, or a vector catch event. The vector catch is a mechanism that allows the core

to be halted when certain exceptions take place. On the Cortex-M0 or Cortex-M0þ
processor, two vector catch conditions are provided:

• Reset

• HardFault

The vector catch feature is controlled by debug registers in the Cortex-M0/M0þ processor

allowing the processor to be stopped automatically upon a reset, or when a HardFault

execution takes place (e.g., due to a software error). When the vector catch operation

occurs, the processor stops before execution of the first instruction in the reset or

HardFault exception handler.

Once the debugger software detects that the processor is halted, the debugger then

checks a Debug Fault Status Register inside the SCB of the Cortex-M0/M0þ processor

to determine the reason for halting. Then the debugger can inform the user that the

processor is halted and why, for example, when it reached a breakpoint. After the

processor is halted, you can then access the registers inside the processor’s register

bank and special registers, the data in memories or peripherals, or carry out single step

operation.

A halted Cortex-M0/M0þ processor can resume program execution by the debugger

writing to the debug register, by a hardware debug restart interface (e.g., used in

multiprocessor systems so that multiple processors can resume program execution at the

same time), or by reset.

13.6 Instruction Tracing Support Using the MTB

When program execution fails and the processor enters HardFault, it is very useful if we

can see the instruction execution history and see what program code was executed before

the fault event. This feature is what instruction trace is used for, and is one of the key

reasons to have the MTB (Micro Trace Buffer) in the Cortex�-M0þ processor.

The MTB is a small component that is placed between the SRAM and the system bus

(Figure 13.6). In normal operation, the MTB acts as an interface module to connect the

on-chip SRAM to AHB.

324 Chapter 13

During debug operations, the debugger can configure the MTB to allocate a small portion of

the SRAM as trace buffer for storing trace information. Of course, care must be taken to

ensure that the application does not use the same SRAM space allocated for trace operations.

When a program branch occurred, or when the program flow changed due to interrupts,

the MTB stores the source program counter and destination program counters into the

SRAM. A total of 8 bytes of trace data per branch is needed. For example, if just 512

bytes of the SRAM is allocated for instruction trace, we can store up to 64 most recent

program flow changes. This is a great help for software debugging.

The MTB supports two operation modes:

Circular buffer modedthe MTB uses the allocated SRAM in circular buffer mode and

trace operates continuously. When the processor enters HardFault, the debugger can

then extract the information in the trace buffer and recreate the trace history. An

example screen shot of using MTB with Keil� MDK is shown in Figure 13.7.

The circular buffer mode is the most common usage model for the MTB.

AHB
interconnect

Cortex-M0+ processor

Configuration
registers

Trace
information

Trace
interface

AHB

On-chip
SRAM

MTB

SRAM interface

Arbiter

Figure 13.6
MTB integrates as a bridge between AHB and on-chip SRAM.

Debug Features 325

Figure 13.7
MTB provides instruction execution history including visibility of interrupt events.

3
2
6

C
hapter

1
3

One shot modedthe MTB starts writing trace from the start of the allocated trace

buffer, and stops tracing when the trace write pointer reaches a specific watermark

level. The MTB can optionally stop the processor execution by asserting a debug

request signal.

The key advantages of the MTB instruction trace solutions are as follows:

• Software developer can use existing low-cost debug adaptors to extract trace

information.

• Typically, the impact to the program execution cycles is tiny. For example, when

executing a branch operation, the processor does not access the SRAM and so the MTB

can write the trace information without stalling the processor. However, if another bus

master (e.g., a DMA controller) is trying to access the SRAM at the same time, the

DMA access would stall.

• Small silicon overheaddthe size of the MTB is typically 1.5 K gates in size (some

interface logic is needed to bridge between the SRAM and the AHB anyway), and it

shares the system SRAM for trace operations. So it has minimum impact to the power

and area of the silicon.

• The size and base address of the MTB instruction trace is completely configurable

allowing high flexibility.

If required, a chip designer could also design the system with a separate SRAM for MTB

operation. But of course this will increase the silicon area and power. But then if the MTB

is not used, potentially the application code might be able to utilize the extra SRAM.

There are some limitations of the MTB solution:

• The MTB instruction trace can only provide limited trace history. Unlike the ETM trace

solution in the Cortex-M3, Cortex-M4, and Cortex-M7 processors, the trace history is

stored on chip until the debugger extracts the trace, so the length of the trace history is

limited.

• The MTB trace does not provide timing information of the program execution. The

trace information only provides the source and destination of the program flow changes.

Nevertheless, it is a very useful low-cost debug solution for microcontroller software

developers.

Debug Features 327

CHAPTER 14

Getting Started with the Keil
Microcontroller Development Kit

14.1 Introduction to Keil Microcontroller Development Kit
14.1.1 Overview

The ARM� Keil� Microcontroller Development Kit (MDK-ARM) is one of the most

popular development suites for ARM microcontrollers. The Keil MDK is a Windows-

based development suite and provides the following components:

• mVision� Integrated Development Environment (IDE)

• ARM Compilation Tools including

• C/Cþþ compiler

• Assembler

• Linker and utilities

• Debugger

• Simulator

• RTX Real-Time OS Kernel, an embedded OS for microcontrollers

• Reference start-up code for over 3000s of microcontrollers

• Flash programming algorithms for various microcontrollers

• Program examples and development board support files

A Lite version of the Keil MDK-ARM can be downloaded from the Keil Web site

(www.keil.com). The Lite version of the tool is limited to 32-KB program code

(compiled size), but has no time limitation. This 32-KB memory size is sufficient for

most simple applications. If you need to create more complex applications, you can

purchase a license on Keil Web site and obtain a software license number. This license

number can then be used to turn the evaluation version to a full version. The Lite

version of Keil MDK-ARM is also included in a number of Cortex�-M evaluation kits

from various microcontroller vendors. A special version of Keil MDK-ARM for

STM32L0/F0 devices is also available from http://www2.keil.com/stmicroelectronics-

stm32.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00014-X

Copyright © 2015 Elsevier Inc. All rights reserved. 329

http://www.keil.com
http://www2.keil.com/stmicroelectronics-stm32
http://www2.keil.com/stmicroelectronics-stm32
http://dx.doi.org/10.1016/B978-0-12-803277-0.00014-X

14.1.2 The Tools

The C compiler used in the Keil MDK is based on the same compiler engine in the ARM

Compilation Tools, which is also used in the ARM Development Studio 5 (DS-5�)

product. This compilation tool provides excellent performance and code density.

If needed, you can also use Keil MDK with gcc. For more information on this topic,

please refer to Chapter 16.

The debugger in mVision IDE works with a number of debug adaptors:

• Keil USB-JTAG adaptors like ULINK�2 and ULINK Pro, ULINK-ME

• Signum JtagJet/JtagJet-Trace

• SEGGER J-Link, J-Trace

There are also a number of debug adaptors that come with development boards:

• CMSIS-DAP (an open source debug adaptor project in the CMSIS project)

• ST-LINK, ST-LINK V2

• Silicon Labs UDA Debugger

• Stellaris ICDI (Texas Instrument)

• NULink Debugger

It is also possible to use other debug adaptors if a third party debugger plugin is available.

For example, CooCox (www.coocox.org) provides open debug probes called CoLink and

CoLinkEx. The design information and schematics for these hardware probes is freely

available, so that anyone can build their own debug adaptor in a “DIY” manner.

Even if you do not have an in-circuit debugger, you could generate the program image and

program the microcontroller using third party programming tools. But of course, having a

supported in-circuit debugger allows you to debug the system though the mVision IDE

which is much easier and more effective. Many low cost development boards also have

built-in debug adaptors which can also be used as stand-alone adaptors for a separate

microcontroller device.

14.1.3 Advantages of Using Keil MDK

Keil MDK provides a high-quality compiler, lots of features, and wide range of

microcontroller product support. It is also designed to be very easy to use.

Another advantage of using the Keil MDK is that it supports a huge number of ARM

microcontrollers on the market. In addition to standard compiler and debug support, it also

provides configuration files such as start-up code and RTX OS configuration files, making

software development easier and quicker.

330 Chapter 14

http://www.coocox.org

Since version 5 of the Keil MDK, the IDE supports the CMSIS-PACK feature. By using

the software pack installer, you can download up to date software packages for the

microcontroller device you use easily.

14.1.4 Installation

The Keil MDK can be downloaded from http://www.keil.com/arm/demo/eval/arm.htm.

After the Keil MDK is installed, you also need to download and install the software packs

for the microcontroller devices. You can either use the pack installer to handle the

download and installation (Figure 14.1), or download the pack from www.keil.com/pack

and then install them manually inside the pack installer.

The pack installer (Figure 14.2) allows you to install up-to-date software packages for

more than 3000 Cortex-M microcontroller devices. Simply click on install button on the

left-hand side and the program would download and install the required software package

into the tool chain automatically.

Currently Keil MDK is available only for Windows platform.

14.2 Typical Program Compilation Flow

A typical program compilation flow of a project in the Keil� MDK environment is

illustrated in Figure 14.3. Once a project is created, the compilation flow can be handled

by the IDE and therefore you can program your microcontroller and test it with just a

few steps.

With the Cortex�-M microcontroller, although you can program almost everything in C,

the start-up code for ARM� tool chains (which is provided by the microcontroller vendors

and usually included in the Keil software pack installation) is usually in assembly

language. In addition, you will normally need a few more files from the microcontroller

vendors (as covered in Chapter 3, Section 3.5.4), which are typically also included in the

Figure 14.1
Accessing the pack installer from the Keil MDK IDE.

Getting Started with the Keil Microcontroller Development Kit 331

http://www.keil.com/arm/demo/eval/arm.htm
http://www.keil.com/pack
mailto:Image of Figure 14.1|tif

Figure 14.2
Pack installer.

C files (.c)

armcc
(compiler)

Object files (.o)

Assembly files (.s)

armasm
(assembler)

Object files (.o)

Scatter loading script

Executable
image file
(.axf)

Optional step

Op
tio
na
l st
ep

armlink
(linker)

fromelf

fromelf

Binary program
image (.bin)

Disassembled
code (.txt)

memory
layout

Project
settings

Flash
Programming

Debug

Figure 14.3
Example compilation flow with Keil MDK.

332 Chapter 14

mailto:Image of Figure 14.2|tif
mailto:Image of Figure 14.3|eps

software pack. As a minimum, you can create a project with just one application file and a

few files from the microcontroller vendor, as shown in Figure 14.4.

Behind the scenes, the device-specific header file pulls in further CMSIS-CORE header

files including some generic CMSIS-CORE files from ARM�, as shown in Figure 14.5.

Typically you can include these files easily by enabling the CMSIS-CORE option in the

project, so it is not necessary to include them in the project explicitly. You can also

manually include these header files in the project search path if you need to use specific

microcontrollers that are not covered by the available CMSIS-PACK.

Startup code file
startup_<device>.s

(assembly)

system_<device>.h

system_<device>.c

Application
program file

Device specific header file
<device>.h

Startup

CMSIS system Initialization

Application

Application
specific

From microcontroller
vendors

Need customization
e.g. for clock
configuration

Device specific
definitions

Figure 14.4
Example project with CMSIS-CORE.

Startup code file
startup_<device>.s

(assembly)

system_<device>.h

system_<device>.c

Application
program file

Device specific header file
<device>.h

Startup

CMSIS system Initialization

Application

Application
specific

From microcontroller
vendors

Need customization
e.g. for clock
configuration

Device specific definitions

core_cm0.h /
core_cm0plus.h

core_cmFunc.h

core_cmInstr.h

From ARM (generic CMSIS files)

Figure 14.5
Example project view when including CMSIS-CORE files from ARM.

Getting Started with the Keil Microcontroller Development Kit 333

mailto:Image of Figure 14.4|eps
mailto:Image of Figure 14.5|eps

If you are using older versions of CMSIS-CORE (version 2.0 or older), you might also

find that you need to include a file called core_cm0.c in the CMSIS-CORE package for

some of the core functions like access to special registers and couple of intrinsic functions.

These files are no longer required in newer versions of CMSIS-CORE as the functions

have been incorporated directly into the header files.

14.3 Introduction of the Hardware

There are many different types of microcontroller development boards on the market and

it is impossible to cover them all. Here I will cover a few choices that I used to set up the

examples in this book.

14.3.1 Freescale Freedom Board (FRDM-KL25Z)

The Freescale Freedom FRDM-KL25Z board (Figure 14.6) is based on the Freescale

MKL25Z128VLK4 microcontroller. This is based on the Cortex�-M0þ processor and

comes with 128-KB flash and 16-KB SRAM.

This development board included an on board debug adaptor which is CMSIS-DAP

compatible and support virtual COM part (to support UART communication via USB). It

also works with mbed� development environment. In addition to Freescale Web site,

wide range of resources about this board can be found on http://developer.mbed.org/

platforms/KL25Z/.

The examples in this book should work with both rev D and rev E of this board.

Figure 14.6
Freescale Freedom board (FRDM-KL25Z).

334 Chapter 14

http://developer.mbed.org/platforms/KL25Z/
http://developer.mbed.org/platforms/KL25Z/
mailto:Image of Figure 14.6|tif

Before using the FRDM-KL25Z board with Keil MDK, the on board firmware for the

debug adaptor need to be updated. Please refer to the instructions on mbed Web page:

http://mbed.org/handbook/Firmware-FRDM-KL25Z.

For Windows users, you might also need to install device driver to enable the

CMSIS-DAP and USB virtual com port: http://developer.mbed.org/handbook/Windows-

serial-configuration.

Caution: Be very careful with creating your own start-up code for this device series as the
address 0xC0 to 0xCF of the program image generated has special purpose. This memory area
is used for flash protection and need to be programmed to the specific values to enable the
flash to be erased and updated later, for example:

0x000000C0 : 0xFFFFFFFF
0x000000C4 : 0xFFFFFFFF
0x000000C8 : 0xFFFFFFFF
0x000000CC : 0xFFFFFFFE

In most cases, the start-up code for this series of microcontroller devices should include the
code required to insert these values. If you are creating your own start-up code, you need to
make sure it contains such values right after the vector table; otherwise you can lock out the
microcontroller device and make the board unrecoverable.

14.3.2 STMicroelectronics STM32L0 Discovery

The STM32L0 Discovery (Figure 14.7) is based on the STM32L053C8T6, a

microcontroller based on the Cortex-M0þ processor, and comes with 64-KB flash and

8-KB SRAM.

Figure 14.7
STM32L0 Discovery.

Getting Started with the Keil Microcontroller Development Kit 335

http://mbed.org/handbook/Firmware-FRDM-KL25Z
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
mailto:Image of Figure 14.7|tif

There are several useful features about the STM32L0 Discovery board:

• It can be plugged into breadboards for prototyping.

• It included an on board debug adaptor called ST-LINK v2-1, and the debug adaptor

support virtual COM port feature.

• It included an E-paper display with 172 � 72 screen size.

Before using the STM32L0 Discovery with Keil MDK, you must:

1. Install the device driver for ST-LINK v2-1. (This is needed even the system have

ST-LINK v2 driver installed previously). The device driver can be downloaded from

http://www.st.com/web/catalog/tools/FM147/SC1887/PF260218.

2. The latest ST-LINK firmware needs to be installed to the board. The firmware and the

instructions for the installation can be found here: http://developer.mbed.org/teams/ST/

wiki/Nucleo-Firmware.

14.3.3 STMicroelectronics STM32F0 Discovery

The STM32F0 Discovery (Figure 14.8) is based on the STM32F051R8T6, a microcontroller

based on the Cortex-M0 processor, and comes with 64-KB flash and 8-KB SRAM.

This low cost board has a debug adaptor included called ST-LINK v2. Similar to the

STM32L0 Discovery, you can plug this board on a breadboard for prototyping. However,

it does not have virtual COM port feature, so an additional adaptor is needed to handle

UART communication between this board and the personal computer.

Before using the STMF0Discovery board with Keil MDK, you need to install the

ST-LINK v2 device driver. After the Keil MDK is installed, the ST-LINK v2 Driver

installation files can be located in C:\Keil\ARM\STLink\USBDriver or

C:\Keil_v5\ARM\STLink\USBDriver.

14.3.4 NXP LPC1114FN28

The last one covered here is a Cortex-M0 processor-based microcontroller in a 28-pin DIP

package. The NXP LPC1114FN28 can easily be used by hobbyists to create applications

on breadboards (Figure 14.9) or homemade PCBs.

In Figure 14.9, the left-hand side is a voltage regulator module for breadboards and

the connector on the right is for debug connection. (For more details about debug

connection, please refer to appendix H, A breadboard project with an ARM� Cortex-M0

microcontroller.)

336 Chapter 14

http://www.st.com/web/catalog/tools/FM147/SC1887/PF260218
http://developer.mbed.org/teams/ST/wiki/Nucleo-Firmware
http://developer.mbed.org/teams/ST/wiki/Nucleo-Firmware

Figure 14.9
A breadboard with LPC1114FN28.

Figure 14.8
STM32F0 Discovery.

Getting Started with the Keil Microcontroller Development Kit 337

mailto:Image of Figure 14.9|tif
mailto:Image of Figure 14.8|tif

As you can see from Figure 14.9, it is easy to construct a minimum system for

breadboard. To use this with Keil MDK, a separate USB debug adaptor such as a

ULINK�2 is required.

The LPC1114FN28 microcontroller includes a 12-MHz internal RC oscillator inside. So

the external crystal is optional. However, if your application requires a clock source with

high precision, then an external crystal is often necessary.

The details of the circuit construction are covered in appendix H.

14.4 Getting Started with mVision® IDE
14.4.1 What Are Needed to Start

To start with creating of your first project, we assume that:

• You have version 5 of Keil MDK and the software pack (for the microcontroller you are

using) installed. The examples shown here are based on Keil MDK 5.12.

• You have access to a Cortex�-M0/Cortex-M0þ development board. (If not, you can test

some of the examples using the built-in instruction set simulator.)

• A debug adaptor (either built-in in the development board or a stand-alone one) that is

supported by Keil MDK.

14.4.2 Starting Keil MDK

When the Keil MDK started, a screen similar to Figure 14.10 is shown.

We start by creating a new project. This can be done by using the pull-down menu: select

Project / New mVision Project, as shown in Figure 14.11.

Figure 14.10
mVision IDE start screen.

338 Chapter 14

mailto:Image of Figure 14.10|tif

For the first project, we are going to create a simple program that toggles an LED. We will

call this project “blinky.” The location of the project depends on your preference, in this

demonstration we put the project in:

• For Freescale FRDM-KL25Z: C:\CM0Book_Examples\ch_14\kl25z\blinky

(Section 14.4.3)

• For STM32L0 Discovery: C:\CM0Book_Examples\ch_14_stm32l0_blinky

(Section 14.4.4)

• For STM32F0 Discovery: C:\CM0Book_Examples\ch_14_stm32f0_blinky

(Section 14.4.5)

• For LPC1114FN28: C:\CM0Book_Examples\ch_14_lpc1114_blinky (Section 14.4.6)

14.4.3 Project Setup Steps for Freescale FRDM-KL25Z

The next step of the project creation wizard defines the microcontroller to be used for the

project. For FRDM-KL25Z hardware, MKL25Z128xxx4 is selected, as shown in

Figure 14.12.

Now the screen switches to a Run-Time Environment manager which allows us to

include the software component used. In order to simplify the project setup, the

CMSIS-CORE and the device-specific start-up code options are selected, as shown in

Figure 14.13.

Now a project with the start-up codes is generated, as shown in Figure 14.14.

Then we add a new file to the project by right click on “Source Group 1,” and select “Add

New Item.,” as shown in Figure 14.15.

A new window dialog as in Figure 14.16 is shown. We select C file and enter “blinky” as

the file name.

Now we can expand “Source Group 1” and open the “blinky.c,” and add the project code,

as shown in Figure 14.17.

Figure 14.11
Create a new project.

Getting Started with the Keil Microcontroller Development Kit 339

mailto:Image of Figure 14.11|tif

Figure 14.12
Select MKL25Z128xxx4 for FRDM-KL25Z board.

Figure 14.13
Select CMSIS-CORE and device-specific startup.

340 Chapter 14

mailto:Image of Figure 14.12|tif
mailto:Image of Figure 14.13|tif

The program that is created carried out a few operation steps:

• Update the SystemCoreClock variable (optional)

• Configure the GPIO ports for LED outputs

• Enter a simple loop to turn on and off the RGB LED, with a delay specified by a C

macro called LOOP_COUNT

Figure 14.14
Project with start-up code.

Figure 14.15
Add new item to project.

Getting Started with the Keil Microcontroller Development Kit 341

mailto:Image of Figure 14.14|tif
mailto:Image of Figure 14.15|tif

Figure 14.16
Select file type and file name of the new file.

Figure 14.17
Blinky program code added.

342 Chapter 14

mailto:Image of Figure 14.16|tif
mailto:Image of Figure 14.17|tif

The full program code of the blinky program is shown below.

Blinky.c for FRDM-KL25Z Board

#include <MKL25Z4.H>

const uint32_t led_mask[] = {1UL << 18, 1UL << 19, 1UL << 1};
// LED #0, #1 are port B, LED #2 is port D

void LED_Config(void);
void LED_Set(void);
void LED_Clear(void);
__INLINE static void LED_On (uint32_t led);
__INLINE static void LED_Off (uint32_t led);
void Delay(uint32_t nCount);

int main(void)
{

SystemCoreClockUpdate(); // Optional- Setup SystemCoreClock variable

// Configure LED outputs
LED_Config();

#define LOOP_COUNT 0x80000
while(1){

Delay(LOOP_COUNT);
LED_Set();
Delay(LOOP_COUNT);
LED_Clear();
};

}

void Delay(uint32_t nCount)
{

while(nCount--)
{
}

}
/*--

LED pin config
--/

void LED_Config(void)
{

SIM->SCGC5 j= (1UL << 10) j (1UL << 12); /* Enable Clock to Port B & D */
PORTB->PCR[18] = (1UL << 8); /* Pin PTB18 is GPIO */
PORTB->PCR[19] = (1UL << 8); /* Pin PTB19 is GPIO */
PORTD->PCR[1] = (1UL << 8); /* Pin PTD1 is GPIO */

Continued

Getting Started with the Keil Microcontroller Development Kit 343

FPTB->PDOR = (led_mask[0] j
led_mask[1]); /* switch Red/Green LED off */

FPTB->PDDR = (led_mask[0] j
led_mask[1]); /* enable PTB18/19 as Output */

FPTD->PDOR = led_mask[2]; /* switch Blue LED off */
FPTD->PDDR = led_mask[2]; /* enable PTD1 as Output */
return;

}
/*---

Switch on LEDs
---/

void LED_Set(void)
{

LED_On(0);
LED_On(1);
LED_On(2);
return;

}
/*---

Switch off LEDs
---/

void LED_Clear(void)
{

LED_Off(0);
LED_Off(1);
LED_Off(2);
return;

}

/*---
Switch on LED (just one)

---/
__INLINE static void LED_On (uint32_t led) {

if (led == 2) FPTD->PCOR = led_mask[led];
else FPTB->PCOR = led_mask[led];

}

/*---
Switch off LED (just one)

---/
__INLINE static void LED_Off (uint32_t led) {

if (led == 2) FPTD->PSOR = led_mask[led];
else FPTB->PSOR = led_mask[led];

}

344 Chapter 14

Clock Configuration Settings

The next step is to define the clock configuration (this step is optional for this project).

Inside the project, we can see “system_MKL25Z4.c.” We can open this file and edit the

CLOCK_SETUP to 1. This gives us a 48-MHz processor clock and a 24-MHz bus clock

as the system starts up.

Project Settings

After the project and program files are created, it is often necessary to adjust a few project

settings before the application can be downloaded to the microcontroller’s flash memory

and be tested. In most cases, the Keil mVision IDE will set up all the required

microcontroller-specific settings automatically once the device is selected. However, we

still need to set up:

• Debug settings

• Compiler optimization settings

It is useful to understand what settings are available and what settings are needed to get a

project to work.

There are many project settings available; first we will introduce the settings that are

essential for getting the program code downloaded to the flash and executing it. The

project settings menu can be accessed by:

• Target option button on the tool bar .

• Pull-down menu: Project / Option for Target.

• Right click on the project target name (e.g., “Target 1”) in the project window, and

select options for target.

• Hot key Alt-F7.

The project option menu contains a number of tabs, as shown in Figure 14.18.

By default, the Keil mVision IDE automatically sets up the memory map for us when we

select the microcontroller device. In most cases, we do not need to change the memory

settings. However, if the program operation fails or if flash programming is not

functioning correctly, we need to go through the settings to make sure that they were not

accidentally changed to incorrect values.

Debugger Settings

Some settings have to be set up manually. An example would be the debugger

configuration because mVision IDE does not know which in-circuit debugger you will be

using. First, we look at the debug options as shown in Figure 14.19. In here, we selected

“CMSIS-DAP” for FRDM-KL25Z. For other development boards, you can change the

settings to use other supported debugger.

Getting Started with the Keil Microcontroller Development Kit 345

Figure 14.19
Select CMSIS-DAP debug adaptor for Freescale FRDM-KL25Z.

Device

Target Memory map, C library option

Output Output executable / library,
output folder

Listing C compiler and assembler
listing, output folder

User
Define optional programs to
run before and after compile

and build processes

C/C++
C Compiler optimization,
defines, include path and

misc options

Assembler Assembler defines, include
path and misc options

Linker Memory layout, Scatter
loading file option

Debug Debug target, Debugger

Utilities Flash programming setup

Debugger
Settings

Flash
programming

settings

Debugger specific
configuration settings

Flash programming
mechanism, flash

programming algorithm

Targeted microcontroller
device for the project

Figure 14.18
Project option tabs in Keil MDK.

346 Chapter 14

mailto:Image of Figure 14.19|tif
mailto:Image of Figure 14.18|eps

We can now plug in the development board to the USB port. A window pop up might

shows the board is connected as a USB mass storage. That is normal as the USB debug

adaptor supports multifunctions. Now we need to set up the settings for the CMSIS-DAP

debug adaptor by clicking on the “Settings” button next to it.

Since the KL25Z microcontroller does not support JTAG, in the CMSIS-DAP setting, we

must select SW (Serial Wire) protocol as shown in Figure 14.20. Otherwise, you should

see “RDDI-DAP Error” status in the JTAG Device Chain window of this dialog.

From the SW Device status, it shows that the debugger can read the IDCODE of the

debug interface and from that we now know that the debugger can communicate with the

board. In some cases, you might also need to adjust the maximum clock frequency for

the debug communication. This depends on the microcontroller device, the circuit board

(PCB) design as well as the debug cable length.

In normal cases, the flash programming option should be set up correctly by the tool when

you select the microcontroller device. For example, the flash programming options for the

KL25Z device is set up automatically by Keil MDK (Figure 14.21). However, in a few

cases you might need to set up this manually.

Compilation

After the project options are set, we can now start the program compilation and test the

program. The compile process can be carried out by a number of buttons on the tool bar

Figure 14.20
Options for CMSIS-DAP.

Getting Started with the Keil Microcontroller Development Kit 347

mailto:Image of Figure 14.20|tif

as shown in Figure 14.22. Simply click on the “Build Target” button to start the compile

process, use the pull-down menu (in the Project menu / Build Target), or use hot key F7.

After the program is compiled and linked, we will see the compile status message as

shown in Figure 14.23.

The program can then be tested by starting a debug session by using pull-down menu

(Debug / Start/Stop Debug session), by clicking on the debug session button on the

tool bar, or using the hot key Ctrl-F5. When starting the debug session, the compiled

image should be programmed on the microcontroller, as shown in Figure 14.24. If not, you

can download the image using the “Load” button on the tool bar.

Figure 14.21
Flash programming algorithm options.

Program the compiled application
to the microcontroller

Rebuild all files

Build target

Target options

Figure 14.22
Frequently used buttons on the tool bar.

348 Chapter 14

mailto:Image of Figure 14.21|tif
mailto:Image of Figure 14.22|eps

Figure 14.23
Compile result for the blinky project on the Build Output window.

Figure 14.24
Flash programming status output.

Getting Started with the Keil Microcontroller Development Kit 349

mailto:Image of Figure 14.23|tif
mailto:Image of Figure 14.24|tif

After the program is downloaded to the microcontroller, the window will change into a

debugger session mode, as shown in Figure 14.25.

Now we can start the program execution using the Run button, as shown in Figure 14.26, or

start the program execution using hot key F5, or using pull-down menu (Debug / Run).

Figure 14.25
Debugger session.

Figure 14.26
Run button.

350 Chapter 14

mailto:Image of Figure 14.25|tif
mailto:Image of Figure 14.26|tif

Now you should see the LED on the board blinking. Congratulation! You have got the

blinky project working. You can close the debug session using the debug session button

on the tool bar, or using the hot key Ctrl-F5, or from the pull-down menu (Debug /
Start/Stop Debug Session).

14.4.4 Project Setup Steps for STMicroelectronics STM32L0 Discovery

For the STM32L0 Discovery board, we are going to create the example blinky project in

C:\CM0Book_Examples\ch_14_stm32l0_blinky.

The next step of the project creation wizard defines the microcontroller to be used for the

project. For the STM32L0 Discovery board, the STM32L053C8 device is selected, as

shown in Figure 14.27.

Now the screen switches to a Run-Time Environment manager which allows us to include

the software component used. In order to simplify the project setup, the CMSIS-CORE

and the device-specific start-up code options are selected, as shown Figure 14.28.

Now a project with the start-up codes is generated, as shown in Figure 14.29.

Figure 14.27
Select STM32L053C8 for STM32L0 Discovery board.

Getting Started with the Keil Microcontroller Development Kit 351

mailto:Image of Figure 14.27|tif

Then we add a new file to the project by right clicking on “Source Group 1,” and select

“Add New Item.,” as shown in Figure 14.30.

A new window dialog as in Figure 14.31 is shown. We select C file and enter blinky as the

file name.

Now we can expand “Source Group 1” and open the “blinky.c,” and add the project code,

as shown in Figure 14.32. In order to help GPIO setup, we also added a separate C file to

handle GPIO configuration functions.

Figure 14.28
Select CMSIS-CORE and device-specific startup.

Figure 14.29
Project with start-up code.

352 Chapter 14

mailto:Image of Figure 14.28|tif
mailto:Image of Figure 14.29|tif

Figure 14.30
Add new item to project.

Figure 14.31
Select file type and file name of the new file.

Getting Started with the Keil Microcontroller Development Kit 353

mailto:Image of Figure 14.30|tif
mailto:Image of Figure 14.31|tif

The program that is created carried out a few operation steps:

• Configure the GPIO ports for LED outputs

• Enter a simple loop to turn on and off the LEDs, with a delay specified by a C macro

called LOOP_COUNT

The full program code of the blinky program is shown below.

Blinky.c for STM32L0 Discovery Board

#include "stm32l0xx.h"
#include "gpio_defs.h"

void LED_Config(void);
void LED_Set(void);
void LED_Clear(void);
void Delay(uint32_t nCount);

// GPIO functions
extern void Config_Pin(GPIO_TypeDef* GPIO, uint32_t pin, uint32_t mode,

uint32_t output_type, uint32_t output_speed, uint32_t pull_type);

Figure 14.32
Program code added to example blinky project for STM32L0 Discovery.

354 Chapter 14

mailto:Image of Figure 14.32|tif

extern void Config_Pin_AlternateFunc(GPIO_TypeDef* GPIO, uint32_t pin, uint32_t
AF);

int main(void)
{

// Configure LED outputs
LED_Config();

#define LOOP_COUNT 0x40000
while(1){

Delay(LOOP_COUNT);
LED_Set();
Delay(LOOP_COUNT);
LED_Clear();
};

}

void Delay(uint32_t nCount)
{

while(nCount--) {
}

}
void LED_Config(void)
{

RCC->IOPENR j= RCC_IOPENR_GPIOBEN; // Enable Port B clock - for LED
RCC->IOPENR j= RCC_IOPENR_GPIOAEN; // Enable Port A clock - for LED & USART
Config_Pin(GPIOB, 4, GPIO_MODE_OUTPUT, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PB4
Config_Pin(GPIOA, 5, GPIO_MODE_OUTPUT, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PA5
return;

}
void LED_Set(void)
{

GPIOA->BSRR = (1<<5); // Set bit 5
GPIOB->BSRR = (1<<4); // Set bit 4
return;

}
void LED_Clear(void)
{

GPIOA->BSRR = (1<<(5+16)); // Clear bit 5
GPIOB->BSRR = (1<<(4+16)); // Clear bit 4
return;

}

Getting Started with the Keil Microcontroller Development Kit 355

The GPIO functions file is:

gpio_funcs.c

#include "stm32l0xx.h"

/* Configure GPIO pin */
void Config_Pin(GPIO_TypeDef* GPIOx, uint32_t pin, uint32_t mode,

uint32_t output_type, uint32_t output_speed, uint32_t pull_type)
{

GPIOx->MODER &= w(0x3 << (2*pin)); // Clear mode
GPIOx->MODER j= (mode << (2*pin)); // Set mode

GPIOx->OTYPER &= w(0x1 << pin); // Clear Type
GPIOx->OTYPER j= (output_type << pin); // Set Type

GPIOx->OSPEEDR &= w(0x3 << (2*pin)); // Clear speed
GPIOx->OSPEEDR j= (output_speed << (2*pin)); // Set speed

GPIOx->PUPDR &= w(0x3 << (2*pin)); // Clear pull up/pull down
GPIOx->PUPDR j= (pull_type << (2*pin)); // Set pull up/pull down
return;

}
// Set GPIO pin alternate function
void Config_Pin_AlternateFunc(GPIO_TypeDef* GPIOx, uint32_t pin, uint32_t AF)
{

int bit_num;
if (pin>=8) {

bit_num = (pin-8) * 4;
GPIOx->AFR[1] &= w(0xF << bit_num); // Clear AF
GPIOx->AFR[1] j= (AF << bit_num); // Set new AF

} else {
bit_num = pin * 4;
GPIOx->AFR[0] &= w(0xF << bit_num); // Clear AF
GPIOx->AFR[0] j= (AF << bit_num); // Set new AF

}
}

And a header file is used to define constants for GPIO configurations:

gpio_defs.h

#define GPIO_MODE_INPUT 0
#define GPIO_MODE_OUTPUT 1
#define GPIO_MODE_ALTERN 2
#define GPIO_MODE_ANALOG 3

356 Chapter 14

#define GPIO_TYPE_PUSHPULL 0
#define GPIO_TYPE_OPENDRAIN 1

#define GPIO_SPEED_LOW 0
#define GPIO_SPEED_MED 1
#define GPIO_SPEED_HIGH 3

#define GPIO_NO_PULL 0
#define GPIO_PULL_UP 1
#define GPIO_PULL_DOWN 2

Project Settings

After the project and program files are created, it is often necessary to adjust a few project

settings before the application can be downloaded to the microcontroller’s flash memory

and be tested. In most cases, the Keil mVision IDE will set up all the required

microcontroller-specific settings automatically once the device is selected. However, we

still need to set up:

• Debug settings

• Compiler optimization settings

It is useful to understand what settings are available and what settings are needed to get a

project to work.

There are many project settings available; first we will introduce the settings that are

essential for getting the program code downloaded to the flash and executing it. The

project settings menu can be accessed by:

• Target option button on the tool bar .

• Pull-down menu: Project / Option for Target.

• Right click on the project target name (e.g., “Target 1”) in the project window, and

select options for target.

• Hot key Alt-F7.

The project option menu contains a number of tabs, as shown in Figure 14.33.

By default, the Keil mVision IDE automatically sets up the memory map for us when we

select the microcontroller device. In most cases, we do not need to change the memory

settings. However, if the program operation fails or if flash programming is not

functioning correctly, we need to go through the settings to make sure that they were not

accidentally changed to incorrect values.

Getting Started with the Keil Microcontroller Development Kit 357

Debugger Settings

Some settings have to be set up manually. An example would be the debugger

configuration because mVision IDE does not know which in-circuit debugger you will be

using. First, we look at the debug options as shown in Figure 14.34. Here, we selected

“ST-LINK” for the STM32L0 Discovery board. For other development boards you can

change the settings to use other supported debugger.

We can now plug in the development board to the USB port. A window pop up might

show the board is connected as a USB mass storage. That is normal as the USB debug

adaptor supports multifunctions. Now we need to set up the settings for the ST-LINK

debug adaptor by clicking on the “Settings” button next to it.

Since the STM32L053C8 microcontroller does not support JTAG, in the ST-LINK setting,

we must select SW (Serial Wire) protocol as shown in Figure 14.35. Otherwise an error

message would be shown to indicate that STM32F0 and L0 series do not support JTAG.

From the SW Device status, it shows that the debugger can read the IDCODE of the

debug interface and from that we now know that the debugger can communicate with

the board. In some cases, you might also need to adjust the maximum clock frequency for

the debug communication. This depends on the microcontroller device, the circuit board

(PCB) design as well as the debug cable length.

Device

Target Memory map, C library option

Output Output executable / library,
output folder

Listing C compiler and assembler
listing, output folder

User
Define optional programs to
run before and after compile

and build processes

C/C++
C Compiler optimization,
defines, include path and

misc options

Assembler Assembler defines, include
path and misc options

Linker Memory layout, Scatter
loading file option

Debug Debug target, Debugger

Utilities Flash programming setup

Debugger
Settings

Flash
programming
settings

Debugger specific
configuration settings

Flash programming
mechanism, flash

programming algorithm

Targeted microcontroller
device for the project

Figure 14.33
Project option tabs in Keil MDK.

358 Chapter 14

mailto:Image of Figure 14.33|eps

Figure 14.34
Select ST-LINK debug adaptor for STM32L0 Discovery.

Figure 14.35
Options for ST-LINK.

mailto:Image of Figure 14.34|tif
mailto:Image of Figure 14.35|tif

In normal cases, the flash programming option should be set up correctly by the tool when

you select the microcontroller device. For example, the flash programming options for the

STM32L0 device is set up automatically by Keil MDK (Figure 14.36). However, in a few

cases you might need to set up this manually.

Compilation

After the project options are set, we can now start the program compilation and test the

program. The compile process can be carried out by a number of buttons on the tool bar

as shown in Figure 14.37. Simply click on the “Build Target” button to start the compile

process, use the pull-down menu (in the Project menu / Build Target), or use hot key F7.

After the program is compiled and linked, we will see the compile status message as

shown in Figure 14.38.

The program can then be tested by starting a debug session by using pull-down menu

(Debug / Start/Stop Debug session), by clicking on the debug session button on the

tool bar, or using the hot key Ctrl-F5. When starting the debug session, the compiled

image should be programmed on the microcontroller, as shown in Figure 14.39. If not, you

can download the image using the “Load” button on the tool bar.

Figure 14.36
Flash programming algorithm options.

360 Chapter 14

mailto:Image of Figure 14.36|tif

Program the compiled application
to the microcontroller

Rebuild all files

Build target

Target options

Figure 14.37
Frequently used buttons on the tool bar.

Figure 14.38
Compile result for the blinky project on the Build Output window.

Getting Started with the Keil Microcontroller Development Kit 361

mailto:Image of Figure 14.37|eps
mailto:Image of Figure 14.38|tif

After the program is downloaded to the microcontroller, the window will change into a

debugger session mode, as shown in Figure 14.40.

Now we can start the program execution using the Run button, as shown in Figure 14.41,

or start the program execution using hot key F5, or using pull-down menu (Debug /
Run).

Now you should see the LEDs on the board blinking. Congratulation! You have got the

blinky project working. You can close the debug session using the debug session button

on the tool bar, or using the hot key Ctrl-F5, or from the pull-down menu (Debug /
Start/Stop Debug Session).

14.4.5 Project Setup Steps for STMicroelectronics STM32F0 Discovery

For the STM32F0 Discovery board, we are going to create the example blinky project in

C:\CM0Book_Examples\ch_14_stm32f0_blinky.

Figure 14.39
Flash programming status output.

362 Chapter 14

mailto:Image of Figure 14.39|tif

Figure 14.40
Debugger session.

Figure 14.41
Run button.

Getting Started with the Keil Microcontroller Development Kit 363

mailto:Image of Figure 14.40|tif
mailto:Image of Figure 14.41|tif

The next step of the project creation wizard defines the microcontroller to be used for the

project. For the STM32F0 Discovery hardware, STM32F051R8 is selected, as shown in

Figure 14.42.

Now the screen switches to a Run-Time Environment manager which allows us to include

the software component used. In order to simplify the project setup, the CMSIS-CORE

and the device-specific start-up code options are selected, as shown Figure 14.43.

Now a project with the start-up codes is generated, as shown in Figure 14.44.

Then we add a new file to the project by right clicking on “Source Group 1,” and select

“Add New Item.,” as shown in Figure 14.45.

A new window dialog as in Figure 14.46 is shown. We select C file and enter blinky as the

file name.

Now we can expand “Source Group 1” and open the “blinky.c,” and add the project code,

as shown in Figure 14.47. In order to help GPIO setup, we also added a separate C file to

handle GPIO configuration functions.

Figure 14.42
Select STM32F051R8 for STM32F0 Discovery Board.

364 Chapter 14

mailto:Image of Figure 14.42|tif

The program that is created carried out a few operation steps:

• Configure the GPIO ports for LED outputs

• Enter a simple loop to turn on and off the LED, with a delay specified by a C macro

called LOOP_COUNT

Figure 14.43
Select CMSIS-CORE and device-specific startup.

Figure 14.44
Project with start-up code.

Getting Started with the Keil Microcontroller Development Kit 365

mailto:Image of Figure 14.43|tif
mailto:Image of Figure 14.44|tif

Figure 14.45
Add new item to project.

Figure 14.46
Select file type and file name of the new file.

366 Chapter 14

mailto:Image of Figure 14.45|tif
mailto:Image of Figure 14.46|tif

The full program code of the blinky program is shown below.

Blinky.c for STM32F0 Discovery Board

#include "stm32f0xx.h"
#include "gpio_defs.h"

void LED_Config(void);
void LED_Set(void);
void LED_Clear(void);
void Delay(uint32_t nCount);

// GPIO functions
extern void Config_Pin(GPIO_TypeDef* GPIO, uint32_t pin, uint32_t mode,

uint32_t output_type, uint32_t output_speed, uint32_t pull_type);
extern void Config_Pin_AlternateFunc(GPIO_TypeDef* GPIO, uint32_t pin, uint32_t
AF);

int main(void)
{

// Configure LED outputs
LED_Config();

Continued

Figure 14.47
Program code added to example blinky project for STM32L0 Discovery.

Getting Started with the Keil Microcontroller Development Kit 367

mailto:Image of Figure 14.47|tif

#define LOOP_COUNT 0x1FFFFF
while(1){

Delay(LOOP_COUNT);
LED_Set();
Delay(LOOP_COUNT);
LED_Clear();
};

}

void Delay(uint32_t nCount)
{

while(nCount--);
}
void LED_Config(void)
{

RCC->AHBENR j= RCC_AHBENR_GPIOCEN; // Enable Port C clock
Config_Pin(GPIOC, 8, GPIO_MODE_OUTPUT, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL);
Config_Pin(GPIOC, 9, GPIO_MODE_OUTPUT, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL);
return;

}
void LED_Set(void)
{

GPIOC->BSRR = (1<<8); // Set bit 8
GPIOC->BSRR = (1<<9); // Set bit 9
return;

}

void LED_Clear(void)
{

GPIOC->BSRR = (1<<(8+16)); // Clear bit 8
GPIOC->BSRR = (1<<(9+16)); // Clear bit 9
return;

}

The GPIO functions file is:

gpio_funcs.c

#include "stm32f0xx.h"

/* Configure GPIO pin */
void Config_Pin(GPIO_TypeDef* GPIOx, uint32_t pin, uint32_t mode,

uint32_t output_type, uint32_t output_speed, uint32_t pull_type)
{

GPIOx->MODER &= w(0x3 << (2*pin)); // Clear mode
GPIOx->MODER j= (mode << (2*pin)); // Set mode

368 Chapter 14

GPIOx->OTYPER &= w(0x1 << pin); // Clear Type
GPIOx->OTYPER j= (output_type << pin); // Set Type

GPIOx->OSPEEDR &= w(0x3 << (2*pin)); // Clear speed
GPIOx->OSPEEDR j= (output_speed << (2*pin)); // Set speed

GPIOx->PUPDR &= w(0x3 << (2*pin)); // Clear pull up/pull down
GPIOx->PUPDR j= (pull_type << (2*pin)); // Set pull up/pull down
return;

}
// Set GPIO pin alternate function
void Config_Pin_AlternateFunc(GPIO_TypeDef* GPIOx, uint32_t pin, uint32_t AF)
{

int bit_num;
if (pin>=8) {

bit_num = (pin-8) * 4;
GPIOx->AFR[1] &= w(0xF << bit_num); // Clear AF
GPIOx->AFR[1] j= (AF << bit_num); // Set new AF

} else {
bit_num = pin * 4;
GPIOx->AFR[0] &= w(0xF << bit_num); // Clear AF
GPIOx->AFR[0] j= (AF << bit_num); // Set new AF

}
}

And a header file is used to define constants for GPIO configurations:

gpio_defs.h

#define GPIO_MODE_INPUT 0
#define GPIO_MODE_OUTPUT 1
#define GPIO_MODE_ALTERN 2
#define GPIO_MODE_ANALOG 3

#define GPIO_TYPE_PUSHPULL 0
#define GPIO_TYPE_OPENDRAIN 1

#define GPIO_SPEED_LOW 0
#define GPIO_SPEED_MED 1
#define GPIO_SPEED_HIGH 3

#define GPIO_NO_PULL 0
#define GPIO_PULL_UP 1
#define GPIO_PULL_DOWN 2

Getting Started with the Keil Microcontroller Development Kit 369

Project Settings

After the project and program files are created, it is often necessary to adjust a few project

settings before the application can be downloaded to the microcontroller’s flash memory and

be tested. In most cases, the Keil mVision IDE will set up all the required microcontroller-

specific settings automatically once the device is selected. However, we still need to set up:

• Debug settings

• Compiler optimization settings

It is useful to understand what settings are available and what settings are needed to get a

project to work.

There are many project settings available; first we will introduce the settings that are

essential for getting the program code downloaded to the flash and executing it. The

project settings menu can be accessed by:

• Target option button on the tool bar .

• Pull-down menu: Project / Option for Target.

• Right click on the project target name (e.g., “Target 1”) in the project window, and

select options for target.

• Hot key Alt-F7.

The project option menu contains a number of tabs, as shown in Figure 14.48.

Device

Target Memory map, C library option

Output Output executable / library,
output folder

Listing C compiler and assembler
listing, output folder

User
Define optional programs to
run before and after compile

and build processes

C/C++
C Compiler optimization,
defines, include path and

misc options

Assembler Assembler defines, include
path and misc options

Linker Memory layout, Scatter
loading file option

Debug Debug target, Debugger

Utilities Flash programming setup

Debugger
Settings

Flash
programming

settings

Debugger specific
configuration settings

Flash programming
mechanism, flash

programming algorithm

Targeted microcontroller
device for the project

Figure 14.48
Project option tabs in Keil MDK.

370 Chapter 14

mailto:Image of Figure 14.48|eps

By default, the Keil mVision IDE automatically sets up the memory map for us when we

select the microcontroller device. In most cases, we do not need to change the memory

settings. However, if the program operation fails or if flash programming is not

functioning correctly, we need to go through the settings to make sure that they were not

accidentally changed to incorrect values.

Debugger Settings

Some settings have to be set up manually. An example would be the debugger

configuration because mVision IDE does not know which in-circuit debugger you will be

using. First, we look at the debug options as shown in Figure 14.49. Here, we selected

“ST-LINK” for STM32F0 Discovery. For other development boards you can change the

settings to use other supported debugger.

Figure 14.49
Select ST-LINK debug adaptor for STM32F0 Discovery.

We can now plug in the development board to the USB port. Now we need to set up the

settings for the ST-LINK debug adaptor by click on the “Settings” button next to it.

Since the STM32F051R8 microcontroller does not support JTAG, in the ST-LINK setting,

we must select SW (Serial Wire) protocol as shown in Figure 14.50. Otherwise an error

message would be shown to indicate that STM32F0 and L0 series do not support JTAG.

Getting Started with the Keil Microcontroller Development Kit 371

mailto:Image of Figure 14.49|tif

From the SW Device status, it shows that the debugger can read the IDCODE of the

debug interface and from that we now know that the debugger can communicate with

the board. In some cases, you might also need to adjust the maximum clock frequency for

the debug communication. This depends on the microcontroller device, the circuit board

(PCB) design as well as the debug cable length.

In normal cases the flash programming option should be set up correctly by the tool when

you select the microcontroller device. For example, the flash programming options for the

STM32F0 device is set up automatically by Keil MDK (Figure 14.51). However, in a few

cases you might need to set up this manually.

Compilation

After the project options are set, we can now start the program compilation and test the

program. The compile process can be carried out by a number of buttons on the tool bar

as shown in Figure 14.52. Simply click on the “Build Target” button to start the compile

process, use the pull-down menu (in the Project menu / Build Target), or use hot key F7.

After the program is compiled and linked, we will see the compile status message as

shown in Figure 14.53.

Figure 14.50
Options for ST-LINK.

372 Chapter 14

mailto:Image of Figure 14.50|tif

The program can then be tested by starting a debug session by using pull-down menu

(Debug / Start/Stop Debug session), by clicking on the debug session button on the

tool bar, or using the hot key Ctrl-F5. When starting the debug session, the compiled

image should be programmed on the microcontroller, as shown in Figure 14.54. If not, you

can download the image using the “Load” button on the tool bar.

Figure 14.51
Flash programming algorithm options.

Program the compiled application
to the microcontroller

Rebuild all files

Build target

Target options

Figure 14.52
Frequently used buttons on the tool bar.

Getting Started with the Keil Microcontroller Development Kit 373

mailto:Image of Figure 14.51|tif
mailto:Image of Figure 14.52|eps

Figure 14.53
Compile result for the blinky project on the Build Output window.

Figure 14.54
Flash programming status output.

mailto:Image of Figure 14.53|tif
mailto:Image of Figure 14.54|tif

After the program is downloaded to the microcontroller, the window will change into a

debugger session mode, as shown in Figure 14.55.

Now we can start the program execution using the Run button, as shown in Figure 14.56, or

start the program execution using hot key F5, or using pull-down menu (Debug / Run).

Now you should see the LEDs on the board blinking. Congratulation! You have got the

blinky project working. You can close the debug session using the debug session button

Figure 14.55
Debugger session.

Figure 14.56
Run button.

Getting Started with the Keil Microcontroller Development Kit 375

mailto:Image of Figure 14.55|tif
mailto:Image of Figure 14.56|tif

on the tool bar, or using the hot key Ctrl-F5, or from the pull-down menu (Debug /
Start/Stop Debug Session).

14.4.6 Project Setup Steps for NXP LPC1114FN28

The example setup described in this section is based on a breadboard circuit construction

as described in appendix H. Please refer to this appendix for details on the hardware setup.

After this is done, we can then create the first blinky project following the instructions

illustrated here. Here, we assume that you are using Keil ULINK�2/ULINK Pro debug

adaptor. If a different adaptor is used, the debug configuration options would be different

from what we have shown here.

For the LPC1114FN28 microcontroller device, we are going to create the example blinky

project in C:\CM0Book_Examples\ch_14_lpc1114_blinky.

The next step of the project creation wizard defines the microcontroller to be used for the

project. For this project, the LPC1114FN28/102 is selected, as shown in Figure 14.57.

Now the screen switches to a Run-Time Environment manager which allows us to include

the software component used. In order to simplify the project setup, the CMSIS-CORE

and the device-specific start-up code options are selected, as shown Figure 14.58.

Figure 14.57
Select LPC1114FN28/102 for the DIP part (you can find this in the LPC11xxL series).

376 Chapter 14

mailto:Image of Figure 14.57|tif

Now a project with the start-up codes is generated, as shown in Figure 14.59.

Then we add a new file to the project by right clicking on “Source Group 1,” and select

“Add New Item.,” as shown in Figure 14.60.

A new window dialog as in Figure 14.61 is shown. We select C file and enter blinky as the

file name.

Figure 14.58
Select CMSIS-CORE and device-specific startup.

Figure 14.59
Project with start-up code.

Getting Started with the Keil Microcontroller Development Kit 377

mailto:Image of Figure 14.58|tif
mailto:Image of Figure 14.59|tif

Figure 14.60
Add new item to project.

Figure 14.61
Select file type and file name of the new file.

378 Chapter 14

mailto:Image of Figure 14.60|tif
mailto:Image of Figure 14.61|tif

Now we can expand “Source Group 1” and open the “blinky.c,” and add the project code,

as shown in Figure 14.62. For this project, we assume that the LED is connected to pin 5

of port 1.

The program that is created carried out a few operation steps:

• Configure the GPIO ports for LED outputs

• Enter a simple loop to turn on and off the LED, with a delay specified by a C macro

called LOOP_COUNT

The full program code of the blinky program is shown below.

Blinky.c for LPC1114FN28 on Breadboard

// LED is connected to pin PIO1_5
// System running at 48MHz
#include "LPC11xx.h"

void LED_Config(void);
void LED_Set(void);

Continued

Figure 14.62
Program code added to example blinky project for LPC1114.

Getting Started with the Keil Microcontroller Development Kit 379

mailto:Image of Figure 14.62|tif

void LED_Clear(void);
void Delay(uint32_t nCount);

int main(void)
{

// Configure LED outputs
LED_Config();

#define LOOP_COUNT 0x80000
while(1){

Delay(LOOP_COUNT);
LED_Set();
Delay(LOOP_COUNT);
LED_Clear();
};

}

void Delay(uint32_t nCount)
{

while(nCount--)
{ }

}
void LED_Config(void)
{

// Enable clocks to GPIO and IO config block
// Bit 6: GPIO, bit 16: IO config
LPC_SYSCON->SYSAHBCLKCTRL j= ((1<<16) j (1<<6));

__NOP(); // Short time delay to ensure the clock is on before next access
__NOP();
__NOP();

// PIO1_5 IO output config
// bit[10] - Open drain (0 = standard I/O, 1 = open drain)
// bit[5] - Hysteresis (0=disable, 1 =enable)
// bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
// bit[2:0] - Function (0 = IO, 1=wRTS, 2=CT32B0_CAP0)
LPC_IOCON->PIO1_5 = (0<<10) j (0<<5) j (0<<3) j (0x0);

// Optional: Turn off clock to I/O Config block to save power
LPC_SYSCON->SYSAHBCLKCTRL &= w(1<<16);

// Set pin 8 as output
LPC_GPIO1->DIR = LPC_GPIO1->DIR j (1<<5);
return;

}

380 Chapter 14

void LED_Set(void)
{

// Set bit 5 output to 1
LPC_GPIO1->MASKED_ACCESS [1<<5] = (1<<5);
return;

}

void LED_Clear(void)
{

// Clear bit 5 output to 1
LPC_GPIO1->MASKED_ACCESS [1<<5] = 0;
return;

}

Project Settings

After the project and program files are created, it is often necessary to adjust a few project

settings before the application can be downloaded to the microcontroller’s flash memory and

be tested. In most cases, the Keil mVision IDE will set up all the required microcontroller-

specific settings automatically once the device is selected. However, we still need to set up:

• Debug settings

• Compiler optimization settings

It is useful to understand what settings are available and what settings are needed to get a

project to work.

There are many project settings available; first we will introduce the settings that are

essential for getting the program code downloaded to the flash and executing it. The

project settings menu can be accessed by:

• Target option button on the tool bar .

• Pull-down menu: Project / Option for Target.

• Right click on the project target name (e.g., “Target 1”) in the project window, and

select options for target.

• Hot key Alt-F7.

The project option menu contains a number of tabs, as shown in Figure 14.63.

By default, the Keil mVision IDE automatically sets up the memory map for us when we

select the microcontroller device. In most cases, we do not need to change the memory

settings. However, if the program operation fails or if flash programming is not

functioning correctly, we need to go through the settings to make sure that they were not

accidentally changed to incorrect values.

Getting Started with the Keil Microcontroller Development Kit 381

Debugger Settings

Some settings have to be set up manually. An example would be the debugger

configuration because mVision IDE does not know which in-circuit debugger you will be

using. First we look at the debug options as shown in Figure 14.64. Here, we selected

“ULINK2/ME.” You might need to select other debug adaptor based on the hardware you

have.

We can now plug in the breadboard and connect the ULINK2 to the USB port. Next we

need to set up the settings for the ULINK2 debug adaptor by clicking on the “Settings”

button next to it.

Since the LPC1114FN28 microcontroller does not support JTAG, in the ULINK2 settings,

we must select SW (Serial Wire) protocol as shown in Figure 14.65. Otherwise nothing

will show up in the JTAG device chain window.

Several options need a bit of attention here:

• The maximum SW clock is reduced to 200 KHz. Typically on breadboard environment,

there can be higher electrical noise and therefore might need a slower debug communi-

cation speed for reliable debug operations.

• The Reset type is set to SYSRESETREQ (System Reset Request). This ensures that the

debugger correctly resets the microcontroller when entering debug session.

Device

Target Memory map, C library option

Output Output executable / library,
output folder

Listing C compiler and assembler
listing, output folder

User
Define optional programs to
run before and after compile

and build processes

C/C++
C Compiler optimization,
defines, include path and

misc options

Assembler Assembler defines, include
path and misc options

Linker Memory layout, Scatter
loading file option

Debug Debug target, Debugger

Utilities Flash programming setup

Debugger
Settings

Flash
programming

settings

Debugger specific
configuration settings

Flash programming
mechanism, flash

programming algorithm

Targeted microcontroller
device for the project

Figure 14.63
Project option tabs in Keil MDK.

382 Chapter 14

mailto:Image of Figure 14.63|eps

Figure 14.64
Select ULINK2/ME Cortex Debugger.

Figure 14.65
Options for ULINK2/Cortex debug.

Getting Started with the Keil Microcontroller Development Kit 383

mailto:Image of Figure 14.64|tif
mailto:Image of Figure 14.65|tif

From the SW Device status, it shows that the debugger can read the IDCODE of the

debug interface and from that we now know that the debugger can communicate with the

board. In some cases, you might also need to further reduce the maximum clock frequency

for the debug communication. This depends on the microcontroller device, the circuit

board (PCB) design as well as the debug cable length.

In normal cases, the flash programming option should be set up correctly by the tool when

you select the microcontroller device. For example, the flash programming options for the

LPC1114FN28 device is set up automatically by Keil MDK (Figure 14.66). However, in a

few cases you might need to set up this manually.

Compilation

After the project options are set, we can now start the program compilation and test the

program. The compile process can be carried out by a number of buttons on the tool bar

as shown in Figure 14.67. Simply click on the “Build Target” button to start the compile

process, use the pull-down menu (in the Project menu / Build Target), or use hot key F7.

After the program is compiled and linked, we will see the compile status message as

shown in Figure 14.68.

The program can then be tested by starting a debug session by using pull-down menu

(Debug / Start/Stop Debug session), by clicking on the debug session button on the

Figure 14.66
Flash programming algorithm options.

384 Chapter 14

mailto:Image of Figure 14.66|tif

tool bar, or using the hot key Ctrl-F5. When starting the debug session, the compiled

image should be programmed on the microcontroller, as shown in Figure 14.69. If not, you

can download the image using the “Load” button on the tool bar.

After the program is downloaded to the microcontroller, the window will change into a

debugger session mode, as shown in Figure 14.70.

Program the compiled application
to the microcontroller

Rebuild all files

Build target

Target options

Figure 14.67
Frequently used buttons on the tool bar.

Figure 14.68
Compile result for the blinky project on the Build Output window.

Getting Started with the Keil Microcontroller Development Kit 385

mailto:Image of Figure 14.67|eps
mailto:Image of Figure 14.68|tif

Figure 14.69
Flash programming status output.

Figure 14.70
Debugger session.

386 Chapter 14

mailto:Image of Figure 14.69|tif
mailto:Image of Figure 14.70|tif

Now we can start the program execution using the Run button, as shown in Figure 14.71, or

start the program execution using hot key F5, or using pull-down menu (Debug / Run).

Now you should see the LEDs on the board blinking. Congratulation! You have got the

blinky project working. You can close the debug session using the debug session button

on the tool bar, or using the hot key Ctrl-F5, or from the pull-down menu (Debug /
Start/Stop Debug Session).

14.5 Using the IDE and the Debugger

There are a lot of useful buttons on the tool bar. During program development, a range of

icons is available on the tool bar for compilation as well as access to project options

(Figure 14.72).

Figure 14.71
Run button.

Download
to Flash

Start/Stop Debug Session Insert/Remove Breakpoints
Enable/Disable Breakpoints
Disable All Breakpoints
Kill All Breakpoints

Show/Hide the Project Windows
uVision Configurations

Incremental Find

Find
Find in Files

Target Options
Components,
environments
and Books

Insert/Remove Bookmarks

New
Open
Save

Save all

Translate

Build (F7)

Build all

Batch Build

Stop Build

Select Targets

Manage Run Time Environment

Select Software Pack

Pack installer

Figure 14.72
Tool bar buttons during software development.

Getting Started with the Keil Microcontroller Development Kit 387

mailto:Image of Figure 14.71|tif
mailto:Image of Figure 14.72|eps

When the debugger starts, the IDE display will change (as shown in Figure 14.73) in order

to present information and controls useful while debugging. From the display you can see

and change the core registers (left-hand side), you can also see the source window and the

disassembly window. Please note the icons on the tool bar also changed (Figure 14.74).

In the debug session you can view the code in source form (C code) or in disassembly

code form. Debug operations can be carried out at source level or instruction level:

• If you highlight the source window, the debug operation (e.g., single stepping, break-

points) is carried out based on each line of C code, or assembly code if the source is in

assembly language.

• If the disassembly window is highlighted, the debug operation is based on instruction level,

so you can single step each assembly instruction even if they are compiled from C code.

Figure 14.73
Debug session screen.

388 Chapter 14

mailto:Image of Figure 14.73|tif

In either source windows or disassembly windows, you can insert/remove breakpoint using

the icons near top right-hand corner of the window, by right clicking on the source/

instruction line and selecting insert breakpoint, as shown in Figure 14.75.

You can examine the contents of the memory using the memory window in the bottom

right corner. You can modify the representation format of the data by right clicking on the

Reset the CPU

Run
Stop
Step

Step Over

Step Out
Run to cursor line

Show next statement
Command window

Disassembly window
Symbol window
Register window
Call stack window

Watch window
Memory window

Serial window
Analysis window

Trace window
System View window

Toolbox

Start/Stop Debug Session Insert/Remove Breakpoints
Enable/Disable Breakpoints
Disable All Breakpoints
Kill All Breakpoints

Incremental Find

Find

Show/Hide the Project Windows
uVision Configurations

Figure 14.74
Debug session tool bar.

Figure 14.75
Insert breakpoint by right clicking on the line of code and select insert breakpoint.

Getting Started with the Keil Microcontroller Development Kit 389

mailto:Image of Figure 14.74|eps
mailto:Image of Figure 14.75|tif

left-hand column of the window and select the suitable data format, as shown in

Figure 14.76.

You can also examine the peripheral registers in the IDE easily using the System

Viewer feature. The System Viewer feature utilizes the CMSIS-SVD (System View

Descriptions) and visualizes the peripheral register contents in a convenient dialog

(Figure 14.77).

Figure 14.76
Memory window.

Figure 14.77
Peripheral register display using CMSIS-SVD.

390 Chapter 14

mailto:Image of Figure 14.76|tif
mailto:Image of Figure 14.77|tif

14.6 Under the Hood
14.6.1 CMSIS Files

When the project wizard is used to create a project, in the “Manage Run Time

Environment” step, a number of CMSIS-CORE support and the device start-up files can be

added to the project easily.

• The CMSIS-CORE option adds the required header files in the include path of the

project.

• The Device / Startup option adds the start-up code, system_<device>.c and
system_<device>.h to the project.

The start-up code and the system_<device>.c are copied to the local project directory

automatically, in a subdirectory called “RTE\Device\<device_name>.” So you can modify

these files without worrying about affecting other projects.

If necessary, instead of using the project wizard to include the CMSIS files, you can

include the start-up code and the header include path to the project manually.

In some cases, some microcontroller software packages might also come with

CMSIS-DRIVER, a cross platform peripheral driver. This can make your peripheral

programming easier. Alternatively, the device driver library from MCU vendors might also

contain device driver codes for the peripherals.

14.6.2 Clock Setup

In the example projects, the system_<device>.c contains a SystemInit() function that is

executed. In some cases, the system_<device>.c file might need modifications to allow you

to set up the system to run at the right clock speed. The details of the configuration of the
SystemInit() function is microcontroller vendors specific.

14.6.3 Stack and Heap Setup

The size of the stack (Main Stack) and heap memory are defined in the start-up file. You

can edit the assembly start-up code in the text editor in the IDE directly. Alternatively, you

can use a Configuration Wizard: When the start-up file is open in the editor, you should

see two tabs at the bottom of the active file windows. Click on the “Configuration Wizard”

and you can edit the stack and heap size easily, as shown in Figure 14.78.

If you click on the Text Editor tab, you can see that there are a number of special

comments in the start-up code file. The Configuration Wizard utilizes these special

comments to create a GUI-like interface. More information on the Configuration Wizard

Getting Started with the Keil Microcontroller Development Kit 391

can be found on the Keil Web site: http://www.keil.com/support/man/docs/uv4/uv4_ut_

configwizard.htm.

You need to adjust the stack and heap memory size according to your application. The

stack size requirements for various functions can be determined from a generated HTML

file after the compilation (see Section 14.6.4).

The heap memory is typically used by memory allocation functions, and in some cases

also used by other C runtime functions, including “printf” when certain data formatting

string is specified.

14.6.4 Compilation

When you click on “Build”/“Rebuild all,” the tool chain go through the development flow

as outlined in Figure 14.3 (apart from generation of binary file which is optional and is

disabled by default).

Figure 14.78
Configuration Wizard.

392 Chapter 14

http://www.keil.com/support/man/docs/uv4/uv4_ut_configwizard.htm
http://www.keil.com/support/man/docs/uv4/uv4_ut_configwizard.htm
mailto:Image of Figure 14.78|tif

When you start the debug session, the mVision� IDE automatically programs the program

image to the flash memory, and optionally sets up a breakpoint at the start of the main()

program. The microcontroller is then reset so that the program starts and halts at the

entrance of main().

If you want to, you can disable the “Run to main()” option in the debug options. The

debugger will then start the debug session at the first instruction of the reset handler. This

is useful if you have to debug the “SystemInit()” which executes before entering main().

If you need to find out more about the memory utilization of the project, double click on

the project target (e.g., “Target 1”) in the project navigation window. This opens a memory

map report file (you can find this file under the Listings subdirectory).

Another useful file generated during the compilation is an HTML file in the Objects

subdirectory. The name of the file is same as the project output file (e.g., if the executable

is blinky.axf, the HTM report file is blinky.htm). This file reports the stack size usages

and as the call tree.

14.7 Customizations of the Project Environment
14.7.1 Target Options

There is a wide range of project options in the Keil MDK mVision� IDE. We have already

covered the debug options and the flash programming option briefly, and here we will

introduce the other options.

Device Options

This tab allows you to select the microcontroller device you want to use. When you click

on a device, on the right-hand side of the screen it will also show a brief introduction of

the product.

Target Options

This allows you to set up the memory map, clock frequency (use by instruction set

simulator to determine timing), an option related to C run time library selection (standard

C library/MicroLib), and an option for Cross Module Optimization. Please see Section

14.7.2 for more information about the last two options.

Output Options

The output option tab allows you to select if the project should be generating an

executable image or a library. It also allows you to specify the directory where the

generated file is created and the output file name.

Getting Started with the Keil Microcontroller Development Kit 393

Listing Options

The listing option tab allows you to enable/disable assembly listing files. By default, the C

Compiler listing file is turned off. When debugging software bugs, it can be useful to turn on

this option so that you can see exactly what assembly instruction sequence is generated.

Similar to the “Output” options, you can click on “Select Folder for Objects” to define where

the output listings should be stored. You can also generate disassembly listing after the

linking stage, using a different method that is shown in the User options (next paragraph).

User Options

The User option tab allows you to specify additional commands to be executed. For

example, in Figure 14.79, the following command line is added:

$K\ARM\ARMCC\BIN\fromelf.exe -c -d -e -s #L –output list.txt

This command generates a disassembled listing of the complete program image. This gets

executed after the compilation stage and can be very useful for debugging (see section

Appendix G.2). In the user option example shown below, “$K” is the root folder of the

Keil development tool and “#L” is the linker output file. These key sequences can also be

Figure 14.79
Add user command to execute after build.

394 Chapter 14

mailto:Image of Figure 14.79|tif

used to pass argument to external user programs. You can find a list on key sequence

codes from this link on the Keil Web site: http://www.keil.com/support/man/docs/uv4/uv4_

ut_keysequence.htm.

C/Cþþ Options

The C/Cþþ option tab allows you to define the optimization options, C preprocessing

directives (defines), search path for include files, and miscellaneous compile switches.

Please note that by selecting CMSIS-CORE option when creating the project, by default, a

number of directories are automatically included in the search path of the project (see the

Compile control string list at the bottom). If you want to use a specific version of

CMSIS-CORE files, you might need to disable this automatic include path feature by

clicking on the “No Auto Includes” box in this dialog, and add the specific version of

CMSIS-CORE header files in the project manually.

Assembler Options

This allows you to define preprocessing directives, include-paths, and additional assembler

command switches if required.

Linker Options

By default, the project wizard automatically sets up the required memory layout when you

select the microcontroller device. You can create the memory layout by:

• Using the R/O (read only, i.e., flash) and R/W (read/write, i.e., SRAM) address in the

linker options.

• Define the memory layout in the Target option tab and select “Use Memory Layout

from Target Dialog.”

• Manually define the memory layout using a text-based file called Scatter File (this file

is automatically generated during a compilation) using the “Scatter File” option. You

can also get this file generated automatically from a compilation, and then customize it

for the next compilation.

Debug Options

The debug option dialog allows us to select between testing with real hardware (right-hand

side of the dialog) and testing the program code with an instruction set simulator (left-hand

side of the dialog). It also allows us to configure several debug options. For example, when

entering a debug session, we can choose to halt the processor as the processor exit reset, or

halt it when the processor just before executing “main()” (when “Run to main()” is selected).

You can also define an additional script file (Initialization file) which is executed each

time before the debug session starts.

Getting Started with the Keil Microcontroller Development Kit 395

http://www.keil.com/support/man/docs/uv4/uv4_ut_keysequence.htm
http://www.keil.com/support/man/docs/uv4/uv4_ut_keysequence.htm

Inside the sub menu for the debug adaptor, you might find three different tabs:

• Debug

• Tracedfor Cortex�-M3, Cortex-M4, and Cortex-M7 with trace interface

• Flash download

Utilities Options

The Utilities options tab allows you to define what debug adaptor is used for flash

programming, and flash programming algorithm used.

14.7.2 Optimization Options

A number of compiler and code generation options are available to allow different

optimizations. The first group of these options is the C compiler options, as shown in

Figure 14.80. The C compiler options allow you to select optimization levels (0e3, see

Table 14.1) through a drop-down menu. Optimization is set to reduce code size by default

unless the tick box “Optimize for Time” is set.

Figure 14.80
Compiler options.

396 Chapter 14

mailto:Image of Figure 14.80|tif

You can also add additional compiler switches directly in the “Misc Controls” text box.

For example, if you are using a Cortex-M0 processor with a 32-cycle multiplier (e.g., one

from the Cortex-M0 DesignStart� program), you can add the –multiply_latency¼32

option so that the C compiler can optimize the generated code accordingly.

In applications where performance is critical, you can consider adding the following

command in the “Misc Controls”: –loop_optimization_level¼2.

This option performs additional optimizations including loop unrolling to enhance the

performance of the application, at a cost of higher code size.

A second group of useful options can be found in the target options window as shown in

Figure 14.81: Cross-Module Optimization and MicroLIB.

Table 14.1: Various C compiler optimization levels

Optimization level Descriptions

-O0 Applies minimum optimizationdmost optimizations are switched
off, and the code generated has the best debug view.

-O1 Applies restricted optimizationdunused inline functions, unused
static functions, redundant codes are removed. Instructions can be
reordered to avoid interlock situations. The code generated is
reasonably optimized with a good debug view.

-O2 Applies high optimizationdoptimize the program code according
to the processor-specific behavior. The code generated is highly
optimized, with limited debug view.

-O3 Applies the most aggressive optimizationdoptimize in accordance
with the time/space option. By default, multifile compilation is
enabled at this level. This give the highest level of optimization, but
take longer compilation time and lower software debug visibility.

Figure 14.81
Code generation options.

Getting Started with the Keil Microcontroller Development Kit 397

mailto:Image of Figure 14.81|tif

The MicroLIB C library is optimized for microcontrollers and other embedded

applications. If the MicroLIB option is not selected, the standard ISO C libraries are used.

The MicroLIB has a smaller program memory foot print, but has a slower performance

and has a few limitations. In most applications that are migrating from 8-bit/16-bit

microcontrollers to ARM� Cortex-M0/M0þ processors, the slightly lower performance of

MicroLIB is unlikely to be an issue because the Cortex-M0/M0þ processors provide much

higher performance than most 8-bit or 16-bit processors.

The Cross Module Optimization operation takes information from a prior build and uses it

to place UNUSED functions into their own ELF section in the compiled object file. In this

way, the linker can remove unused functions to reduce code size.

More details of optimization techniques can be found in Keil Application Note

202dMDK-ARM Compiler Optimizations (reference 9).

14.7.3 Runtime Environment Options

In the tool bar diagram (Figure 14.72), there are three icons at the end of the second row:

• Manage Runtime Environment

• Select Software Pack

• Pack installer

You can add or remove software components from your project by the Manage Runtime

Environment dialog. And if needed, you can install additional software components from

the Pack Installer.

Please note that it is not unusual to have multiple versions if certain software pack is installed

on a system. For example, there can be multiple versions of the CMSIS-CORE support files

installed on a system for different device driver library packs. You can select a specific

version of the software pack in your project using the “Select Software Pack” dialog.

14.7.4 Project Management

In the project navigation window (e.g., Figure 14.17, Figure 14.32, Figures 14.47 and

14.62) you can see that there are “Target 1” and “Source Group 1.” These can be modified

to give it more intuitive names. To change them, just click on the name to highlight it, and

then click it again to edit.

You can have multiple source groups in a project. For example, if you have a fair number

of project files in you project, it is useful to group the files and name the source group

based on the type of the software (e.g., motor control, GUI, etc.). To add a new source

group in a project target, just right click on the project target and select “Add Group.”

398 Chapter 14

To make the project information more visible, you can also include text files in a project

for additional information as shown in Figure 14.82.

You can also have multiple Targets in a project. This is commonly used in product

development where you can have a software code base for multiple similar products. Each

target can have different compilation options, project file list, etc. To add a new target for a

project, you can use the pull-down menu: Project/ Manage/ Components, Environments,

Books., or click on the icon on the tool bar to access the project management window

(Figure 14.83), and then click on the new project target button as shown in Figure 14.84.

Figure 14.82
A project can be improved by renaming Target, Source Group, and adding Text file to explain the code.

Figure 14.83
Adding a new target to a project.

Getting Started with the Keil Microcontroller Development Kit 399

mailto:Image of Figure 14.82|tif
mailto:Image of Figure 14.83|tif

14.8 Using the Simulator

The mVision� IDE includes an instruction set simulator. The simulator provides instruction

set level simulation, and for a limited number of microcontroller devices, a device-level

simulation feature (including peripheral simulation) is also available. To enable this

feature, change the debug option to use simulator as shown in Figure 14.85.

After this is set, the simulator would be used when a debug session is started. From here,

it is possible to execute the program, single step through the program, and also examine

the system status.

In many cases, depending on the microcontroller product you are using, the debug

simulator might not be able to fully simulate all the peripherals available on the

microcontroller. Also, it may be necessary to adjust the memory map of the simulated

device. This can be done by accessing the memory configuration via the pull-down menu:

Debug / Memory.

Figure 14.84
Adding a new target to a project.

400 Chapter 14

mailto:Image of Figure 14.84|tif

14.9 Execution in SRAM

In addition to downloading the program to flash memory, you can also download a

program to RAM and test it without changing the content inside the flash memory. To do

this, we need to change a number of options in the project:

• Memory layout of the image (Target options, Figure 14.86)

• Linker option (select “Use memory Layout from Target Dialog”)

• Flash programming option (remove flash programming step, Figure 14.87)

• Debug optiondadd a debug initialization command file (Figure 14.88)

First, we need to specify the new memory map for the compiled image (Figure 14.86).

The memory layout depends on the microcontroller used for the project.

Then, we specify the linker to handle the link process based on the memory layout we

specified in the Target dialog.

In addition, the flash programming option is modified to remove flash programming steps

(Figure 14.87).

Figure 14.85
Enable simulator for debug.

Getting Started with the Keil Microcontroller Development Kit 401

mailto:Image of Figure 14.85|tif

Figure 14.86
Define memory map for execution from SRAM.

Figure 14.87
Remove flash programming steps from project options.

402 Chapter 14

mailto:Image of Figure 14.86|tif
mailto:Image of Figure 14.87|tif

The next step is to create a simple debug start-up script to load the initial stack pointer

and program counter to the right location. For this example, a file called ram_debug.ini is

created with the following text:

ram_debug.ini

reset
// VTOR in Cortex-M0+
// Remap interrupt vectors to SRAM
_WDWORD(0xE000ED08, 0x1FFFF000);

LOAD blinky.axf INCREMENTAL // Download image to board

SP = _RDWORD(0x1FFFF000); // Setup Stack Pointer
PC = _RDWORD(0x1FFFF004); // Setup Program Counter

We then need to set up the debug option so that this debug start-up script is used when the

debug session starts. The debug option changes for this example are shown in

Figure 14.88 (Initialization File option).

Now we can start the debug session as normal.

Figure 14.88
Add an Initialization File for debug (ram_debug.ini).

Getting Started with the Keil Microcontroller Development Kit 403

mailto:Image of Figure 14.88|tif

When the debug session is started, it will download the program to SRAM and set the

program counter to correct starting point in the program image automatically. The

application can then be started.

Testing a program image from RAM can have a number of limitations. First, it is

necessary to use a debugger script to change the program counter and initial stack pointer

to the right locations. Otherwise, the reset vector and initial stack pointer value in the flash

memory will be used after the processor is reset.

The second issue is that additional hardware is required to use the exception vector table

in RAM. The vector table normally resides in the flash memory from address 0x0. For

Cortex�-M0þ processor, the optional Vector Table Offset Register (VTOR) can be used to

define the vector table to SRAM. For Cortex-M0 processor, the VTOR is not available. In

some microcontrollers, device-specific memory remapping hardware is available to

overcome this issue, but the debug initialization file need to initialize such memory

remapping to enable correct interrupt operations.

14.10 Using MTB for Instruction Trace

Instruction trace via MTB (Micro Trace Buffer) is supported in Keil MTB. To enable this

feature on the Freescale FRDM-KL25Z board, a debug initialization command file is

required. A sample of this file is shown below.

DBG_MTB.ini

/**/
/* MTB.ini: Initialization Script for Cortex-M0+ MTB(Micro Trace Buffer) */
/**/
// <<< Use Configuration Wizard in Context Menu >>> //
/**/
/* This file is part of the uVision/ARM development tools. */
/* Copyright (c) 2005-2012 Keil Software. All rights reserved. */
/* This software may only be used under the terms of a valid, current, */
/* end user licence from KEIL for a compatible version of KEIL software */
/* development tools. Nothing else gives you the right to use this software. */
/**/

FUNC void MTB_Setup (void) {
unsigned long position;
unsigned long master;
unsigned long watermark;
unsigned long _flow;

// <e0.31> Trace: MTB (Micro Trace Buffer)
// <o0.0..4 > Buffer Size
// <4=> 256B
// <5=> 512B

404 Chapter 14

// <6=> 1kB
// <7=> 2kB
// <8=> 4kB
// <9=> 8kB
// <o1> Buffer Position
// <i> Buffer position in RAM. Must be a multiple of the buffer size.
// <o2.0> Stop Trace when buffer is full
// <o2.1> Stop Target when buffer is full
// </e>

master = 0x80000008;
position = 0x20000000;
_flow = 0x00000000;

position &= 0xFFFFFFF8; // Mask POSITION.POINTER field
watermark = position + ((16 <<(master & 0x1F)) - 32);
_flow j = watermark;

_WDWORD(0xF0000004, 0x00000000); // MASTER
_WDWORD(0xF0000000, position); // POSITION
_WDWORD(0xF0000008, _flow); // FLOW
_WDWORD(0xF0000004, master); // MASTER

}

MTB_Setup();

Figure 14.89
MTB Configuration via Configuration Wizard.

Getting Started with the Keil Microcontroller Development Kit 405

mailto:Image of Figure 14.89|tif

Figure 14.90
Enabling MTB trace (instruction trace showing on the right).

4
0
6

C
hapter

1
4

mailto:Image of Figure 14.90|tif

After this file is created, you can configure the debugger to initialize the debug session

with this file as shown in previous section (see Figure 14.88).

To edit the configuration, you can use the Configuration Wizard (see Section 14.6.3 for

similar information) to configure the memory size allocated for instruction trace and other

options (Figure 14.89).

After the debug options are set up, during the debug session, you can access to the

instruction trace using pull-down menu: View / Trace / Trace Data, or using the Trace

icon on the tool bar, as shown in Figure 14.90.

Getting Started with the Keil Microcontroller Development Kit 407

CHAPTER 15

Getting Started with IAR Embedded
Workbench for ARM®

15.1 Overview of IAR Embedded Workbench for ARM®

IAR Embedded Workbench for ARM is a popular development suite for ARM-based

microcontrollers. It contains the following:

• C and Cþþ compiler for various ARM processors

• Integration Development Environment (IDE) with project management and editor

• C-SPY� debugger with ARM simulator, JTAG support and support for RTOS-aware

debugging on hardware (a number of RTOS plug-ins are available). The debugger sup-

ports various debug adaptors including the following:

• IAR I-Jet/I-jet Trace and JTAGjet/JTAGjet Trace,

• CMSIS-DAP,

• Segger J-Link/J-Link Ultra/J-Trace,

• GDB server,

• ST Link/ST Link v2,

• TI XDS 100/200 and Stellaris FTDI/ICDI,

• SAM-ICE (Atmel), .etc.

• Additional components including ARM assembler, linker and librarian tools, flash pro-

gramming support

• Examples for various development boards from multiple manufacturers

• Documentation

The full version of IAR Embedded Workbench also supports the following:

• Automatic checking of MISRA C rules (MISCRA C:1998, MISRA C:2004)

• Source code for runtime libraries

• C-RUN runtime analysis (optional)

• C-STAT static analysis

IAR Embedded Workbench is a commercial tool. Various editions are available, including

a free version called Kickstart which is limited to 16 KB1 code size (for Cortex�-M0 and

1 16 KB code size limit applies to ARMv6-M processors including Cortex-M0 and Cortex-M0þ processors.
For ARMv7-M including Cortex-M3, Cortex-M4 and the Cortex-M7 processors, the code size limit is 32 KB.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0þ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00015-1

Copyright © 2015 Elsevier Inc. All rights reserved. 409

http://dx.doi.org/10.1016/B978-0-12-803277-0.00015-1

Cortex-M0þ processors) and has some of the advance features disabled. You can also

download a fully featured version for a 30 days evaluation.

IAR Embedded Workbench is easy to use and supports many debug features available in

the Cortex-M processors. In this chapter we will demonstrate the use of IAR Embedded

Workbench for ARM with the Freescale Freedom board FRDM-KL25Z. Before you start,

please read section 14.3.1 regarding updating the firmware and device driver installation.

In the example code package from the companion Web site for this book, there are

additional examples for other hardware listed in section 14.3.

15.2 Typical Program Compilation Flow

Just like most commercial development suites, the compilation process is handled

automatically by the IDE and can be invoked easily by the GUI. So in most cases you do

not need to understand the details of the compilation flow. Once the project is created, the

IDE automatically invokes various tools to compile the code and generate the executable

image, as shown in Figure 15.1.

Most of the device configurations such as configuration files for memory layout, flash

programming details are preinstalled so that you only need to select the right

microcontroller devices in the project settings to enable the correct compilation flow.

In order to simplify the application development and allow quicker software development,

in most cases you will be using a number of files prepared by the microcontroller vendors

so that you do not have to waste time in creating definition files for peripheral registers.

C files (.c)

iccarm
(compiler)

Object files (.o)

Assembly files (.s)

iasmarm
(assembler)

Object files (.o)

Config (.icf)

Executable
image file
(.out)

Optional step

Op
tio
na
l st
ep

ilinkarm
(linker)

ielfdumparm

ielftool

Binary program
image (.bin)

Disassembled
code (.txt)

memory
layout

Project
settings

Flash
Programming

Debug

Figure 15.1
Example compilation flow with IAR Embedded Workbench.

410 Chapter 15

These files are normally part of the CMSIS compliant device driver library from the

microcontroller vendors. In many cases these are referred as software packages which might

also include additional components such as examples, tutorials, additional software libraries.

A minimalistic example project using CMSIS device library is illustrated in Figure 15.2.

While your application might only contain one file (left hand side of Figure 15.2), the

project also includes a number of files from the microcontroller vendor. While you can

create your applications almost entirely in C language, the start-up code which contains

the vector table is often provided in form of an assembly code. The start-up code is tool

chain specific. However, the rest of the files in the project are tool chain independent. In

fact, in the blinky project example that we will cover in Section 15.3, apart from the

assembly start-up code, all the other program code files are identical to the example

project for Keil� MDK-ARM as in Chapter 14. This is an important advantage of the

CMSIS-CORE because it makes most of the software components independent of the tool

chain; hence the software codes are much more portable and reusable.

Additional CMSIS-CORE files are referenced by some of these CMSIS-CORE files. These

are generic header files from ARM (bottom right-hand corner of Figure 15.3) and are

integrated in the IAR Embedded Workbench installation. One of the project options

enables these files to be automatically included during the compilation stage.

If necessary, you can disable this project option and add the generic CMSIS-CORE files

into the project manually. This might be needed if you need to use a specific version of

CMSIS-CORE files.

Startup code file
startup_<device>.s

(assembly)

system_<device>.h

system_<device>.c

Application
program file

Device specific header file
<device>.h

Startup

CMSIS system Initialization

Application

Application
specific

From microcontroller
vendors

Need customization
e.g. for clock
configuration

Device specific
definitions

Figure 15.2
Example project with CMSIS-CORE.

Getting Started with IAR Embedded Workbench for ARM® 411

If you are using older versions of CMSIS-CORE (version 2.0 or older), you might also

find that you need to include a file called core_cm3.c or core_cm0.c in the CMSIS-CORE

package for some of the core functions like access to special registers and couple of

intrinsic functions. These files are no longer required in newer versions of CMSIS-CORE,

and the CMSIS-CORE functions are still fully compatible to older version.

15.3 Creating a Simple Blinky Project

When IAR Embedded Workbench starts, you can see the screen as shown in Figure 15.4.

You can open an existing example project by clicking on “EXAMPLE PROJECTS.” There

are many ready-to-run examples that can serve as a starting point for application

development. In this section, we look at how to create a new project from scratch.

We can create a new project using the pull down menu: Project / Create New Project.

A new window will appear to allow you to select which type of project to create, as shown

in Figure 15.5.

There are a number of choices here, for example, we can select:

• Create an empty project and add source code files we have already created, or

• Create a C project and that have a minimum main.c with “int main(void)”.

For this demonstration we select an empty project. The project wizard will then proceed to

ask us to define the location of the project file. Here in this stage we create a project

called blinky (Figure 15.6).

Startup code file
startup_<device>.s

(assembly)

system_<device>.h

system_<device>.c

Application
program file

Device specific header file
<device>.h

Startup

CMSIS system Initialization

Application

Application
specific

From microcontroller
vendors

Need customization
e.g. for clock
configuration

Device specific definitions

core_cm0.h /
core_cm0plus.h

core_cmFunc.h core_cmInstr.h

From ARM (generic CMSIS files)

Figure 15.3
Example project view when including CMSIS-CORE files from ARM�.

412 Chapter 15

Figure 15.5
New Project window.

Figure 15.4
Start screen of IAR Embedded Workbench for ARM�.

Getting Started with IAR Embedded Workbench for ARM® 413

Once this is done, we have an empty project created, and we can start adding files to it.

In order to make the project more organized, we can add a number of file groups in the

project and put different types of files into these groups. You can access to the add group/

file function by right clicking on the project target (Debug) and select “Add,” as shown in

Figure 15.7, or from the pull down menu, “Project / Add Group/Add File.”

For this project we create three file groups.

• Application (where the blinky program is placed)

• Startup (for the start-up code)

• CMSIS (for CMSIS-CORE-related files such as system_<device>.c)

In the following steps, the project setup step for Freescale FRDM-KL25Z is illustrated.

For other hardware platform the steps are almost identical, just the filenames and the

actual blinky code are different. For the Freescale FRDM-KL25Z hardware, the following

files are added to the project, as shown in Table 15.1.

Figure 15.6
Create a blinky project.

414 Chapter 15

After adding the blinky program and the additional files to the project, a project navigation

window as shown in Figure 15.8 is obtained. We have not explicitly included other CMSIS

Header files as these can be automatically included using a project option (General option,

see Table 15.2).

Figure 15.7
Adding groups and files to a project.

Table 15.1: Files in the blinky project

File Description

startup_MKL25Z4.s Startup code (in Assembly) for MKL25Z. This file is specific to IAR
Embedded Workbench.

MKL25Z4.h Device definition files including peripheral register definitions, exception-type
definitions.

system_MKL25Z4.c System initialization function (SystemInit()) for MKL25Z and related
functions as specified in CMSIS-CORE.

system_MKL25Z4.h Header file for defining function prototypes of functions in system_MKL25Z4.c.
blinky.c The blinky application which toggles LEDs on the board.

Getting Started with IAR Embedded Workbench for ARM® 415

In the next steps, we need to set up various project options. For minimum, a number of

project options are essentials, for example:

• Device

• Enable CMSIS

• Include path for device-specific header files

• Enable flash programming option

• Debug adaptor options

Note: For user of the STM32L0 Discovery development board, an additional preprocessing

macro “STM32L051xx” needs to be defined in the project.

The project options can be accessed by right clicking on the project target

(“blinkydDebug” as shown in Figure 15.8), by the pull down menu (Projects/ Options),

or by shortcut key ALT-F7. There are wide ranges of project options available, for many

categories on the left, you can find multiple tabs. For example, in the “General options”

category, you can find: Target, Output, Library Configuration, Library Options, MISRA

C-2004, MISRA C-1998 (Figure 15.9).

Figure 15.8
Blinky project.

Table 15.2: Useful project options for the blinky project

Category Tab Details

General options Target Device/ MKL25Z128xxx4
General options Library

configuration
Use CMSIS. This automatically includes essential
CMSIS-CORE Header files in the project.

C/C++ Compiler Optimizations Optimization options. This is optional for the blinky project.
C/C++ Compiler List Output list file. This is optional, but can be useful for debugging.
C/C++ Compiler Preprocessor Include directory and preprocessing macros.
Linker Config Optional settings: Override default if you need to change the

memory map (e.g., different stack and heap size)
Debugger Setup CMSIS-DAP. Use the on-board debug adaptor for debug.
Debugger Download Enable “Use flash loader(s)” option. This essential step

enable flash download to the microcontroller.
CMSIS-DAP JTAG/SWD Optionally specify debug protocol and debug connection speed.

416 Chapter 15

In this blinky project, we need to set up a number of options as shown in Table 15.2.

After setting up the project options, we can now try to compile the project and test it. To

start with, we right click on the project target (blinkydDebug) and select Build, and then

the IDE will ask us to save the current workspace, which we will save it in the same

project directory as “blinky.eww,” as shown in Figure 15.10.

If everything is setup correctly, you should see the compilation report at the IDE as shown

in Figure 15.11. Congratulations! You have built you first ARM� project with IAR

Embedded Workbench successfully.

Now you need to download the program to the microcontroller board and test it. This can be

done in three ways: Using the pull down menu to select “Project/ Download and Debug,”

click on the (Download and Debug icon) on the tool bar or use short cut key Ctrl-D.

After the program image is downloaded to the board, the debugger screen should appear

as shown in Figure 15.12. The program is currently halted just before the first line of C

code in main(), as indicated with the green arrow.

Figure 15.9
Project options.

Getting Started with IAR Embedded Workbench for ARM® 417

You can start running the program by clicking on the “go” icon on the tool bar. The LEDs

on the board should start flashing. You can halt, resume, reset, or single step the program

using various icons on the debugger screen, as shown in left hand side of Figure 15.13.

Figure 15.11
Compilation result.

Figure 15.10
Saving workspace before compiling the project.

418 Chapter 15

Stop Debugging
Go (Run program)
Run to cursor
Next statement
Step out
Step Into
Step over

Stop running (available when the processor is running)

Reset

Enable SWO (trace output features, not available in Cortex-M0/M0+)

Enable ETM (Cortex-M3/M4/M7) / MTB (Cortex-M0+) instruction trace feature

Find Previous
Find Next

Find
Replace Goto

Toggle Bookmark
Previous Bookmark
Next Bookmark
Navigate backward
Navigate foreward

Compile
Make

Stop build
Toggle Breakpoint

Make and restart debugger
Restart debugger

Figure 15.13
Icons on the tool bar of the debug screen.

Figure 15.12
Debug session screen.

Getting Started with IAR Embedded Workbench for ARM® 419

By default the register window is not enabled. To enable the register window, use the pull

down menu to select “View/ Register.”

You can insert or remove breakpoints by right clicking a line on the source window, and

select toggle breakpoint. When the processor is halted, you can see the processor’s registers

using the register window which can be accessed by pull down menu “View/ Register.”

15.4 Project Options

The IDE in the IAR Embedded Workbench provides many options. Figure 15.14 shows

the main option categories and the tabs available.

For example, the IAR C Compiler allows various levels of optimization efforts, and when

the optimization level is set to high, you can select between size optimization, speed

optimization, and balance optimization. You can also enable or disable some of the

individual optimization techniques (Figure 15.15).

There are also a number of additional settings for each supported debug adaptor. In some

cases you need to set up the debug adaptor settings to specific debug protocol (i.e., JTAG/

General Options Target (e.g. device)

Output (e.g. executable / library)

Library Configuration (e.g. CMSIS, semihosting)

Library Options (e.g. printf, scanf)

MISRA-C:2004

MISRA-C:1998

C/C++ Compiler Language 1 (e.g.C89/C99)

Language 2 (e.g. signed/unsigned char)

Code (e.g. position indepenent)

Optimizations (e.g. optimization effort)

Output (e.g. elf section name)

List (e.g. C listing/disassembly code)

Preprocessor (e.g. define symbol, inc directory)

Diagnostics (e.g. warning/error settings)

MISRA-C:2004

MISRA-C:1998

Extra options

Assembler Language

Output

List

Preprocessor

Diagnostics

Extra options

Output convertor Output (e.g.binary, hex file outputs)

Custom Build Custom Tool Configuration

Build Actions Pre-build and post-build commands Configuration

Linker Config

Library

Input

Optimizations

Advanced

Output

List

#Define

Diagnostics

Extra options

Checksum

Debugger Setup

Download

Images

Plugins

Extra options

Runtime Checking C-RUN runtime checking (e.g. heap checking)

Multi-core

Figure 15.14
Project options categories and tabs.

420 Chapter 15

Serial Wire debug) and reset behaviors. Additional debug and trace options might also be

needed if you are using Cortex�-M3/M4/M7 processor which has trace features.

15.5 Using MTB Instruction Trace with IAR EWARM

The MTB feature of the Cortex�-M0þ processor is supported in the IAR Embedded

Workbench on the debug adaptors including: CMSIS-DAP and IAR I-Jet/I-Jet Trace. For

example, if you are using the Freescale Freedom board FRDM-KL25Z, you can enable the

MTB trace in the debug session from the pull down menu: CMSIS-DAP / ETM Trace,

as shown in Figure 15.16.

A new window will then be displayed, and you might need to click in the On/Off icon to

enable the trace, as shown in Figure 15.17.

When trace is enabled, the ETM icon on the tool bar is displayed with green background

color.

After program execution started and then halted (e.g., by a breakpoint), the instruction

trace will then be displayed in the trace window, as shown in Figure 15.18.

Figure 15.15
Optimization options for C/Cþþ compiler.

Getting Started with IAR Embedded Workbench for ARM® 421

15.6 Hints and Tips

In an IAR EWARM project, the stack size and heap size requirement of a project is

defined in the Linker options. You need to select the option to override the default Linker

Configuration File, set up the stack and heap memory size (Figure 15.19), and save the

settings in a new configuration file in your project directory.

Figure 15.17
Enabling instruction trace by clicking on the Trace On/Off icon.

Figure 15.16
Selecting instruction trace feature.

422 Chapter 15

Figure 15.18
Instruction traces display.

Figure 15.19
Stack and Heap memory size settings.

You can determine the amount of stack space you need for your application by enabling

the stack analysis feature. In order to do this, you need to enable two options in the linker

settings:

1. Enable linker map file generation (Figure 15.20), and

2. Enable stack analysis (Figure 15.21)

Once the options are enabled and the project is recompiled, you should see a linker map

file in the Debug\List directory, and you can see the stack report like the following:

*** STACK USAGE

Call Graph Root Category Max Use Total Use
------------------------ ------- ---------
Program entry 20 20
Uncalled function 4 4

Figure 15.20
Enable linker map file generation for stack report.

424 Chapter 15

Program entry
"__iar_program_start": 0x000008dd

Maximum call chain 20 bytes

"__iar_program_start" 0
"__cmain" 0
"main" 8
"LED_Set" 8
"LED_On" in blinky.o [1] 4

Uncalled function
"SystemInit": 0x00000411

Maximum call chain 4 bytes

"SystemInit" 4

Figure 15.21
Enable stack usage analysis.

Getting Started with IAR Embedded Workbench for ARM® 425

Another useful feature of the IAR EWARM is C-RUN, a range of runtime check features

that allows detection of potential software failures with just a small amount of software

overhead. The C-RUN is an add-on product for IAR EWARM 7.20 and later versions.

The C-RUN feature can be enabled from the project option, as shown in Figure 15.22.

Much of the useful information about IAR Embedded Workbench is included in the

documentation which is part of the installation. Typically you can find these files from the

Help menu.

On the IAR Web site, under the support->resources section, there are also a number of

useful and informative technical articles. An example is “Mastering stack and heap for

system reliability,” reference 10.

Figure 15.22
C-RUN project options.

426 Chapter 15

CHAPTER 16

Getting Started with gcc (GNU Compiler
Collection)

16.1 About the GNU Compiler Collection Tool Chain

The GNU Compiler Collection (gcc) tool chain is very popular in various open source

projects and is used by various microcontroller vendors as part of their free development

tool chain offering. There are also a number of general microcontroller tool chains

developed based on gcc. Some of these tool chains are available free of charge, and some

others at low cost which provide various additional features to assist software

development.

In this chapter we will cover the use of GNU Tools for ARM� Embedded Processors. You

can download a prebuilt package from the LaunchPad1 Web site. The full release of the

GNU C compiler source code is available from GNU Compiler home page (http://gcc.gnu.

org). Although it is possible to build the gcc tool chain for Cortex�-M processors using

the gcc source packages,2 the built process requires in depth understanding of the tool

chains and is not covered in this book.

16.2 About the Examples in This Chapter

There are many ways to create projects with gcc. In this chapter, we will cover a few

different possibilities:

• Compile programs using the gcc tool chain from LaunchPad Web site in command

lines.

• Create projects using the gcc tool chain from LaunchPad Web site with Keil Microcon-

troller Development Kit (MDK-ARM) as IDE.

• Create projects using the gcc tool chain from LaunchPad Web site with CooCox CoIDE

as IDE.

The gcc tool chain from the LaunchPad Web site used in the examples in this chapter is

version 4.9 2014q4.

1 At the moment it is hosted at https://launchpad.net/gcc-arm-embedded. In the long term the URL might
change.

2 You can get the packages from http://gcc.gnu.org and http://www.gnu.org/software/binutils/.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00016-3

Copyright © 2015 Elsevier Inc. All rights reserved. 427

http://gcc.gnu.org
http://gcc.gnu.org
https://launchpad.net/gcc-arm-embedded
http://gcc.gnu.org
http://www.gnu.org/software/binutils/
http://dx.doi.org/10.1016/B978-0-12-803277-0.00016-3

The example projects are based on the same hardware platform covered in Section 14.3,

with the exceptions that the CooCox CoIDE v2 beta examples only support STM32F0

Discovery (other hardwares are not supported in this beta release).

Please note that the linker scripts and start-up code used in the example projects are

prepared for the prebuilt gcc tool chain from the LaunchPad Web site. If a different gcc

tool chain is used, it is possible that the start-up codes and the linker scripts need to be

adjusted due to potential differences in C start-up in the library and linking process setup.

16.3 Typical Development Flow

The gcc tool chain contains C compiler, assembler, linker, libraries, debugger, and

additional utilities. You can develop applications using C language, assembly language, or

a mixture of both. The typical command names are shown in table Table 16.1.

The prefix of commands reflects the type of the prebuilt tool chain. In this case, the

command names shown in the third column of Table 16.1 is prebuilt for ARM EABI3

without specific target OS platform, hence the prefix “none.” Some GNU tool chains could

be created for development of application for Linux platforms, in those cases the prefix

could be “arm-linux-.”

For Cortex�-M0 and Cortex-M0þ software development, in most cases the EABI version

would be used. If by chance your application is going to be running on a Cortex-M-based

system with mClinux operation system, then you should compile your application code

using the mClinux/Linux version of gcc tool chain.

Table 16.1: Command names (note: the command names for tool

chains from other vendors can be different)

Tools

Generic

command name

Command name in

GNU Tools for ARM�

embedded processors

C Compiler gcc arm-none-eabi-gcc
Assembler as arm-none-eabi-as
Linker ld arm-none-eabi-ld
Binary file
generation tool

objcopy arm-none-eabi-objcopy

Disassembler objdump arm-none-eabi-objdump

3 Embedded-application binary interface (EABI) specifies standard conventions for file formats, data types,
register usage, stack frame organization, and function parameter passing of an embedded software program.

428 Chapter 16

The typical development flow of software development using gcc is shown in Figure 16.1.

Unlike using ARM� Compilation tool chain (i.e., armcc), it is common to have the

compile and link operations combined in a single gcc execution. In this way it is easier

and less error prone as the compiler can invoke the linker automatically and generate all

the required link options and pass on all required libraries.

To compile a typical project, you will need to have the files listed in Table 16.2:

In order to make software development easier, normally the microcontroller vendors

provide a set of files which include some of the items listed in Table 16.2. Sometimes

this is called CMSIS compliant device driver libraries, or microcontroller software

packages. These packages might also include example projects or additional driver

libraries.

For example, in a minimalistic project that toggles LEDs on a STM32F0 Discovery board

(based on the Cortex-M0 processor), you might have the following files in your project (as

shown in Figure 16.2).

The device-specific header file stm32f0xx.h defines all the peripheral registers so that you

do not have to spend long time to create peripheral definitions. The system_stm32f0xx.c

provides the SystemInit() function which initializes the clocking system such as PLL and

clock control registers.

C Compiler
(gcc)

.c
.cpp

.s

Linker
(ld)

C source code

Assembly
source code

Executable
image

Linker script
(Memory layout)

.ld

.axf /
.elf /
.out Instruction Set

Simulator
(3rd party, eg. qemu)

Flash programmer
(Tool chain specific)

Debugger
(Tool chain specific)

Binary / hex
file generation
(objcopy)

Assembler
(as)

libname.a
Library files

Disassembled
code (.txt)

Disassembler
(objdump)

Figure 16.1
Typical program development flow.

Getting Started with gcc (GNU Compiler Collection) 429

Table 16.2: Typical required files for a project

File type Descriptions

Application code Source code of your application.
Device-specific CMSIS
Header files

The definition header files for the microcontroller you use. This is provided by
the microcontroller vendors.

Device-specific start-up
code for gcc

The device specific start-up code for the microcontroller you use. This is
provided by the microcontroller vendors.

Device-specific system
initialization files

This contains the SystemInit() function (system initialization) which is
specified by CMSIS-CORE, and additional functions for system clock updates.
This is provided by the microcontroller vendors.

Generic CMSIS
Header files

This is typically included in the device driver library package or included in
tool installation. Or you can download it from ARM� (www.arm.com/cmsis)

Linker script The linker script is device specific and can also be tool chain specific. The
complete linker script for a project can be composed of several files, with one
file to specify the memory layout of the device and other files to define the
settings required for gcc itself. The installation of GNU Tools for ARM
Embedded Processors already provided an example linker script to make it
easier.

Library files This included the runtime libraries provided by the tool chain (typically
included in the installation). You can also add additional custom libraries if
needed.

Project
directory

blinky.c & other application codes

stm32f0xx.h

(SystemInit function)

(Application code)

system_stm32f0xx.c

core_cm0.h

(Hardware register definitions,
exception type definitions)

(Processor register
definitions, processor
configuration functions)CMSIS

stm32f0xx.ld
(Linker script)

core_cmFunc.h
(Special register access
functions)

Include

core_cmInstr.h
(Special instructions access
functions)

ST STM32F0xx Include

Source

system_stm32f0xx.h
(Declare SystemInit function)

Templates
(optional
hierachy)

system_stm32f0xx.c
(SystemInit function)

startup_stm32f0xx.S
(Startup function)

gcc

(other tool chains)

Figure 16.2
Example project with CMSIS-CORE.

430 Chapter 16

http://www.arm.com/cmsis

Apart from the program files, you also need the linker script to define the memory

layout of the executable image. In most cases, you only need to modify the memory

map settings in the linker script, which can be found in the beginning of the file

stm32f0xx.ld:

Fragment of the Linker Script that Specifies Memory Addresses and Size

MEMORY
{

FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 0x10000 /* 64k */
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000 /* 8K */

}

16.4 Creating a Simple Blinky Project

The installation of GNU Tools for ARM� Embedded Processors only provides command

line tools. You can invoke the compilation using the command line, make file (for Linux

platform), batch file (for Windows platform) or using third party IDE. First, we

demonstrate how to create a project using a batch file.

Assume we place the files listed in Figure 16.2 in a project directory, and the generic

CMSIS include files in a subdirectory called CMSIS/Include, we can invoke the

compilation and link process with a simple batch file:

Simple Batch File for Compiling the Blinky Project

Note the Use of “̂ ” Symbol below Is to Allow Multiline Commands in Windows Batch File

set OPTIONS_ARCH=-mthumb -mcpu=cortex-m0
set OPTIONS_OPTS=-Os
set OPTIONS_COMP=-g -Wall
set OPTIONS_LINK=-Wl,--gc-sections,-Map=map.rpt,-lgcc,-lc,-lnosys -ffunction-
sections -fdata-sections
set SEARCH_PATH1=CMSIS\Include
set SEARCH_PATH2=CMSIS\ST\STM32F0xx\Include
set SEARCH_PATH3=.
set LINKER_SCRIPT=stm32f0.ld
set LINKER_SEARCH=“C:\Program Files (x86)\GNU Tools ARM Embedded\4.9
2014q4\share\gcc-arm-none-eabi\samples\ldscripts”

rem Newlib-nano feature is available for v4.7 and after
set OPTIONS_LINK=%OPTIONS_LINK% --specs=nano.specs

Continued

Getting Started with gcc (GNU Compiler Collection) 431

rem Compile the project
arm-none-eabi-gcc ^

%OPTIONS_COMP% %OPTIONS_ARCH% ^

%OPTIONS_OPTS% ^

-I %SEARCH_PATH1% -I %SEARCH_PATH2% -I %SEARCH_PATH3% ^

-T %LINKER_SCRIPT% ^

-L %LINKER_SEARCH% ^

%OPTIONS_LINK% ^

CMSIS\ST\STM32F0xx\Source\Templates\gcc\startup_stm32f0xx.S ^

blinky.c ^

gpio_funcs.c ^

CMSIS\ST\STM32F0xx\Source\Templates\system_stm32f0xx.c ^

-o blinky.elf
if %ERRORLEVEL% NEQ 0 goto end

rem Generate disassembled listing for debug/checking
arm-none-eabi-objdump -S blinky.elf > list.txt

rem For Keil MDK flash programming
copy blinky.elf MDK_debug\Objects\blinky.axf
if %ERRORLEVEL% NEQ 0 goto end

rem Generate binary image file
arm-none-eabi-objcopy -O binary blinky.elf blinky.bin
if %ERRORLEVEL% NEQ 0 goto end

rem Generate Hex file (Intel Hex format)
arm-none-eabi-objcopy -O ihex blinky.elf blinky.hex
if %ERRORLEVEL% NEQ 0 goto end

rem Generate Hex file (Verilog Hex format)
arm-none-eabi-objcopy -O verilog blinky.elf blinky.vhx
if %ERRORLEVEL% NEQ 0 goto end

:end
pause

432 Chapter 16

Please note that apart from the assembly start-up code files, all the other source files are

almost identical to the blinky example in Chapters 14 and 15 (Apart from adding __NOP()

in the delay loop, otherwise the loop will get optimized away). The availability of

CMSIS-CORE enables much better software portability and reusability. Please refer to

Chapter 14 for the exact source code, or locate the source code in the example project

software package that can be downloaded from the book companion Web site.

The compilation and link process is carried out by arm-none-eabi-gcc. The rest of the

compilation steps are optional. We added these steps to demonstrate how to create a

binary file, hex file, and disassembled listing file.

16.5 Overview of the Command Line Options

The GNU Tools for ARM� Embedded Processors can be used with wide range of ARM

processors including Cortex�-M processors and Cortex-R processors. In the example in

Section 16.4 we used the Cortex-M0 processor, but the batch file can be modified for other

target processors, or other architecture versions.

Table 16.3 listed the Compilation options depending on processor type.

You can also handle the compilation based on the architecture version instead of processor

type, as listed in Table 16.4.

Table 16.3: Compilation target processor command line options

Processor GCC command line option

Cortex�-M0+ -mthumb -mcpu¼cortex-m0plus
Cortex-M0 -mthumb -mcpu¼cortex-m0
Cortex-M1 -mthumb -mcpu¼cortex-m1
Cortex-M3 -mthumb -mcpu¼cortex-m3
Cortex-M4 (no FPU) -mthumb -mcpu¼cortex-m4
Cortex-M4 (soft FP) -mthumb -mcpu¼cortex-m4 -mfloat-abi¼softfp -mfpu¼fpv4-sp-d16
Cortex-M4 (hard FP) -mthumb -mcpu¼cortex-m4 -mfloat-abi¼hard -mfpu¼fpv4-sp-d16
Cortex-M7 (no FPU) -mthumb -mcpu¼cortex-m7
Cortex-M7 (soft FP,
single precision)

-mthumb -mcpu¼cortex-m7 -mfloat-abi¼softfp -mfpu¼fpv5-sp-d16

Cortex-M7 (soft FP,
double precision)

-mthumb -mcpu¼cortex-m4 -mfloat-abi¼softfp -mfpu¼fpv5-d16

Cortex-M7 (hard FP,
single precision)

-mthumb -mcpu¼cortex-m7 -mfloat-abi¼hard -mfpu¼fpv5-sp-d16

Cortex-M7 (hard FP,
double precision)

-mthumb -mcpu¼cortex-m4 -mfloat-abi¼hard -mfpu¼fpv5-d16

Getting Started with gcc (GNU Compiler Collection) 433

Some of the commonly used options are listed in Table 16.5.

By default the GNU C compiler uses a runtime library called Newlib. This library

provides very good performance, but at the same time has larger code size. Starting from

version 4.7 of the GNU Tools for ARM Embedded Processors a new feature called

Newlib-nano is introduced. It is optimized for size and can produce much smaller binary

code. For example, with standard Newlib the blinky (binary image file) is 2928 bytes, this

reduces to just 1280 bytes when Newlib-nano is used.

There are couples of areas that need attention when using Newlib-nano:

1. Please note that –specs¼nano.specs is a linker option. You must include this option in

linker option if the compiling and linking stages are separated.

2. Formatted input/output of floating-point number are implemented as weak symbols.

When using %f in printf or scanf, you have to pull in the symbol by explicitly speci-

fying “-u” command option:

-u _scanf_float

-u _printf_float

e.g., to output a float, the command line is like:

$ arm-none-eabi-gcc –specs¼nano.specs -u _printf_float $(OTHER_OPTIONS)

Table 16.4: Compilation target architecture command line options

Architecture Processor GCC command line option

ARMv6-M Cortex�-M0þ,
Cortex-M0,
Cortex-M1

-mthumb -march¼armv6-m

ARMv7-M Cortex-M3 -mthumb -march¼armv7-m
ARMv7E-M (no FPU) Cortex-M4/M7 -mthumb -march¼armv7e-m
ARMv7E-M (soft FP,
single precision FPU)

Cortex-M4 -mthumb -march¼armv7e-m -mfloat-abi¼softfp
-mfpu¼fpv4-sp-d16

ARMv7E-M (hard FP) Cortex-M4 -mthumb -march¼armv7e-m -mfloat-abi¼hard
-mfpu¼fpv4-sp-d16

ARMv7E-M (soft FP,
single precision FPU)

Cortex-M7 -mthumb -march¼armv7e-m -mfloat-abi¼softfp
-mfpu¼fpv5-sp-d16

ARMv7E-M (hard FP,
single precision FPU)

Cortex-M7 -mthumb -march¼armv7e-m -mfloat-abi¼hard
-mfpu¼fpv5-sp-d16

ARMv7E-M (soft FP,
double precision FPU)

Cortex-M7 -mthumb -march¼armv7e-m -mfloat-abi¼softfp
-mfpu¼fpv5-d16

ARMv7E-M (hard FP,
double precision FPU)

Cortex-M7 -mthumb -march¼armv7e-m -mfloat-abi¼hard
-mfpu¼fpv5-d16

434 Chapter 16

Table 16.5: Commonly used compilation switches

Options Descriptions

“-mthumb” specifies Thumb� instruction set
“-c” Compile or assemble the source files, but do not link. Object file is

generated for each source file. This is used when you have a project set-up
that separates compile and link stages.

“-S” Stop after the stage of compilation proper; do not assemble. The output
is in the form of an assembler code file for each nonassembler input file
specified.

“-E” Stop after the preprocessing stage. The output is in the form of
preprocessed source code, which is sent to the standard output.

“-Os” Optimization leveldIt can be from optimization level 0 (“-O0”) to 3
(“-O3”), or can be “-Os” for size optimization.

“-g” Include debug information.
“-D<macro>” User-defined preprocessing macro.
“-Wall” Enable all warnings.
“-I <directory>” Include directory.
“-o <output file>” Specify output file.
“-T <linker script>” Specify linker script.
“-L <ld script path>” Specify search path for linker script.
“-Wl, option1, option2” “-Wl” passes options to linker. It can provide multiple options, separate

by commas.
“--gc-sections” Remove sections that are not used. Be careful with this option because it

could also remove sections that are indirectly referenced. You can check
linker map report to see what is removed and use KEEP() function in the
linker script to ensure that certain data/code are not removed.

“-lgcc” Link against libgcc.a
“-lc” Instructs the linker to search in the system-supplied standard C library for

functions not supplied by your own source files. This is the default choice
and is opposition of the “-nostdlib” option which forces the linker NOT to
search in the system-supplied libraries.

“-lnosys” Specific no semihosting (use libnosys.a for linking). If semihosting is
required, for example, using RDI monitor for semihosting support, you
can use “--specs¼rdimon.specs -lrdimon.”

“-lm” Link with math library.
“-Map¼map.rpt” Generate map report file (map.rpt is the filename of the report)
“-ffunction-sections” Put every function in its own section. Use with “--gc-sections” to reduce

code size.
“-fdata-sections” Put each data in its own section. Use with “--gc-sections” to reduce code

size.
“--specs¼nano.specs” Use the Newlib-nano runtime library (introduced in version 4.7 of GNU

Tools for ARM� Embedded Processors).
“-fsingle-precision-constant” Treat a floating-point constant as single precision constant instead of

implicitly converting it to double precision.
“-nostartfiles” Do not use the standard system start-up files when linking (e.g., code that

initializes and zero initializes data memories and constructor for Cþþ). In
typical applications it is preferred to use Newlib-nano runtime library to
reduce C library size instead of using this option.

Getting Started with gcc (GNU Compiler Collection) 435

16.6 Flash Programming

After the program image is generated, we need to test it by downloading the image

into flash memory of the microcontroller for testing. However, the GNU Tools for ARM�

Embedded Processors do not include any flash programming support, so you need to use

third party tools to handle the flash programming. There are a number of options:

1. Using Keil� MDK-ARM�

If you have access to Keil MDK-ARM and a supported debug adaptor (e.g., ULINK2,

or if the development board has a supported debug adaptor), you can use the flash

programming feature in Keil MDK-ARM to program the image created into the

flash memory.

• To use Keil MDK-ARM to program your program image, the file extension of the

executable need to be changed to .axf

• The next step is to create a mVision project with the same project name (typically the

project name should be the same as the executable like “blinky”). In the project crea-

tion wizard, select the microcontroller device you use. But there is no need to add

any source file to the project. Copy the blinky.axf into the “Objects” subdirectory.

• Set up the debug options to use your debug adaptor (for debug and flash program-

ming, see Chapter 14). By default the flash programming algorithm should be set

up correctly by the project creation wizard.

• Once the program image (e.g., blinky.axf) has been built, you can click the flash

programming button on the tool bar. The compiled image will then be

programmed into the flash memory.

• After the image is programmed, you can optionally start a debug session using the

mVision debugger to debug your program.

2. Using third party flash programming utilities

There are many different flash programming utilities available. A common one is the

CoFlash from CooCox (coocox.org). This flash programming tool supports Cortex�-M

microcontrollers from a number of major microcontroller vendors and a number of

debug adaptors, including adaptors based on CMSIS-DAP.

• When CoFlash is started, it first displays the Config tab. Set up the microcontroller

device and debug adaptor as required. Figure 16.3 shows the configurations used

with the STM32F0 Discovery board.

• Then switch to the command tab (Figure 16.4), where you can select the program

image (can be binary or executable image “.elf”), and then you can click on the

“Program” button to start the flash programming.

3. Use a third party IDE together with GNU Tools for ARM Embedded Processors.

See Section 16.7 regarding using Keil MDK, and Section 16.7 regarding using

CooCox CoIDE.

436 Chapter 16

http://coocox.org

Figure 16.3
CooCox CoFlash configuration screen for STM32F0 Discovery board.

Figure 16.4
CooCox CoFlash command screen for STM32F0 Discovery board.

Getting Started with gcc (GNU Compiler Collection) 437

16.7 Using Keil� MDK-ARM� with GNU Tools for ARM� Embedded
Processors

In addition to the built-in ARM Compiler tool chain, the mVision� IDE in the Keil

Microcontroller Development Kit (MDK-ARM) can also be used with gcc. In order to

do this, you need to have GNU Tools for ARM Embedded Processors downloaded

(https://launchpad.net/gcc-arm-embedded) and installed, as well as the Keil MDK.

To start, you can create a new project in Keil MDK as normal (Project / New mVision

Project), and select the microcontroller device you want to use (Figure 16.5).

When it gets to the Manage Run Time Environment window (Figure 16.6), there is no

need to select any software component.

Now we have an empty project, and we need to set up the project environment to use gcc.

Click on the (Components, Environment and Books) button on the tool bar, and

select the “Folders/Extensions” tab, you can now select between using ARM C

Figure 16.5
Select microcontroller device to use.

438 Chapter 16

https://launchpad.net/gcc-arm-embedded

compiler or using GNU C compiler (Figure 16.7). Click on “Use GCC Compiler

(GNU) for ARM projects,” the program then asks if you want to continue as shown in

Figure 16.7. Click on yes.

Figure 16.6
Manage Run-Time Environment.

Figure 16.7
Keil� MDK-ARM� supports the use of GNU tool chain.

Getting Started with gcc (GNU Compiler Collection) 439

It is then necessary to update the gcc installation directory information in this window so

that Keil MDK can locate the gcc compiler, as shown in Figure 16.8.

Figure 16.8
Update gcc installation path.

Once the tool chain path is set up, you can then add your program files to the projects by

using the Keil MDK normally. Same as examples illustrated in Chapter 14, you can add

file groups in your project, and rename project target to help organize the project files

better, as shown in Figure 16.9. (Double clicking on the project target “Target 1” in the

project navigation window will allow you to edit the target name. In this example the

target name is renamed to “Debug.”)

After the files are added, a number of project options need to be set up correctly

before we start the compilations. Some of the project settings such as debug, trace,

and flash programming are the same as the normal MDK environment. However, other

project setting dialogs are different and are GNU tool chain specific. Right click on

the target name in the project navigation window, and select “Option for Target.”

which will bring you to the project options window.

For example, the C compile option settings (Figure 16.10) are different from the options

available for ARM C compiler (Figure 14.80 in Chapter 14). Here you need to click on the

option for “Compile Thumb Code,” and might need to manually add various included

paths for the CMSIS-CORE header files.

440 Chapter 16

Figure 16.10
C compiler options.

Figure 16.9
File groups and source files added to the project.

Getting Started with gcc (GNU Compiler Collection) 441

Assembler options are shown in Figure 16.11. The default options can be used as is.

The linker options are shown in Figure 16.12. For the linker options, we need to do as

follows:

• Specify the linker script (the previous linker script for compiling in command line can

be reused).

• In most cases we should disable the option of “Do not use Standard System Startup Files.”

• Optionally we can add additional linker options as in the compilation flow with

command line.

Finally we double check the debug and flash programming options to make sure the right

debug adaptor is selected (Figure 16.13), and flash programming options are in place (this

should have been set up automatically when the microcontroller device is selected, when

the project is created), as shown in Figure 16.14.

Once the project setup is completed, we can compile the program by using pull down

menu (Project/ Build target), or hot key F7, or using the Build icon on the tool bar.

The icons on the tool bar are explained in Figure 14.72. When the compilation is

completed, you should see message output as shown in Figure 16.15.

Figure 16.11
Assembly options.

442 Chapter 16

Figure 16.12
Linker options.

Figure 16.13
Debug options.

Getting Started with gcc (GNU Compiler Collection) 443

Figure 16.14
Flash programming options.

Figure 16.15
Compilation done.

444 Chapter 16

Now you can start the debug session by using pull down menu (Debug/ Start/Stop

Debug session), hot key Ctrl-F5 or click on the Debug session icon on the tool bar. You

can then see a debug session screen as shown in Figure 16.16. The detail of using the

debugger in the Keil mVision IDE is covered in Section 14.5 of this book.

And you can start running the code by pull down menu (Debug/ Run) or hot key F5.

Figure 16.16
Debug session screen.

16.8 Using CooCox CoIDE with GNU Tools for ARM� Embedded
Processors

16.8.1 Overview and Setup

The CooCox CoIDE is a popular IDE choice for many users of the GNU tool chain and

supports a good number of the current Cortex�-M microcontrollers on the market. It is free

and can be downloaded from CooCox Web site (www.coocox.org). Please note that the

CoIDE does not include the GNU tool chain, so the GNU tool chain such as the GNU Tools

for ARM Embedded Processors still needs to be downloaded and installed separately.

The examples in this section are based on the following:

• GNU Tools for ARM Embedded Processors version 4.9 2014q4, and

• CooCox CoIDE v2 beta (Build id: 20141205-2.0.0) d Note: since this is a beta version,

there might be changes in the official release compared to what being shown here.

Getting Started with gcc (GNU Compiler Collection) 445

http://www.coocox.org

After installing the GNU Tools for ARM Embedded Processors, and then CooCox CoIDE,

you can start CooCox CoIDE and should see a start screen as in Figure 16.17. Here you

can create new project or access to the documentation.

Before we start to create a project, we must first configure the GNU tool chain path in the

CoIDE. This can be done by accessing the “Select Toolchain Path” from the pull down

menu (Project/ Select Toolchain Path, as shown in Figure 16.18).

The path should point to the installation of the GNU tool chain, as shown in Figure 16.19.

For example, in a system with GNU Tools for ARM Embedded Processors version 4.9

2014q4 installed, the selected path location is: C:\Program Files (x86)\GNU Tools ARM

Embedded\4.9 2014q4\bin.

Figure 16.17
CooCox CoIDE start screen.

446 Chapter 16

16.8.2 Create a New Project

The blinky project that we are going to create in CoIDE will be reusing the source code

we created earlier. The process for creating new project is quite easy:

• Create an empty directory

• Create a project in this directory, select device, and download data about this device

• Add source code to the “app” subdirectory

• Set up project options

• Compile and debug

Figure 16.18
Access to GNU Toolchain path setup.

Figure 16.19
GNU tool chain path points to installation of GNU Tools for ARM� Embedded Processors.

Getting Started with gcc (GNU Compiler Collection) 447

For this example, we created a directory named:

“C:\CM0Book_Examples\ch_16_gcc_stm32f0_blinky_with_CoIDE”

In the CoIDE, click on “Create a New Project” in the start screen (Figure 16.17) or use

pull down menu (Project/ New). Then you need to

1. select the microcontroller vendor names, and then

2. select the part number of the microcontroller, as shown in Figure 16.20.

After you click on the name of the microcontroller device, you need to click on

“Download” on the pop up window. The IDE will then download the information

about this microcontroller (Note: you need an active internet connection when creating

a new project).

After the download is completed, you need to click on “New Project” in the pop up

window (Figure 16.21) to start the project creation.

The next allows us to select the project path. For this demonstration, we would like to

specify the name of the project and the folder where it will be placed. Therefore we

unclicked the “Use default path” option and define our own project path, as shown in

Figure 16.22, and select project name as blinky.

Figure 16.20
Select microcontroller device.

448 Chapter 16

Figure 16.21
Microcontroller data download completed in the project creation process.

Figure 16.22
Define project name and path.

Getting Started with gcc (GNU Compiler Collection) 449

When the project is created, it contains a simple “main.c” with a main program

template. We can now add the program code we wanted. In order to help organize the

project better, we can create file groups and add files to it by right clicking the project

in the navigation window and select “Add Group” and “Add Files,” as shown in

Figure 16.23.

Inside the project folder, there is a directory called “App” where the application source

codes are stored. We copied the source code into this folder and then add the files to the

project. To keep the project well organized, three project groups were created for the

application code file(s), CMSIS support files, and the start-up code for the microcontroller,

as shown in Figure 16.24.

We then need to set up a range of configuration options for the project. Right click on the

project in the navigation window and select “Configuration” as shown in Figure 16.23.

The Configuration dialog should appear and provides a number of tabs: In the compilation

option tab, include paths for the CMSIS header files and the device-specific headers need

to be added, as shown in Figure 16.25.

Figure 16.23
Add file groups and files to the project.

450 Chapter 16

Figure 16.24
Files added to the project.

Figure 16.25
Compile options.

Getting Started with gcc (GNU Compiler Collection) 451

For most simple projects, uncheck the “Don’t use the standard system startup files” option

in the linker configuration, as shown in Figure 16.26.

The default configuration for outputs is shown in Figure 16.27.

Optionally we can define addition commands to execute before or after the build process

(Figure 16.28).

We need to configure the debugger hardware option to make sure it matches the hardware

set-up we use. For example, for STM32F0 Discovery board, the ST-Link debug adaptor is

selected, as shown in Figure 16.29.

Figure 16.26
Linker options.

452 Chapter 16

Figure 16.27
Output configurations.

Figure 16.28
Optional configurations for user commands that execute before or after the build process.

Figure 16.29
Debug configurations.

Getting Started with gcc (GNU Compiler Collection) 453

The last group of configuration options is for the flash programming (Figure 16.30). This

should have been set up correctly by the project wizard when you selected your device for

the project.

Once the project settings are adjusted (e.g., optimizations, debug adaptor), we can compile

the project by one of the following methods:

• Pull down menu: Project / Build

• Hot key F7

• Click on the Build button on the tool bar

The compilation should complete with the following display (Figure 16.31).

16.8.3 Using the IDE and the Debugger

Before we start the debug session, let us first have a quick look at some of the useful

features in the IDE. As shown in Figure 16.31, there are a number of buttons on the tool

bar. These buttons are annotated in Figure 16.32.

After the compilation process is completed, we can then start the debug session by

clicking on the Start Debug icon on the tool bar, or use Ctrl-F5 hot key to start the

debugger. A debug session screen as in Figure 16.33 would be shown.

Figure 16.30
Download configuration.

454 Chapter 16

Figure 16.31
Compilation successful.

New File

Save (Ctrl+S)

Build (F7)

Rebuild (Ctrl+R)

Erase Flash

Download Code to Flash

Start Debug (Ctrl+F5)

Configuration

Target Manage
Welcome

Open Element

Search

Toggle Mark Occurrences

Repository

Settings

Create a Doc

Open a Doc
Next Annotation

Previous Annotation

Last Edit Location

Back to previous edited file

Forward

Figure 16.32
Buttons on the CoIDE tool bar during program editing.

Getting Started with gcc (GNU Compiler Collection) 455

Figure 16.33
Debug session screen.

Step Out (Ctrl+F11)

Step Over (F10)

Step Into (F11)

Run to line (Ctrl+R)

Instruction stepping mode

Reset CPU

Run (F5)

Suspend (Pause, F9)

Terminate Debug Session (Ctrl+F5)

Open Element

Search

Toggle Mark Occurrences

Next Annotation

Previous Annotation

Last Edit Location

Back to previous edited file

Forward

Repository

Settings

Create a Doc

Open a Doc

Figure 16.34
Buttons on debugger tool bar.

456 Chapter 16

By default the register window could be disabled. You can add it to the display by pull

down menu View/ Registers. You can also add other useful view such as disassembly

code and memory window via the pull down menu.

The debugger screen has additional icons for debug operations (Figure 16.34).

By pressing F5, or starting the program execution with the Run icon on the tool bar, you

should see the LEDs on the STM32F0 Discovery board start blinking.

Getting Started with gcc (GNU Compiler Collection) 457

CHAPTER 17

Getting Started with mbed™

17.1 What is mbed™

mbed (www.mbed.org) is a Web-based microcontroller software development environment

that is aiming to make embedded software development much easier and affordable. It is a

division of ARM� and uses the same compiler engine used in the Keil� MDK-ARM� and

Development Studio 5 (DS-5�) product.

The mbed project started as a development platform for rapid prototyping. It is very

popular among hobbyists and educational organizations because it is easy to use and

provides powerful peripheral drivers. As the number of mbed hardware platforms

increased and the development environment improved, the mbed project has also become

very popular among professional embedded software developers. Today, mbed has over

100,000 users1 and supports over 40 microcontroller development boards from various

vendors. Figure 17.1 shows the Freescale Freedom board used for the examples in this

chapter. Information about other available platforms can be found on mbed Web site:

http://developer.mbed.org/platforms/.

Figure 17.1
An example of low-cost mbed�-enabled development boarddFreescale Freedom FRDM-KL25Z.

1 Number in Q1 2015, http://developer.mbed.org/blog/entry/100000-developers-a-TLD-join-the-team/.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00017-5

Copyright © 2015 Elsevier Inc. All rights reserved. 459

http://www.mbed.org
http://developer.mbed.org/platforms/
http://developer.mbed.org/blog/entry/100000-developers-a-TLD-join-the-team/
http://dx.doi.org/10.1016/B978-0-12-803277-0.00017-5

Unlike standard microcontroller development tools, to start developing software with

mbed, you only need to use an mbed-enabled development board. These boards are very

low cost (e.g., some are in the range of US$10 to US$20) and the development

environment is free to use. And after the application is developed, you can program the

image into a normal microcontroller for product deployment, or export the project into

third party development suites if needed.

The Web-based IDE is accessible from any Web browser that supports Java. It is not a

strict requirement to install any software on the development host to use mbed. However,

for Windows PC users, you need to install the mbed serial driver2 if you want to utilize

the serial communication feature between the mbed board and your PC. The software

development environment includes various software components such as

• rich set of peripheral drivers packaged in form of easy to use Cþþ objects for various

mbed-enabled boards

• CMSIS-RTOS

• software libraries such as USB and network communication protocol stack

• driver packages for various expansion boards, interface modules, sensors

Since version 2 of the mbed, the mbed SDK, is open source.3 So you can use the mbed

platforms in projects for most commercial environments.

At the time of writing this book, mbed 3.0 is being developed. The mbed 3.0 (which is

scheduled for release in Q4 2015) will contain a new mbed OS designed for Internet of

Things (IoT) applications. Unlike traditional embedded OS for microcontrollers, the mbed

OS is designed to handle IoT security from ground up and support various communication

protocol stacks, security features, and power management. At the same time, it will still be

able to run on small microcontrollers with limited memory size.

Many IoT devices require services from cloud servers to complete the IoT systems. On the

server side, the mbed device server provides software solutions for IoT device

management and communications to server applications. The details of mbed OS is

beyond the scope of this book and will not be covered.

17.2 How the mbed™ System Works

To use the mbed development environment, you need to have an mbed development board,

and you need to register for an account on http://developer.mbed.org.

2 The driver installer can be downloaded from http://developer.mbed.org/handbook/Windows-serial-
configuration.

3 Permissive Apache 2.0 open source license (http://developer.mbed.org/blog/entry/mbed-SDK-is-now-Open-
Source/).

460 Chapter 17

http://developer.mbed.org
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/blog/entry/mbed-SDK-is-now-Open-Source/
http://developer.mbed.org/blog/entry/mbed-SDK-is-now-Open-Source/

An mbed-enabled board typically has two microcontrollers on it. The first one (right-hand

side of Figure 17.2) is the one that executes your applications, and the other one (left-hand

side) operates as a USB mass storage and handles the flash programming.

When you start a project, you need to register the mbed development board to your

account (so that the mbed system knows which board you have got and selects the right

device driver library for you). Then you can start coding via the Web-based software

development environment.

Once you have created your application, you can compile the program, and the Web server

returns the compiled binary image to you (Figure 17.3).

An mbed-enabled board has at least one USB connector. When it is plugged in to a

personal computer, the microcontroller that directly connects to USB (in Figure 17.2)

Microcontroller
(for running application)

Microcontroller
(USB mass storage,
Flash programming

CMSIS-DAP,
USB to UART)

USB
connector

GPIO SWD

UART

Debug

Figure 17.2
An mbed�-enabled board typically has two microcontrollers.

mbed.org cloud servers

mbed enabled development
board (USB mass storage)

Internet

Web based development
environment

Binary file
(compilation

output)

Figure 17.3
The concept of the mbed� development system.

Getting Started with mbed™ 461

operates as a mass storage device. Simply copy the downloaded compiled image into this

USB storage on the mbed board, automatically the program is programmed into the flash

memory of the main microcontroller and starts executed when the board is reset (e.g., by

pressing a button).

You might wonder how to handle debug in the mbed development environment. Since the

compiled program is downloaded as a binary and there is no integrated debugger in the

mbed Web-based interface, it is not possible to debug application as in Keil� MDK or

IAR EWARM (e.g., single stepping). In most simple projects you can utilize the serial

communication function to generate debug messages and display the message on the

debug host. This is illustrated in Section 17.7.

For more complex debug scenarios, you can export the project into a third party

development suite like Keil MDK-ARM or IAR EWARM and debug the application from

there. Some of the mbed boards support CMSIS-DAP, so you can debug the applications

easily in Keil MDK or IAR EWARM.

Since the development environment is running on the cloud servers, the program code you

developed is also stored on the servers. However, unless you decided to publish the

projects you have created, the projects remain private and are only accessible by you. If

you publish a project, the project would be visible to everyone and can be imported by

any mbed users into their project space. You can also import project published by other

mbed users. There are large numbers of published projects on mbed, so if you need to

start working on some projects that you are not familiar with, there are plenty of examples

available.

You can also create or join project team, where a project can be accessed by members of

the team only. Version control of the source code is also integrated.

17.3 Advantages of mbed™

There are many advantages of using mbed. Here are just some of the important areas:

Easy to Use

The peripheral libraries are created as high-level Cþþ objects that can be deployed easily,

even for inexperienced users including beginners.

Portable and Reusable

The APIs for the peripherals objects are microcontroller platform independent. So you can

reuse your application codes even you switch to a different mbed board. This makes it

easier for using mbed in an education environment, where the person creating teaching

materials and the students could be using different development boards.

462 Chapter 17

Wide Range of Software Components and Examples

In addition to standard peripheral drivers (such as digital and analog I/O, timers, UART,

SPI, I2C, CAN, and PWM), there are also already a wide range of software libraries

available. For example, USB, Ethernet and TCP/IP stack, and file systems are available.

That enabled software developers to create wide range of applications.

Low Cost

To start using mbed, you only need to purchase an mbed-enabled development board which

is affordable. The mbed development environment and the software libraries are free to use.

17.4 Setting Up Your FRDM-KL25Z Board and mbed™ Account

In this section, we will see what is needed to set up the board to be ready for our first

mbed project. Assume you already have your Freescale FRDM-KL25Z (more information

on this board is covered in Chapter 14, Section 14.3.1).

17.4.1 Check Out mbed Web Page

The first step is to check if you need to update the firmware on your mbed-enabled board.

For Freescale FRDM-KL25Z, the information about updating firmware for this board is

available from mbed Web page: http://developer.mbed.org/platforms/KL25Z/.

In this case, there is a new firmware for this board and you need to download the file,

unzip it, and follow the instruction on http://developer.mbed.org/handbook/Firmware-

FRDM-KL25Z to install the firmware.

17.4.2 Register for an Account with mbed

After installed the new firmware on the board, you need to unplug it and plug it back to

the USB port of your computer. Now the board appears as a USB mass storage device

called mbed. Inside the storage device, you should be able to see a file called mbed.htm.

Open this file and this will direct you to the mbed Web page, as shown in Figure 17.4.

To sign up, you need to enter your name, and select a user name and password. If you

have signed up with mbed.org before, you can reuse the same account (you can register

multiple mbed boards to the same account).

Through this signup or login process, the mbed board is registered to your account.

17.4.3 Additional Setup for the Personal Computer

If you are using a Windows PC for the software development, it is worthwhile to install

the “mbed Windows serial port driver.” This enables handling of UART communication

via the USB connection.

Getting Started with mbed™ 463

http://developer.mbed.org/platforms/KL25Z/
http://developer.mbed.org/handbook/Firmware-FRDM-KL25Z
http://developer.mbed.org/handbook/Firmware-FRDM-KL25Z
http://mbed.org

Figure 17.4
mbed� Web pagedlogin or signup.

Figure 17.5
Pin names for headers (White on Blue labels (light gray in print versions), or White on Green

labels (gray in print versions)).

464 Chapter 17

In addition, you might also want to install a terminal application on your computer to

handle the UART communication. One of the most common choices is TeraTerm, and

more information on this topic is shown in http://developer.mbed.org/handbook/Terminals.

17.5 Creating a Blinky Program
17.5.1 Simple Version with Just Red LED On/Off

The first project to create is to activate the LED output. The LED on the FRDM-KL25Z is

an RGB LED controlled by three pins:

• Red: port B pin 18 (You can access this pin using “PTB18” or “LED1”)

• Green: port B pin 19 (You can access this pin using “PTB19” or “LED2”)

• Blue: port D pin 1 (You can access this pin using “PTD1” or “LED3”)

For each user configurable pin, there is a pin name, and the names can be found on the

mbed� Web page http://developer.mbed.org/platforms/KL25Z/, as shown in Figures 17.5

and 17.6.

Figure 17.6
Pin names for on board peripherals (White on Blue labels (light gray in print versions), or Black

on light green labels (pal gray in print versions)).

Getting Started with mbed™ 465

http://developer.mbed.org/handbook/Terminals
http://developer.mbed.org/platforms/KL25Z/

Now we create a project by clicking on “New” in the pull down menu, or right click on

“My program” and select “New Program,” as shown in Figure 17.7.

Here we created a new program called Blinky, and it toggles the LED1 every 0.2 s.

#include "mbed.h"

DigitalOut myled1(LED1); // LED1 is red

int main() {
while(1) {

myled1 = 1;
wait(0.2f); // Wait 0.2 second
myled1 = 0;
wait(0.2f); // Wait 0.2 second

} // end while
} // end main

Here we use an object called DigitalOut, a Cþþ class defined in mbed driver library and

assign pin LED1 to it. We can do the same setup using PTB18 as pin name:

DigitalOut myled1(PTB18); // LED1 is red

And that is! Now we can click on “Compile” and the Web browser will receive a binary

file (“Blinky_KL25Z.bin”). Just save this to the mbed drive, press the reset button, and the

LED should start blinking.

When compared to our previous example of toggling LEDs by directly accessing

peripheral registers, this is much simpler.

Figure 17.7
Create new program.

466 Chapter 17

17.5.2 LED with Pulse Width Modulation Control

For FRDM-KL25Z board, each of the LED output can be controlled as PWM (Pulse

Width Modulation) output. For example, we can change the program as follows and have

the LED changing color over time using sine function:

#include "mbed.h"

PwmOut led_red(LED1);
PwmOut led_green(LED2);
PwmOut led_blue(LED3);

int main() {
float t=0.0f;

while(1) {
t += 0.1f;
led_red = ((0.5f * sinf(t)) + 0.5f); // swing between 0 and 1
led_green = ((0.5f * sinf(t * 1.1f)) + 0.5f); // swing between 0 and 1
led_blue = ((0.5f * sinf(t * 1.2f)) + 0.5f); // swing between 0 and 1
wait(0.1);

}
}

Here we use the default PWM period of 20 ms. A number of different PWM class member

functions are available. These are documented in the mbed handbook which is available

online: (http://developer.mbed.org/handbook/Homepage).

Additional examples for the Freescale FRDM-KL25Z board can be found on the mbed

Web page: http://developer.mbed.org/handbook/mbed-FRDM-KL25Z-Examples.

17.6 Common Peripheral Objects Support

There is a range of peripheral object classes available in mbed�, and additional

components class for external add-ons are also available. In most microcontrollers, the

following peripheral object classes listed in Table 17.1 can be used.

Note: details of each peripheral can be found in the mbed handbook online.

As all the detailed information and examples are available online, it is not going to be

covered in details here. Please note that due to the peripheral availability for certain

microcontrollers, some of the peripheral APIs might not be available on the mbed board

you are using.

Getting Started with mbed™ 467

http://developer.mbed.org/handbook/Homepage
http://developer.mbed.org/handbook/mbed-FRDM-KL25Z-Examples

17.7 Using printf

Earlier in this chapter, I mentioned about Windows users should install an mbed� serial

driver if possible. The key usages for this driver are to support:

• “printf” operation

• CMSIS-DAP debug

By default, when a “printf” statement is executed, the message output is directed to the

UART of the microcontroller, and can be accessed using the USB virtual COM part in the

device driver. For example, the following program reads the value of an ADC and displays

the result with “printf”:

#include "mbed.h"

AnalogIn Ain0(A0); // Analog input
DigitalOut myled(LED1);

int main() {

Table 17.1: Common peripheral classes in mbed™

Peripheral class Descriptions

AnalogIn Read the voltage applied to an analog input pin
AnalogOut Set the voltage of an analog output pin
DigitalIn Configure and control a digital input pin
DigitalOut Configure and control a digital output pin
DigitalInOut Bidirectional digital pins
BusIn Flexible way to read multiple DigitalIn pins as one value
BusOut Flexible way to write multiple DigitalOut pins as one value
BusInOut Flexible way to read/write multiple DigitalInOut pins as one value
PortIn Fast way to read multiple DigitalIn pins as one value
PortOut Fast way to write multiple DigitalOut pins as one value
PortInOut Fast way to read/write multiple DigitalInOut pins as one value
PwmOut Pulse-width modulated output
InterruptIn Trigger an event when a digital input pin changes
Timer Create, start, stop, and read a timer
Timeout Call a function after a specified delay
Ticker Call a function periodically
wait Wait for a specified time
time Get and set the real-time clock
Serial Serial/UART bus
SPI SPI bus master
SPISlave SPI bus slave
I2C I2C bus master
I2CSlave I2C bus slave
CAN Controller area network bus

468 Chapter 17

uint32_t read_data;

myled = 0;
while(1) {

read_data = Ain0.read_u16(); // Read ADC input as 16-bit unsigned int
printf ("ADC = 0x%x\n", read_data);
myled = 0x1 & (~myled); // Toggle LED
wait(0.5);

}
}

The default setting for the UART is 9600 bps, 8-bit data, and 1 stop bit, no parity. To

display the output messages, we can use a terminal program such as TeraTerm (see

Section 17.4.3). If you are using Mac/Linux you can use GNU Screen, please refer to

http://developer.mbed.org/handbook/Terminals for additional information.

Please note that by default TeraTerm uses “CR” (carriage return, 0x0D) to indicate a new

line, whereas “\n” in the printf message uses “LF” (line feed, 0xA). As a result, you might

see a display like the one shown in Figure 17.8.

Figure 17.8
Deformed printf message due to mismatch of terminal setting.

Getting Started with mbed™ 469

http://developer.mbed.org/handbook/Terminals

Figure 17.9
Set new line control character to LR or AUTO in TeraTerm.

Figure 17.10
printf message display with correct terminal settings.

470 Chapter 17

To solve this problem, you can either edit the terminal setting in the terminal program, for

example, for TeraTerm use pull down menu “Setup” / “Terminal” to access to terminal

settings, and set the receive new line to “LF,” as shown in Figure 17.9. Alternatively, you

can use “\r\n” in your printf message to start a new line.

After configuring the terminal program correctly, you should be able to see the printf

messages with correct new line, as shown in Figure 17.10.

Multiple UART interfaces might be available on the microcontroller you use. In that case

you can explicitly specify the interface to use in your application. For example, in the

following code example we configure both UARTs on the FRDM-KL25Z board, the one

connected to the PC running at 9600 bps, and the other one (PTE22, PTE23) running at

38,400 bps.

#include "mbed.h"

DigitalOut myled(LED1);
Serial pc(USBTX, USBRX); // Connect to PC
Serial device(PTE22, PTE23);// Connect to a device

int main() {
int loop=0;
device.baud(38400); // Device’s UART running at 38400
pc.printf("Echoes back to the screen anything you type\n");
while(1) {

if (pc.readable()) { // a char received from PC
device.putc(pc.getc()); // Copy from PC to device
}

if (device.readable()) { // a char received from device
pc.putc(device.getc()); // Copy from device to PC
}

loop++;
if (loop>20000) {

loop = 0;
myled = 1 & (~myled); // toggle LED
}

} // end while
} // end main

17.8 Application ExampledA Model Railway Controller

Let us have a look at how the mbed� tool can be used for something more interesting: A

few months ago I have bought myself an electric model locomotive (analog control

type)dthe peak rated current is 6 Amps but the controller I have at home is only rated at

Getting Started with mbed™ 471

2.5 Amps, so I have to build a new controller. The power of the train is delivered via the

railway tracks, 15 V DC with PWM for speed control. The controller has two inputs:

• A potentiometer for speed control

• A push button for direction change

To enable the speed of the train to be controlled, a PWM signal generated from the

microcontroller is needed. And in order to allow the direction to be changed, an H-bridge

motor driver module is used. This needs two additional signals (Enable1, Enable2dwhen

motor is running they should be in an inverted state to each other) from the

microcontroller to control the direction of the motor (Figure 17.11).

For those of you who know about motor controls, you would have known that the

direction of the motor cannot be changed immediately when the motor is running. To

change direction, a running motor needs to slow down and comes to a complete stop, then

the direction can change and the motor can speed up afterward. In addition, many of you

would also realize that the speed of a real locomotive cannot be changed in an instance:

the speed change needs to be done gradually. As a result, inside the control program we

have a targeted speed (potentiometer value from the ADC), and a current speed value,

which increments or decrements in steps regularly to catch up with target speed.

We also utilize the RGB LED on the board for direction and speed indication:

• Blue for forward (use PWM to indicate speed)

• Green for reverse (use PWM to indicate speed)

• Red during changing of direction

The program flow is illustrated in Figure 17.12.

FRDM-KL25Z
PotenƟometer

(Speed
control)

3.3V

3.3V

PTE5
(DigitalIn)

A0
(ADC
input)

PTD4
(PwmOut)

PTA4
(DigitalOut)

PTA12
(DigitalOut)

Enable1

Enable2

PWM

Dual BTS7960 motor
driver module

Power supply module~

main

Vdd Vss

7805

Push
buƩon

10K
ohm

5K
ohm

M+

M-

+5V

Railway track

RGB LED

Figure 17.11
Design of a simple train controller.

472 Chapter 17

And the program code for the application is as follows:

Simple train controller program

// Model train controller
// - speed control with inertia simulation
#include "mbed.h"
//#define VERBOSE

AnalogIn Dial0(A0); // Speed control dial
DigitalIn Button(PTE5);// Direction control
#ifdef VERBOSE
Serial pc(USBTX, USBRX);// Debug/diagnosis
#endif
PwmOut MotorDriver(PTD4); // Motor PWM output
DigitalOut Enable1(PTA12);// Motor PWM direction ctrl #1
DigitalOut Enable2(PTA4); // Motor PWM direction ctrl #2
PwmOut blue_led(LED3); // On when forward
PwmOut green_led(LED2); // On when revsere
PwmOut red_led(LED1); // On when changing direction

Continued

Start

IniƟalizaƟon for LED, PWM,
direcƟon control signals

Sample ADC

Calculate target speed

Adjust Current speed

Update LED PWM

Update Motor PWM

Sample user buƩon

BuƩon pressed?

LED set to red

Current Speed==0

PWM duty cycle set to 0

Change direcƟon

Wait 2 seconds

Target Speed>0

Decrease current speed

Wait 0.2 seconds

Update PWM duty cycle
Yes

No Increase current speed

Wait 0.2 seconds

Update PWM duty cycle

Turn off red LEDWait 0.2 seconds

Yes

No

Slow down unƟl stopped

Accelerate unƟl back to
previous speed

Figure 17.12
Program flow for the train controller.

Getting Started with mbed™ 473

#define LED_PWM_MAX 10UL
#define LED_PWM_OFF LED_PWM_MAX
#define MOTOR_PWM_MAX 10000

int LED_scale(uint32_t value) // input 0 to 0xFFFF
{ // Scale LED

return ((uint32_t) (LED_PWM_MAX - (8 * value / 0x10000UL)));
} // Not starting from 0 so that LED is not off, but dim when speed is slow

int main() {
uint32_t Direction=0, LED_ctrl;
int32_t Target_Speed=0, Curr_Speed;
uint16_t ADC_value;
uint32_t ButtonSamples=0;

#ifdef VERBOSE
pc.baud(38400);
pc.printf("PWM Test\r\n");

#endif
// Motor Driver requires a 10ms period
MotorDriver.period_us(MOTOR_PWM_MAX); // 10000us = 100 Hz
// Setup LED light output
red_led.period_ms(LED_PWM_MAX);
green_led.period_ms(LED_PWM_MAX);
blue_led.period_ms(LED_PWM_MAX);
// Setup LED light output
red_led.pulsewidth_ms(LED_PWM_OFF); // Off
green_led.pulsewidth_ms(LED_PWM_OFF); // Off
blue_led.pulsewidth_ms(LED_PWM_OFF); // Off
Enable1 = 0;
Enable2 = 1;
Curr_Speed = 0;
while(1) {

ADC_value = Dial0.read_u16(); // Read speed dial
Target_Speed = ADC_value; // 0 to 0xFFFFU
// Inertia simulation : Increase/decrease Curr_Speed slowly
if (Curr_Speed < Target_Speed) {

if ((Target_Speed - Curr_Speed) > (MOTOR_PWM_MAX/20)) {
Curr_Speed += (MOTOR_PWM_MAX/20);

} else {
Curr_Speed = Target_Speed;

}
} else if (Curr_Speed > Target_Speed){

if ((Curr_Speed - Target_Speed) > (MOTOR_PWM_MAX/20)) {
Curr_Speed -= (MOTOR_PWM_MAX/20);

} else {
Curr_Speed = Target_Speed;

}
}

474 Chapter 17

// Set LED output brightness based on Target speed.
LED_ctrl = (uint32_t) LED_scale((uint32_t) Target_Speed);

#ifdef VERBOSE
pc.printf("Dial = 0x%x\r\n", ADC_value);

#endif
// Set Motor speed
MotorDriver.pulsewidth_us((MOTOR_PWM_MAX * Curr_Speed / 0x10000UL));

// LED output
if (Direction) {

green_led.pulsewidth_ms((uint16_t) LED_ctrl);
} else {

blue_led.pulsewidth_ms((uint16_t) LED_ctrl);
}
// Sample User Button
ButtonSamples = (ButtonSamples<<1) j (0x1 & Button); // Button is active low
if ((ButtonSamples & 0x3)==0x2) { // edge detected - change direction!

// Start sequence to switch direction
blue_led.pulsewidth_ms(LED_PWM_OFF); // Off
green_led.pulsewidth_ms(LED_PWM_OFF); // Off
red_led.pulsewidth_ms(0); // On
Curr_Speed = Target_Speed;
// Slow down and stop motor if speed != 0
if (Curr_Speed != 0) {

while (Curr_Speed > 0) { // Reduce speed until stopped
Curr_Speed = Curr_Speed - (MOTOR_PWM_MAX/10);
if (Curr_Speed < 0) {Curr_Speed = 0;}
// Motor speed determined by a pulse width
MotorDriver.pulsewidth_us((MOTOR_PWM_MAX * Curr_Speed / 0x10000UL));

#ifdef VERBOSE
pc.printf("Curr_Speed = 0x%x\r\n", Curr_Speed);

#endif
// Delay - update speed information at 5Hz

wait(0.2);
} // end while

} // end if
MotorDriver.pulsewidth_us(0);
Direction = (~Direction) & 0x1; // Toggle direction
Enable1 = 0;
Enable2 = 0;
wait(2); // Wait 2 seconds - train might still be running a bit
if (Direction) {

Enable1 = 1;
Enable2 = 0;

} else {
Enable1 = 0;
Enable2 = 1;

}
// Start motor if Target_Speed > 0
if (Target_Speed > 0) {

Continued

Getting Started with mbed™ 475

Curr_Speed = 0;
while (Curr_Speed < Target_Speed) { // increase speed

Curr_Speed = Curr_Speed + (MOTOR_PWM_MAX/10);
if (Curr_Speed > Target_Speed) {Curr_Speed = Target_Speed;}
// Set Motor speed
MotorDriver.pulsewidth_us((MOTOR_PWM_MAX * Curr_Speed / 0x10000UL));

#ifdef VERBOSE
pc.printf("Curr_Speed = 0x%x\r\n", Curr_Speed);

#endif
// Delay - update speed information at 5Hz
wait(0.2);
} // end while

// Target speed reached
red_led.pulsewidth_ms(LED_PWM_OFF); // Off

} // end if (Target_Speed > 0)
} else { // if button not pressed
// Delay - update speed information at 5Hz
wait(0.2);
} // end if (button pressed)

} // end while
} // end main

As you can see, we manage to get the whole application created with just a few pages of

code. And the design works nicely☺! (Figure 17.13).

17.9 Interrupts

Interrupts are supported in the mbed� environment. However, the technical details such as

vector table and clearing of interrupt sources are being taken care behind the scene, so the

only thing that software developer needs to do is to call a member function in the Cþþ
class to define what interrupt handler should execute, and to implement the interrupt handler.

There are many ways to generate interrupts in the mbed environment. For example,

• Use InterruptIn to trigger an interrupt handling function when a digital input changes

(http://developer.mbed.org/handbook/InterruptIn)

• Use Ticker to trigger an interrupt handling function periodically (http://developer.mbed.

org/handbook/Ticker)

• Use Timeout to trigger an interrupt handling function after a certain time (http://

developer.mbed.org/handbook/Timeout)

• Many of the communication interfaces can also generate interrupts (e.g., Serial, USB).

Each object that can generate interrupt has a member function called “attach.” This allows

you to define the function to execute when an interrupt takes place. For example, the input

476 Chapter 17

http://developer.mbed.org/handbook/InterruptIn
http://developer.mbed.org/handbook/Ticker
http://developer.mbed.org/handbook/Ticker
http://developer.mbed.org/handbook/Timeout
http://developer.mbed.org/handbook/Timeout

button sampling operation can be replaced by a periodic timer interrupt, as shown in the

following example:

#include "mbed.h"

DigitalOut myled(LED1);
DigitalIn Button(PTE5);// Direction control
Ticker InputSampling;

volatile int button_event=0;

// Interrupt handler
void InputSamplingTask() {

static uint32_t ButtonSamples=0;
// Sample User Button
ButtonSamples = (ButtonSamples<<1) j (0x1 & Button); // Button is active low

if ((ButtonSamples & 0x3) == 0x2) { // Failling edge detected:Button pressed
button_event = 1;
}

}

Continued

Figure 17.13
A simple train controller created using mbed�.

Getting Started with mbed™ 477

// Main program
int main() {

// Attach InputSamplingTask() to Tcker interrupt
InputSampling.attach(&InputSamplingTask, 0.1f);
while(1) {

if (button_event) {
button_event = 0;
printf ("Button pressed\n");
}

myled = 1;
wait(0.2f);
myled = 0;
wait(0.2f);
}

}

17.10 Hints and Tips

Although the mbed� is a very easy-to-use development platform, it is not 100% fool proof

and you should pay attentions to the following areas:

• Some peripherals allow you to configure the interface in multiple units/data types (e.g.,

the PWM allows you to configure the PWM in seconds using float data type, millisec-

onds with integer data type and microseconds with integer data type). Make sure that

you are using a consistence class member functions and data types, for example, look

out for correct uses of “_ms” and “_us” suffix in the member function names.

• Due to the nature of the microcontroller’s peripherals, there are limitations to some of

the peripheral functions and you might need to test these individual peripheral functions

before putting a large project together. For example, the maximum and minimum period

of the PWM could be limited.

• Some mbed development boards use LEDs for runtime error indication. When such

errors take place, the LED(s) could flash in a specific way. This is documented in mbed

handbook page: http://developer.mbed.org/handbook/Debugging. This Web page also

contains a lot of other useful information about debugging mbed programs.

• In most cases the mbed board is powered by the USB connection. As a result, the

available electric current is limited. If the electric current drawn by the components

connected to this board is too high, this can stop the board from working or might

cause the program operations to become unreliable.

478 Chapter 17

http://developer.mbed.org/handbook/Debugging

CHAPTER 18

Programming Examples

18.1 Producing Output with Universal Asynchronous
Receiver/Transmitter

18.1.1 Overview of Universal Asynchronous Receiver/Transmitter Communication

In Chapter 14e16, we covered creation of simple blinky projects for various

microcontroller boards in a number of tool chains. And then in Chapter 17, the use of

Universal Asynchronous Receiver/Transmitter (UART) for “printf” is demonstrated with

mbed� development environment. You might wonder: Is it possible to handle “printf” in

other microcontroller tool chains? The answer is certainly yes. In this section, we will

cover a bit more about setting up UART communication, then demonstrate how to get

“printf” to work in different tool chains, and then move onto handling of other interfaces

and an application example.

UART is a very common peripheral in microcontrollers. In some cases, the UART on

some microcontrollers also support synchronous communication modes so it could be

called USART (Universal Synchronous/Asynchronous Receiver/Transmitter).

UART communications are usually in form of point-to-point arrangement; with both

devices using the same baud rate (in the unit of bit per second). For simple bidirectional

communications between two microcontrollers, the arrangement needs three wires, as

shown in Figure 18.1.

Microcontroller Microcontroller
TxD TxD

RxD RxD

GND GND

TxD = transmit data

RxD = receive data

Figure 18.1
Simple UART communication between two microcontrollers.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00018-7

Copyright © 2015 Elsevier Inc. All rights reserved. 479

http://dx.doi.org/10.1016/B978-0-12-803277-0.00018-7

During microcontroller software development, a UART is often used to connect to debug

host for displaying various information. By adding various UART output functions at

different places in the software, we can display information such as given below:

• The current status of the program flow

• The values received or computed

• Error events

Of course, there are also some limitations with using UART for debugging:

• It requires a UART peripheral and two extra pins.

• UART operation requires the system clock to run at a certain minimal speed, and

therefore not suitable for some low-power applications.

• Requires additional code space (increase code size) and RAM space (e.g., stack space)

• It requires additional clock cycle overhead, and the additional execution cycle overhead

may change the behavior of the program.

Nevertheless, it is still a very useful tool.

The UART communication protocol is often quite simple. When the connection is idle, the

data line is high. A data transfer composes of following:

• A start bit (0)

• 7 or 8 bits of data (LSB first), some UART might also support a 9-bit operation mode.

• An optional parity bit (can be even or odd parity)

• A stop bit (the duration could be 1 bit, 1.5 bit, or 2 bit)

A UART data transfer with 8-bit data is shown in Figure 18.2.

Additional communication protocol layers had been built on top of the UART

technologies. For example, RS-232, RS-422, and RS-485 are different voltage-signaling

specifications that are designed to work with UARTs. The RS-232 was once quite common

on personal computers, often referred as COM ports. However, RS-232 on personal

computers has been replaced by USB technology which has better performance and

support advanced features like plug-and-play. On modern computers today, although the

chip sets do support COM ports, there might not be any physical COM port connecters

(typically 9-pins or 25-pins). As a result, when trying to communicate between the

D0

Start
Bit

Data
(LSB)

D7

Data
(MSB)

P

Parity Stop
bit

Figure 18.2
A simple UART data transfer.

480 Chapter 18

microcontroller and your computer using a UART, you would need a USB to serial port

adaptor, as shown in Figure 18.3 (You can find this type of adaptors in a number

electronics stores online).

Alternatively, you can convert the signaling levels to RS-232 on both sides (personal

computer and microcontroller) and connect them together using an RS-232 cable, as

shown in Figure 18.4.

On the personal computer, you need a terminal program to handle the UART

communication. This is already covered in Section 17.7 in Chapter 17.

Figure 18.3
A low cost USB to UART adaptor (a USB to UART chip is built-in to the USB connector).

USB to RS232
adaptor

TTL to RS232
adaptor

microcontroller

TxD
RxD

RS-232 level
shifters

GND TxD

RxD
1

5

RS-232
TTL / Logic

level USB

Figure 18.4
Using RS-232 for UART communication between a microcontroller and a computer.

Programming Examples 481

18.1.2 Overview of UART Configurations on Microcontroller

Typical steps of configuring a UART include the following:

• Set up clock system to ensure the microcontroller running at a reasonably accurate

clock frequency. Some microcontrollers start up with an internal clock oscillator and

might not be accurate enough for reliable UART communication. In such case, it might

be necessary to switch the clock to a more accurate source. Typically, this can be

handled in the CMSIS-CORE function “SystemInit()”.

• Enable clocks to the I/O interface and UART peripheral.

• Program the UART and setup I/O pin for UART functions.

• Optionally enable UART interrupts at the Nested Vectored Interrupt Controller (NVIC)

if the UART operations are interrupt-driven. In such case, you must also prepare inter-

rupt handlers for the UART.

The exact programming sequence is device specific. Here we are going to cover a few in

the next couple of sections.

18.1.3 Programming the UART on FRDM-KL25Z

There are two UARTs on the Freescale Freedom board FRDM-KL25Z. The first one

(UART0) is connected to the on-board debug adaptor that allows you to access the UART

communications via USB virtual COM port on a personal computer. The other UART

connection is accessible via port E pin PTE22 (TxD) and PTE23 (RxD).

Assume that you have set up the processor to run at 48 MHz, you can set the UART with

the following function:

UART0 configuration for FRDM-KL25Z

// Initialize USART to simple polling mode (no interrupt)
void UART_config(void)
{

uint32_t SBR;
uint32_t OSR;

/* SIM_SCGC5: PORTA=1 */
SIM->SCGC5 j= SIM_SCGC5_PORTA_MASK; // Enable clock gate for ports to enable

pin routing

SIM->SCGC4 j= SIM_SCGC4_UART0_MASK; // Enable clocks to UART0 module

/* PORTA_PCR1: ISF=0,MUX=2 */
PORTA->PCR[1] j= PORT_PCR_MUX(0x02); //set PTA1 to UART0_RX
/* PORTA_PCR2: ISF=0,MUX=2 */
PORTA->PCR[2] j= PORT_PCR_MUX(0x02); //set PTA2 to UART0_TX

482 Chapter 18

/* Disable TX & RX while we configure settings */
UART0->C2 &= w(UART0_C2_TE_MASK); //disable transmitter
UART0->C2 &= w(UART0_C2_RE_MASK); //disable receiver

/* UART0_C1: LOOPS=0,DOZEEN=0,RSRC=0,M=0,WAKE=0,ILT=0,PE=0,PT=0 */
UART0->C1 = 0x00U; /* Set the C1 register */
/* UART0_C3: R8T9=0,R9T8=0,TXDIR=0,TXINV=0,ORIE=0,NEIE=0,FEIE=0,PEIE=0 */
UART0->C3 = 0x00U; /* Set the C3 register */
/* UART0_S2: LBKDIF=0,RXEDGIF=0,MSBF=0,RXINV=0,RWUID=0,BRK13=0,LBKDE=0,RAF=0 */
UART0->S2 = 0x00U; /* Set the S2 register */

// set clock source to be from PLL
SIM->SOPT2 j= (SIM_SOPT2_PLLFLLSEL_MASK j SIM_SOPT2_UART0SRC(1));

/*
* Target Baud rate = 38400
*
* sys clock = FLL/PLL = 48.000MHz
* Baud rate = sys clock / ((OSR+1) * SBR)
* OSR = 3
* SBR = 312
*
* Resulting Baud rate = 48MHz / ((3 + 1) * 312) = 38461.5
*/
SBR = 312; //Set the baud rate register, SBR = 312
UART0->BDH = (UART0_BDH_SBR_MASK) & (SBR >> 8);
UART0->BDL = (UART0_BDL_SBR_MASK) & (SBR & 0xFF);

OSR = 3; // set the oversampling ratio to option #3 = 4x
UART0->C4 &= (wUART0_C4_OSR_MASK) j OSR;

UART0->C5 j= UART0_C5_BOTHEDGE_MASK; //enable sampling on both edges of the
clock

UART0->C2 j= UART0_C2_TE_MASK; //enable transmitter
UART0->C2 j= UART0_C2_RE_MASK; //enable receiver

return;
}

For polling mode, the operations for the UART data transmit and receive are quite simple:

// Output a character to UART0
char UART_putc(char ch)
{

/* Wait if Transmit Data Register Empty flag is 0 */
while ((UART0->S1 & UART0_S1_TDRE_MASK) == 0);
UART0->D = ch; // send a character

Continued

Programming Examples 483

return ch;
}
// Read a character from UART0. If no data received yet, wait
char UART_getc(void)
{ /* Wait if Receive Data Register Full flag is 0 */

while ((UART0->S1 & UART0_S1_RDRF_MASK) == 0); //
return UART0->D;

}

18.1.4 Programming the UART on STM32L0 Discovery

For the STM32F0 microcontroller on the STM32F0 Discovery board, there are also two

UARTs. For USART1, the pins used are PA9 (TXD) and PA10 (RXD), and if USART2 is

used, the pins needed are PA2 (TXD) and PA3 (RXD). However, please note that since the

PA2 and PA3 pins are assigned to the linear touch sensor/touch keys, and in order to

minimize the noise, these pins are not connected to the external headers. As a result, you

can only use USART1 for your projects.

In the following example code, the USART configuration function is written in a way so

that it can be used with either USART1 or USART2. The selection is done by passing the

USART pointer to the function:

UART0 configuration for STM32L0 Discovery

// Initialize USART to simple polling mode (no interrupt)
void UART_config(USART_TypeDef* USARTx, uint32_t BaudDiv)
{

RCC->IOPENR j= RCC_IOPENR_GPIOAEN; // Enable Port A clock - for LED & USART

if (USARTx == USART1) {
RCC->APB2ENR j= RCC_APB2ENR_USART1EN; // Enable USART #1 clock
Config_Pin(GPIOA, 9, GPIO_MODE_ALTERN, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PA9 = TxD
Config_Pin(GPIOA, 10, GPIO_MODE_ALTERN, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PA10 = RxD
Config_Pin_AlternateFunc(GPIOA,9,4); // Select alternate function

AF4:USART1_TX
Config_Pin_AlternateFunc(GPIOA,10,4); // Select alternate function

AF4:USART1_RX
} else {

RCC->APB1ENR j= RCC_APB1ENR_USART2EN; // Enable USART #2 clock
Config_Pin(GPIOA, 2, GPIO_MODE_ALTERN, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PA2 = TxD

484 Chapter 18

Config_Pin(GPIOA, 3, GPIO_MODE_ALTERN, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,
GPIO_NO_PULL); // PA3 = RxD

Config_Pin_AlternateFunc(GPIOA, 2, 4); // Select alternate function
AF4:USART2_TX

Config_Pin_AlternateFunc(GPIOA, 3, 4); // Select alternate function
AF4:USART2_RX

}

USARTx->CR1 = 0; // Disable UART during reprogramming
USARTx->BRR = BaudDiv; // Set baud rate
USARTx->CR2 = 0; // 1 stop bit
USARTx->CR3 = 0; // interrupts and DMA disabled
USARTx->CR1 = USART_CR1_TE j USART_CR1_RE j USART_CR1_UE; // Enable UART with

8-bit
return;

}

By default the peripheral clock runs at 16 MHz, and the USART can be configured using

the above function as:

// Initialize USART
UART_config(USART1, 417); // 16MHz / 38400 = 416.66

Or if USART2 is used:

// Initialize USART
UART_config(USART2, 417); // 16MHz / 38400 = 416.66

The UART operations for polling mode can be implemented as:

// Output a character to USART1
char UART_putc(USART_TypeDef* USARTx, char ch)
{/* Wait if Transmit Empty flag is 0 */
while ((USARTx->ISR & USART_ISR_TXE) == 0);
USARTx->TDR = ch;//send a character
return ch;

}
//Read a character from USART. If no data received yet, wait
char UART_getc(USART_TypeDef* USARTx)
{/* Wait if Receive Not Empty flag is 0 */

while ((USARTx->ISR & USART_ISR_RXNE) == 0);
return USARTx->RDR;

}

Programming Examples 485

18.1.5 Programming the UART on STM32F0 Discovery

For the STM32F0 Discovery board, there are also two UARTs. Since the on-board debug

adaptor does not support USB virtual COM port, an external USB to UART adaptor is

needed for testing UART communications. For USART1, the pins used are PA9 (TXD)

and PA10 (RXD), and if USART2 is used, the pins needed are PA2 (TXD) and PA3

(RXD).

The USART configuration code can be implemented as follows. Similar to STM32L0

Discovery, the USART configuration function is written in a way so that it can be used

with either USART1 or USART2.

UART0 configuration for STM32F0 Discovery

// Initialize USART to simple polling mode (no interrupt)
void UART_config(USART_TypeDef* USARTx, uint32_t BaudDiv)
{

RCC->AHBENR j= RCC_AHBENR_GPIOAEN; // Enable Port A clock - for USART
if (USARTx == USART1) {

RCC->APB2ENR j= RCC_APB2ENR_USART1EN; // Enable USART #1 clock
Config_Pin(GPIOA, 9, GPIO_MODE_ALTERN, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PA9 = TxD
Config_Pin(GPIOA, 10, GPIO_MODE_ALTERN, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PA10 = RxD
Config_Pin_AlternateFunc(GPIOA, 9, 1); // Select alternate function

AF1:USART1_TX
Config_Pin_AlternateFunc(GPIOA,10, 1); // Select alternate function

AF1:USART1_RX
} else {

RCC->APB1ENR j= RCC_APB1ENR_USART2EN; // Enable USART #2 clock
Config_Pin(GPIOA, 2, GPIO_MODE_ALTERN, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PA2 = TxD
Config_Pin(GPIOA, 3, GPIO_MODE_ALTERN, GPIO_TYPE_PUSHPULL, GPIO_SPEED_LOW,

GPIO_NO_PULL); // PA3 = RxD
Config_Pin_AlternateFunc(GPIOA, 2, 1); // Select alternate function

AF1:USART2_TX
Config_Pin_AlternateFunc(GPIOA, 3, 1); // Select alternate function

AF1:USART2_RX
}

USARTx->CR1 = 0; // Disable UART during reprogramming
USARTx->BRR = BaudDiv; // Set baud rate
USARTx->CR2 = 0; // 1 stop bit
USARTx->CR3 = 0; // interrupts and DMA disabled
USARTx->CR1 = USART_CR1_TE j USART_CR1_RE j USART_CR1_UE; // Enable UART with

8-bit
return;

}

486 Chapter 18

By default the board runs at 48 MHz, and the USART can be configured using the above

function as:

// Initialize USART
UART_config(USART1, 1250); // 48MHz / 38400 = 1250

Or if USART2 is used:

// Initialize USART
UART_config(USART2, 1250); // 48MHz / 38400 = 1250

The UART operations can be implemented as:

// Output a character to USART1
char UART_putc(USART_TypeDef* USARTx, char ch)
{ /* Wait if Transmit Empty flag is 0 */

while ((USARTx->ISR & USART_ISR_TXE) == 0);
USARTx->TDR = ch; // send a character
return ch;

}
// Read a character from USART. If no data received yet, wait
char UART_getc(USART_TypeDef* USARTx)
{ /* Wait if Receive Not Empty flag is 0 */

while ((USARTx->ISR & USART_ISR_RXNE) == 0);
return USARTx->RDR;

}

18.1.6 Programming the UART on LPC1114FN28

Since we are not using an off-the-shelve microcontroller board for the LPC1114FN28

example, the clock speed of the system is not fixed. Here we assume that a 12 MHz

external crystal is used and the internal PLL is configured to boost the clock speed to

48 MHz.

The UART configuration code for LPC1114FN28 can be implemented as follows, with

Port 1 pin 7 configured as TxD, and Port 1 pin 6 configured as RxD:

UART0 configuration for NXP LPC1114FN28

// Initialize UART to simple polling mode (no interrupt)
void UART_config(void)
{

// Enable clocks IO config block
// Bit 16: IO config
LPC_SYSCON->SYSAHBCLKCTRL j= ((1<<16));

Continued

Programming Examples 487

__NOP(); // Short time delay to make sure clock to IOCON block is enabled
__NOP();
__NOP();

// PIO1_6 IO output config
// bit[5] - Hysteresis (0=disable, 1 =enable)
// bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
// bit[2:0] - Function (0 = IO, 1=RXD, 2=CT32B0_MAT0)
LPC_IOCON->PIO1_6 = (0<<5) j (0<<3) j (0x1);

// PIO1_7 IO output config
// bit[5] - Hysteresis (0=disable, 1 =enable)
// bit[4:3] - MODE(0=inactive, 1 =pulldown, 2=pullup, 3=repeater)
// bit[2:0] - Function (0 = IO, 1=TXD, 2=CT32B0_MAT1)
LPC_IOCON->PIO1_7 = (0<<5) j (0<<3) j (0x1);

// Enable clocks IO UART
// UART is bit 12
LPC_SYSCON->SYSAHBCLKCTRL j= ((1<<12));
// UART clock divider, divide by 1
LPC_SYSCON->UARTCLKDIV = 1;

// Enable access to divisor latch
// bit[7] - DLAB (Divisor Latch Access Bit)
// bit[1:0] - Word length (0= 5bits, 1= 6bits, 2= 7bits, 3= 8bits)
LPC_UART->LCR = (1<<7) j 3;

// Baud rate 38400, system clock 48MHz
// PCLK / Baud Rate / 16 = 78.125 = (256 x DLM + DLL) x (1 + DivAddVal/MulVal)
// ULM = 0
// DLL = 67
// MulVal = 6
// DivAddVal = 1
// 67 * (1 + 1/6) = 78.1666
LPC_UART->DLM = 0;
LPC_UART->DLL = 67;
LPC_UART->FDR = (6 << 4) j (1 << 0);

// FIFO Control Register
// bit[7:6] - RX Trigger Level (0 = 1 character, 1 = 4ch, 2=8, 3=14)
// bit[2] - TX FIFO Reset
// bit[1] - RX FIFO Reset
// bit[0] - FIFO Enable
LPC_UART->FCR = (0<<6) j (0<<2) j (0<<1) j 1;

// Line Control Register
// bit[7] - DLAB (Divisor Latch Access Bit)
// bit[6] - Break Control Enable
// bit[5:4] - Parity select (0=odd, 1=even, 2=force 1 sticky, 3=force

0 stick)
// bit[3] - Parity Enable
// bit[2] - stop bit (0 = 1 stop bit, 1 = 2 stop bits)
// bit[1:0] - Word length (0 = 5bits, 1 = 6bits, 2 = 7bits, 3 = 8bits)
LPC_UART->LCR = 3;

488 Chapter 18

// Dummy read of LSR to clear error flags
uart_status_rxd();
// Interrupt Disable (IER can only be programmed when DLAB = 0)
// bit[0] - RBR (Receive Data Available Enable)
// bit[1] - THRE (Transmit Enable)
// bit[2] - RX Line (Receive Line Interrupt Enable)
// bit[8] - ABEOIntEn (auto band interrupt)
// bit[9] - ABTOIntEn (auto band timeout interrupt)
LPC_UART->IER = 0;

// Wait until TX buffer is empty
while (((LPC_UART->LSR >> 6) & 0x1) == 0);
// Drain RX buffer
while (uart_status_rxd()!=0) UART_getc();

// Optional: Turn off clock to I/O Config block to save power
LPC_SYSCON->SYSAHBCLKCTRL &= w(1<<16);
return;

}

The UART operations for polling mode can be implemented as follows:

int uart_status_rxd(void)
{ // Bit 0 is RDR (Receive Data Ready)

return (LPC_UART->LSR & 0x1);
}
int uart_status_txd(void)
{

// Bit 5 is THRE (Transmit Holding Register Empty)
return ((LPC_UART->LSR >> 5) & 0x1);

}
// Output a character to UART0
char UART_putc(char ch)
{

while (uart_status_txd()==0);
LPC_UART->THR = (uint32_t)ch;
return ch;

}
// Read a character from UART0. If no data received yet, wait
char UART_getc(void)
{ /* Wait if Receive Data Register Full flag is 0 */

while (uart_status_rxd()==0);
return LPC_UART->RBR;

}

Programming Examples 489

18.2 Handling printf
18.2.1 Overview

Based on the examples in the previous section, we can create our own string printing

function to handling printing of text strings, as shown below.

// Uart string output
void UART_puts(char * mytext)
{

char CurrChar;
CurrChar = *mytext;
while (CurrChar != (char) 0x0){

UART_putc(CurrChar); // Normal data
mytext++;
CurrChar = *mytext;
}

return;
}

This works great for printing constant strings. We can also use this function to print other

information by using sprint function to print the information to a text buffer, and then

output it using UART_puts, the string output function we created:

char txt_buf[30];
.

sprintf(txt_buf,"%d\n",1234);
UART_puts(txt_buf);

However, it would also be useful if we can configure the “printf” function to use the

UART directly, or talk to the debugger software in some way to display the messages we

want to show. There are two techniques that can help to achieve this objective:

RetargetingdIn most compilers, you can redefine certain low-level function(s) so that the

message passed onto display in “printf” is redirect to peripheral(s) of your choice. This allows

you to use a peripheral such as a UARTor an LCD module to handle “printf” messages. In

some tool chains, the retargeting feature might also support input function such as “scanf”.

SemihostingdIn some tool chains, you can configure the compilation output to pass

“printf” outputs to debugger connected to the microcontroller via the debug connection.

Semihosting feature in some tool chains (e.g., ARM� DS-5) might also support accesses

to file I/O and other system resources. It does not take any peripheral resources, but is

limited to debug environments only.

490 Chapter 18

Both retargeting and semihosting features are tool chain dependent. In the following

section, we will cover the retargeting and semihosting with various tool chains.

18.2.2 Retargeting with Keil® MDK

In Keil MDK-ARM (or other ARM tool chains such as DS-5� Professional), the function

that needs to be implemented to support printf is “fputc”. Optionally, you can add a

character input function “fgetc” for input function.

By adding the following file to your project, you can use printf for message output.

/**/
/* Retarget functions for ARM DS-5 Professional / Keil MDK */
/**/

#include <stdio.h>
#include <time.h>
#include <rt_misc.h>
#pragma import(__use_no_semihosting_swi)
extern char UART_putc(char ch);
extern char UART_getc(void);

struct __FILE { int handle; /* Add whatever you need here */ };
FILE __stdout;
FILE __stdin;

int fputc(int ch, FILE *f) {
if (ch == 10) UART_putc(13);
return (UART_putc(ch));

}

int fgetc(FILE *f) {
return (UART_putc(UART_getc()));

}

int ferror(FILE *f) {
/* Your implementation of ferror */
return EOF;

}

void _ttywrch(int ch) {
UART_putc(ch);

}

void _sys_exit(int return_code) {
label: goto label; /* endless loop */
}

Note: If MicroLIB option is used, then scanf is not supported.

Programming Examples 491

18.2.3 Retargeting with IAR EWARM

The same retargeting operation can also be done in the IAR Embedded Workbench for

ARM environment.

Low-Level I/O Functions

Output size_t __write(int handle,const unsigned char *buf,size_t bufSize)
{
size_t i;
for (i=0; i<bufSize; i++)
{
send_data(buf[i]);
}

return i;
}

Input size_t __read(int handle,unsigned char *buf,size_t bufSize)
{
size_t i;
for (i=0; i <bufSize; i++)
{
// Wait for character available
while(data_ready() ==0);
buf[i] = get_data(); // Get data
}

return i;
}

For example, in order to allow the printf messages to be output to the UART, the

following “retarget.c” can be used:

Retarget.c for IAR Embedded Workbench for ARM to redirect printf to UART

#include <stdio.h>

extern void UART_putc(char ch);
extern char UART_getc(void);

size_t __write(int handle, const unsigned char *buf,size_t bufSize)
{

size_t i;
for (i=0; i<bufSize;i++) {

UART_putc(buf[i]);}
return i;

}
/* __read for input (e.g. scanf) support */
size_t __read(int handle, unsigned char *buf,size_t bufSize)
{

size_t i;

492 Chapter 18

for (i=0; i<bufSize;i++)
{// Wait for character available
buf[i] = UART_getc(); // Get data
UART_putc(buf[i]); // Optional:input echo
}

return i;
}

If the project is not going to use any input functions from the C runtime libraries (e.g.,

scanf, fgets), then the __read function can be omitted.

18.2.4 Retargeting with GNU Compiler Collection

In GNU Compiler Collection (gcc), you can implement retargeting function to redirect

printf to peripherals. In normal gcc, the redirection of text message output is handled by

implementing a “_write” function.

Retargeting for gcc

/**/
/* Retarget functions for GNU Tools for ARM Embedded Processors */
/**/
#include <stdio.h>
#include <sys/stat.h>

extern void UART_putc(char ch);

__attribute__ ((used)) int _write (int fd, char *ptr, int len)
{

size_t i;
for (i=0; i<len;i++) {

UART_putc (ptr[i]); // call character output function
}

return len;
}
/* Note: The "used" attribute is to work around a LTO (Link Time Optimization)
bug, but at the cost of increasing code size when not used. Do not link this file
when it is not used. */

Depending on the library setting for linking stage, you might also need to include

additional stub functions to get it to work.

Programming Examples 493

18.2.5 Semihosting with IAR EWARM

Instead of using a peripheral to handle message display, it is possible to use the debug

connection to handle printf message display. For IAR Embedded Workbench for ARM,

there is no need to add any special code to use semihosting. You only need to enable

semihosting in the project setup as shown in Figure 18.5.

After the project is compiled, you can start the debugger as normal. Inside the debugger,

the Terminal I/O window needs to be enabled. This can be accessed from the pull down

menu: View / Terminal I/O. Once enabled, the printf messages will then appear in the

Terminal I/O window, as shown in Figure 18.6. If your application includes any input

functions from the C runtime library, you can also enter the input at the Input box of the

Terminal I/O window.

Figure 18.5
Semihosting options in IAR Embedded Workbench for ARM need to be enabled for semihosting.

494 Chapter 18

Please note that in some cases, the semihosting operations can be quite slow and may

require the processor to be halted frequently for the data transfers, it is not suitable for

some applications that need real-time processing capability.

18.2.6 Semihosting with CoIDE

Semihosting is also supported in CooCox CoIDE. In order to use semihosting function

for printf, you need to ensure that the semihosting library is use for the linking process

(Figure 18.7), and in the debugger option tab the semihosting feature is enabled (Figure 18.8).

A modified C library component (syscalls.c) is needed to bridge between the C library and

semihosting code. If you are using older versions of CoIDE (prior to version 2), you

should also include a “Semihosting” software component in the project repository.

18.3 Developing Your Own Input and Output Functions
18.3.1 Why Reinventing the Wheel?

The C libraries provided a number of functions for text output formatting and text input;

however, in some cases it is necessary to create custom input and output functions because

of the following:

• It might help to reduce program size.

• It gives complete control on the program’s behavior.

Figure 18.6
With semihosting, printf message is displayed in the Terminal I/O window.

Programming Examples 495

Figure 18.7
CoIDE semihosting library option.

Figure 18.8
CoIDE semihosting debug option.

496 Chapter 18

• Avoid C runtime library dependency (e.g., there might not be any heap memory allo-

cated which could be needed by printf).

One might wonder why it is important to have total control on program behavior. For

example,

• You might want to limit user inputs to certain character types,

• The input device could require additional processing for detecting a user’s input (e.g., a

simple keypad that needs key matrix scanning),

• Alternatively you might want to add extra features to allow extra capabilities in the

input and output functions (e.g., handling of multiple input mechanisms at the same

time).

It is not that difficult to create your own text output functions. In an earlier part of this

chapter, we have already covered a simple function called “UART_puts” which is used to

output a text string:

UART_puts functionddisplay of text string by UART

// Uart string output
void UART_puts(unsigned char * mytext)
{

unsigned char CurrChar;
do {

CurrChar = *mytext;
if (CurrChar != (char) 0x0) {

UART_putc(CurrChar); // Normal data
}

*mytext++;
} while (CurrChar != 0);
return;

}

Simple function for outputting numeric values in hexadecimal can also be created:

UART_put_hex functionddisplay of unsigned hexadecimal value by UART

void UART_put_hex(unsigned int din)
{
unsigned int nmask = 0xF0000000U;
unsigned int nshift = 28;
unsigned short int data4bit;

do {
data4bit = (din & nmask) >> nshift;
data4bit = data4bit+48; // convert data to ASCII

Continued

Programming Examples 497

if (data4bit>57) data4bit = data4bit+7;
UART_putc((char) data4bit);
nshift = nshift - 4;
nmask = nmask >> 4;

} while (nmask!=0);
return;

}

A simple function for outputting numeric values in decimal number format can be

written as:

UART_put_dec functionddisplay of unsigned decimal value by UART, up to 10 digits

void UART_put_dec(unsigned int din)
{
const unsigned int DecTable[10] = {

1000000000,100000000,10000000,1000000,
100000, 10000, 1000, 100, 10, 1};

int count=0; // digital count
int n; // calculation for each digital
// Remove preceding zeros

while ((din < DecTable[count]) && (din>10)) {count++;}

while (count<10) {
n=0;
while (din >= DecTable[count]) {

din = din - DecTable[count];
n++;
}

n = n + 48; // convert to ascii 0 to 9
UART_putc((char) n);
count++;

};
return;

}

Similarly, it is also possible to create input functions for strings and numbers. The first

example below is for string inputs. Unlike the “scanf” function in the C library, we pass

two input parameters to the function: the first parameter is a pointer of the text buffer, and

the second parameter is the maximum length of text that can be input.

498 Chapter 18

UART_gets functiondGet a user input string via UART

int UART_gets(char dest[], int length)
{
unsigned int textlen=0; // Current text length
char ch; // current character
do {

ch = UART_getc(); // Get a character from UART
switch (ch) {

case 8: // Back space
if (textlen>0) {

textlen--;
UART_putc(ch); // Back space
UART_putc(' '); // Replace last character with space on console
UART_putc(ch); // Back space again to adjust cursor position
}

break;
case 13: // Enter is pressed
dest[textlen] = 0; // null terminate
UART_putc(ch); // echo typed character
break;

case 27: // ESC is pressed
dest[textlen] = 0; // null terminate
UART_putc('\n');
break;

default: // if input length is within limit and input is valid
if ((textlen<length) &
((ch >= 0x20) & (ch < 0 x7F))) // valid characters

{
dest[textlen] = ch; // append character to buffer
textlen++;
UART_putc(ch); // echo typed character
}

break;
} // end switch

} while ((ch!=13) && (ch!=27));
if (ch==27) {

return 1; // ESC key pressed
} else {

return 0; // Return key pressed
}

}

Unlike “scanf”, the “UART_gets” function we created allows us to determine if the user

completed the input process by pressing ENTER or ESC key. To use this function, declare

a text buffer as an array of characters, and pass its address to this function.

Programming Examples 499

Example of using the UART_gets function

int main(void)
{

char textbuf[20];
int return_state;

// System Initialization
SystemInit();
// Initialize UART
UART_config ();

while (1) {
UART_putc('\n');
UART_puts ("String input test : ");
return_state = UART_gets(&textbuf[0], 19);
if (return_state!=0) {

UART_puts ("\nESC pressed :");
} else {
UART_puts ("\nInput was :");
}

UART_puts (textbuf);
UART_putc('\n');
};

};

By modifying the case statement in the “UART_gets” function, you can create input

functions that only accept numeric value inputs, or other types of text input functions

required for your application. You can also change the implementation so that it gets the

user’s input from other interfaces rather than a UART.

18.3.2 Other Interfaces

In addition to UART, there are lots of different peripheral interfaces that we can use for

handling of user interface and peripheral control. For example, a user display can be as

follows:

• Seven segment LED display connected via I/O port signals

• Character LCD module connected via I/O port signals or serial interface such as SPI

(Serial Peripheral Interface) or I2C (Inter-Integrated Circuit) interface

• Dot matrix LCD module connected via SPI

• LCD display with on-chip LCD driver

Usually seven segment LED modules are control by simple LED output control functions

that map numerical values to segment control signals. This is very easy to implement.

500 Chapter 18

If using character LCD display module or dot matrix LCD modules, instead of using the

UART_putc that we have created in previous example, we could replace that with an LCD

version that displays ASCII character on the LCD screen. For dot matrix LCD, the

operations could be fairly complex due to the need to map from ASCII characters to bit

map fonts before we can display the information. Please note that different LCD modules

can have different controller inside and the control sequences can be completely different

from each other.

There is also a range of input interfaces in embedded systems. In Chapter 17, the

train controller example uses a potentiometer and an ADC for speed control. Other

user input interface in embedded system can be simple push buttons, rotary encoders,

or even touch screen controllers. In all cases, we need to have application-specific

input and output functions to handle these input and output methods.

18.3.3 Other Hints and Tips About scanf

By default, executing scanf without specifying the size of the buffer can be problematic.

For example, if the text buffer is 10 bytes in size:

char txt_buf[10];
.

scanf ("%s", txt_buf);

The above code works, but if the user entered a much longer string (over 9 bytes), the

result would be unpredictable; possibly a program crash, but in the worst case, this can

become a vulnerability for hackers to exploit.

You can limit the size of the buffer that the scanf function can use by calling

scanf as:

scanf ("%9s", txt_buf); // Maximum 9 characters

The length of the text that can be entered is the buffer size minus 1 because the last

character needs to be a NULL (0x00) to indicate the end of a string.

One of the common problems is that by default scanf assume that the text entry is

completed as soon as you type in a spacebar (“ ”). This behavior can also be avoided by

changing the scanf function call to:

scanf ("%9[0-9a-zA-Z]s", txt_buf); // Maximum 9 characters

Alternatively you can use the fgets function, as follows:

fgets(txt_buf, 9, stdin);

Programming Examples 501

18.4 Interrupt Programming Examples
18.4.1 General Overview of Interrupt Handling

Interrupts are essential for majority of embedded systems. For example, user inputs can be

handled by an interrupt service routine (ISR) so that the processor does not have to spend

time checking the input interface status. By doing this, the processor can either:

• Enter sleep to save power, or

• Start working on other processing while waiting for a peripheral interrupt.

In addition to handling of user inputs, interrupts can also be used for other hardware

interface units (e.g., DMA controller), peripherals (e.g., timers) or by software.

In Cortex�-M processors, the interrupt feature is very easy to use. In general, we can

summarize the configuration of an interrupt service as follows:

• Setting up the vector table (this is done by the start-up code from CMSIS compliant

device driver library).

• Setting up the priority level of the interrupt. This step is optional, by default the priority

levels of interrupts are set to level 0 (highest programmable level).

• Define an ISR in your application. This can be a normal C function.

• Enable the interrupt (e.g., using NVIC_EnableIRQ() function).

Please note that there are also other interrupt mask registers in the system. For the Cortex-

M0 and Cortex-M0þ processors, an interrupt mask register called PRIMASK is available.

When this register is set, all of the interrupts apart from the Non-Maskable Interrupt

(NMI) and the HardFault would be blocked. By default the global interrupt mask

PRIMASK is cleared after reset, so there is no need to explicitly clear PRIMASK at the

start of the program to enable interrupts.

The CMSIS-CORE has made the setup steps for interrupts much easier as the priority

level and enabling of the interrupt can be carried out by functions provided in the

CMSIS-CORE. The ISRs are application dependent and will have to be created by

software developers. In most cases, you can find example codes from the microcontroller

vendors which make software development easier. Depending on the peripheral design on

the microcontrollers, you might have to clear the interrupt requests inside the ISRs. Please

note that global variables used by the ISRs need to be defined as volatile.

18.4.2 Overview of Interrupt Control Functions

There are a number of interrupt control functions in Cortex Microcontroller Software

Interface Standard (CMSIS). Most of them have been described in Chapter 9 Interrupt

502 Chapter 18

Control and System Control. The following table (Table 18.1) is a summary of the CMSIS

functions for general interrupt controls:

The input parameter “IRQn_Type IRQn” is defined in the header file for the device. In

typical CMSIS-CORE header files for microcontroller device, you would see IRQn defined

in an enumeration list:

typedef enum IRQn
{
/****** Cortex-M0 Processor Exceptions Numbers *********/

NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */
HardFault_IRQn = -13, /*!< 3 Cortex-M0 Hard Fault Interrupt */
SVCall_IRQn = -5, /*!< 11 Cortex-M0 SV Call Interrupt */
PendSV_IRQn = -2, /*!< 14 Cortex-M0 Pend SV Interrupt */
SysTick_IRQn = -1, /*!< 15 Cortex-M0 System Tick Interrupt */
.

/* 0 to 31 are microcontroller device specific */
} IRQn_Type;

Table 18.1: CMSIS-CORE interrupt control functions

Function Descriptions

void NVIC_EnableIRQ(IRQn_Type IRQn); Enable an interrupt. This function does not apply to
system exceptions.

void NVIC_DisableIRQ(IRQn_Type IRQn); Disable an interrupt. This function does not apply to
system exceptions.

void NVIC_SetPendingIRQ(IRQn_Type IRQn); Set the pending status of an interrupt. This function
does not apply to system exceptions.

void NVIC_ClearPendingIRQ(IRQn_Type IRQn); Clear the pending status of an interrupt. This
function does not apply to system exceptions.

uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn); Obtain the interrupt pending status of an interrupt.
This function does not apply to system exceptions.

void NVIC_SetPriority(IRQn_Type IRQn,
uint32_t priority);

Set up the priority level of an interrupt or system
exception. The priority level value is automatically
shifted to the implemented bits in the priority level
register.

uint32_t NVIC_GetPriority(IRQn_Type IRQn); Obtain the priority level of an interrupt or system
exception. The priority level is automatically shifted
to remove unimplemented bits in the priority level
values.

void __enable_irq(void); Clear PRIMASKdenable interrupts and system
exceptions.

void __disable_irq(void); Set PRIMASKddisable all interrupt including system
exceptions (apart from HardFault and NMI).

Programming Examples 503

The first group of the IRQn (�14 to �1) are system exceptions; they are available in all

versions of Cortex-M0 and Cortex-M0þ CMSIS device driver library. The exception

numbers 0 to 31 are device-specific interrupt types. They are defined according to the

interrupt request connection from the peripherals to the NVIC in the Cortex-M0/M0þ
processor. When using the CMSIS-CORE NVIC control functions, we can use the

enumeration types to make the program code more readable, and allow better software

reusability. For example:

NVIC_EnableIRQ(UART0_IRQn); // Enable UART0 Interrupt

If necessary, we can disable all peripheral interrupts and system exceptions using the

PRIMASK feature in the Cortex-M processor when handling a time critical task.

Typically, the PRIMASK is set only for a short time when we do not want the control

timing to be affected by any interrupt. The CMSIS-CORE provides two functions to

access the PRIMASK feature. For example:

__disable_irq(); // Set PRIMASK - disable interrupts
. ; // time critical tasks
__enable_irq(); // clear PRIMASK - enable interrupts

Please note that the PRIMASK does not block the NMI and the HardFault exception.

Also, if PRIMASK is set inside an interrupt handler, you should make sure it is

cleared before exiting the exception handler. Otherwise the interrupts will be remain

disabled. This is different from ARM7�TDMI where an interrupt return can re-enable

interrupt.

18.5 Application ExampledAnother Controller for a Model Train

After learning quite a bit about the processor features, it is interesting to see how to use

various techniques to build a real application. Here we assume, we have a model railway

track running between station A and station B, and a number of sensors are placed on the

railway track, as shown in Figure 18.9. How can we create an application that runs the

train from A to B, stop for a few seconds, and then run from B to A and stop, and then all

over again?

To make the problem slightly more challenging, we also need to consider the acceleration

and deceleration of the train. For example, when travel from A to B, the train should

accelerate to a certain speed, then cruise at a slightly lower speed, and then decelerate as it

gets to sensor B1, and stop when it gets to sensor B0, as shown in Figure 18.10.

In order to tackle this application challenge, we need to decide what are needed inside the

hardware and software. For the hardware, I built a simple microcontroller board

(Figure 18.11) with an NXP LPC1114 microcontroller connected to four infrared obstacle

504 Chapter 18

detector modules that are placed under the railway track. These infrared obstacle detector

modules (bottom of Figure 18.11) can be brought online at fairly low cost.

Depending on the wiring connection, a certain Pulse-width modulation (PWM) output

could be driving the train from A to B or from B to A. Since it is difficult to tell during

the program development (unless it is tested first), a simple direction detection step is

added to the application code. This works by assuming that the train is placed in the

A B

Sensor A0 Sensor A1 Sensor B1 Sensor B0

H-Bridge
motor
driver

Microcontroller
(LPC1114)

PWM

Direction

Voltage
regulator

DC
Power supply

Push Button
(Pause/
resume)

Train travelling in
direction B should

decelerate from here

Train travelling in direction B
should stop here for N

seconds and then travel to
direction A

Train travelling in
direction A should

decelerate from here

Train travelling in direction A
should stop here for N

seconds and then travel to
direction B

Figure 18.9
A simple model railway control project.

Time

PWM output

Reaching
sensor B1

Reaching
sensor B0

Actual speed

Reaching
maximum

speed

Cruising at
typical
speed

Train starts moving only
when power reach a

certain threshold

As speed gets higher,
more energy lost on

fric�on

Need to retain minimum PWM
duty cycle. Otherwise the train
might stop and never get to B.

Train actual stops
happene a couple of

second a�er PWM output
turns off.

Figure 18.10
PWM duty cycle and train speed in a journey from A to B.

Programming Examples 505

middle of the track (between sensor A1 and B1) at the start of program execution, then

applies the track with a low duty ratio PWM output to get the train moving until it reaches

one of the sensors.

To get the speed control working as in Figure 18.10, we need to use a timer interrupt for

acceleration and deceleration control. Inside the timer ISR, the inputs (sensors and the

button) are sampled, and then a Finite State Machine (FSM) is implemented to handle

the control sequences. The FSM has 10 states: eight states for normal operations to get the

train running between A and B, and two more states for handling of user stopping request

(when the push button is pressed).

The state of the FSM is held in a global variable so that the FSM code does not need to be

executing all the time. The FSM processing is done inside the timer interrupt handler

using a switch statement, where the new state and the new speed for the train are

determined.

The FSM state diagram of the program looks slightly complex (Figure 18.12). Assume

normal operations without the user pushing the press button, the state transitions are quite

simple, as shown by the blue arrows. The state transitions with green arrows happens only

if the user pushed the press button, and the brown arrows with dashed lines are added in

case the sensor event A1/B1 are missed.

Timer is programmed to trigger at 20 Hz. Each time the timer ISR is executed, the inputs

are sampled. Input events are recognized only if it is active in two successive samples and

Figure 18.11
Microcontroller board connected to PWM module (left) and power supply module (right), and

an infrared module at the bottom.

506 Chapter 18

Start

I/O configura�ons

PWM configura�on

Flash LED to indicate
error

Sensor(s) already
ac�ve?

Check sensor
inputs ini�al values

Yes

No Note: Train should
be between sensor
A1 and B1 at startSet direc�on control to 0

Set PWM to “Start speed”

Wait un�l a sensor is
triggered

Set direc�on config to 1

Set PWM to 0 (stop)

Set direc�on config to 0

Set PWM to 0 (stop)

Sensor B0/B1 triggeredSensor A0/A1 triggered

Stopped At A Stopped At B

Run A to B
accelerate

Run A to B
steady speed

Run A to B
decelerate

Run B to A
accelerate

Run B to A
steady speed

Run B to A
decelerate

Stopping by
user (bu�on)

Stopped by
user

Finite State
Machine (FSM)
inside �mer ISR

Wait for 5
seconds

Wait for 5
seconds

Decelerate
un�l stopped

stopped

Bu�on pressed
(resume)

Bu�on pressed
(resume)

Bu�on event

Reached max
speed

Accelera�ng

Reached
sensor B0

Reached max speedReached sensor A1

Reached
sensor A0

Reached sensor A0

Reached sensor B1

Reached sensor A1

Wait for
bu�on

Accelera�ng

Bu�on
event

Reached sensor
B1

Figure 18.12
Program flow of the train controller application.

Programming Examples 507

previous state of the input was inactive. Then the FSM code is executed, the PWM duty

cycle is updated and return to the thread (Figure 18.13).

Compare to the program flow used in another train controller project in Chapter 17, this

FSM approach is more flexible as this allows you to create multiple state-transition paths

easily. In addition, the interrupt-driven application approaches the low power capability of

the microcontroller to be utilized.

To help debugging, a number of printf functions are added so that we can see what the

microcontroller is doing at different times. The printf messages are directed to UART

(retargeting). For example, when a state transition takes place, the new state information is

output to the UART.

Alternatively, the thread idle loop could put the processor into sleep mode as there is

nothing else needs to be done inside thread mode after the FSM has been started.

The example code based on Keil� MDK-ARM is available on the book companion

Web site.

18.6 Different Versions of CMSIS-CORE

The CMSIS project is in continuous development. The CMSIS-CORE supports the

Cortex�-M0 processor starting from version 1.1, and Cortex-M0þ processor from

Start

Clear timer interrupt

Sample button input

Sample sensor inputs

Switch (Curr_State)

Stopped At A Run A to B
accelerate

Run A to B
steady speed

Stopping by
user (button)

Stopped by
user

Update PWM duty
cycle

Return

FSM
processing
(Curr_State

update if
needed)

Figure 18.13
Timer handler includes the nonblocking FSM processing.

508 Chapter 18

version 3.01. The current release is version 4.3. The examples used in this book should

work with most recent releases of the CMSIS-CORE.

Most of the changes of the CMSIS-CORE since version 1.3 are focus on the following:

• New processor supports

• New tool chain supports

• Directory structure changes

• Intrinsic function enhancements

• CMSIS-DSP library enhancements

The details of the changes are documented in an HTML file in the CMSIS-CORE

package, for example: CMSIS_<version>\CMSIS\Documentation\Core\html\index.html

Version Description

V4.00 Added: Cortex-M7 support.
Added: intrinsic functions for __RRX, __LDRBT, __LDRHT, __LDRT, __STRBT, __STRHT,
and __STRT

V3.40 Corrected: Cþþ include guard settings.
V3.30 Added: COSMIC tool chain support.

Corrected: GCC __SMLALDX instruction intrinsic for Cortex-M4.
Corrected: GCC __SMLALD instruction intrinsic for Cortex-M4.
Corrected: GCC/CLang warnings.

V3.20 Added: __BKPT instruction intrinsic.
Added: __SMMLA instruction intrinsic for Cortex-M4.
Corrected: ITM_SendChar (for ARM�v7-M architecture).
Corrected: __enable_irq, __disable_irq and inline assembly for GCC Compiler.
Corrected: NVIC_GetPriority and VTOR_TBLOFF for Cortex-M0/M0þ, SC000.
Corrected: rework of inline assembly functions to remove potential compiler warnings.

V3.01 Added support for Cortex-M0þ processor.
V3.00 Added support for GNU GCC ARM Embedded Compiler.

Added function __ROR.
Added Register Mapping for TPIU, DWT (for ARMv7-M architecture).
Added support for SC000 and SC300 processors.
Corrected ITM_SendChar function (for ARMv7-M architecture).
Corrected the functions __STREXB, __STREXH, __STREXW for the GNU GCC compiler
section.
Documentation restructured.

V2.10 Updated documentation.
Updated CMSIS core include files.
Changed CMSIS/Device folder structure.
Added support for Cortex-M0, Cortex-M4 w/o FPU to CMSIS DSP library.
Reworked CMSIS DSP library examples.

V2.00 Added support for Cortex-M4 processor.
V1.30 Reworked Startup Concept.

Added additional Debug Functionality.
Changed folder structure.

Programming Examples 509

dCont’d

Version Description

Added doxygen comments.
Added definitions for bit.

V1.01 Added support for Cortex-M0 processor.
V1.01 Added intrinsic functions for __LDREXB, __LDREXH, __LDREXW, __STREXB, __STREXH,

__STREXW, and __CLREX (for ARMv7-M architecture)
V1.00 Initial Release for Cortex-M3 processor.

Unless you are using some fairly old versions device driver libraries based in old versions

of CMSIS-CORE, otherwise it is unlikely to encounter any compatibility issues.

If you are using version 1.x of CMSIS-CORE, there are several differences between the

CMSIS version 1.2 and version 1.3 which apply to use CMSIS on Cortex-M0:

• SystemInit() functiondIn CMSIS v1.2, the SystemInit() function is called at the start of

the main code. In CMSIS v1.3, the SystemInit() function could be called from the reset

handler.

• “SystemCoreClock” variable is addeddthe “SystemCoreClock” variable is used instead

of “SystemFrequency”. The “SystemCoreClock” definition is clearerdprocessor clock

speeddwhile “SystemFrequency” could be unclear because many microcontrollers have

multiple clocks for different parts of the system.

• Core register bit definition is added.

If you are moving software project between CMSIS-CORE version 2.0 (or older) and

newer versions, you would also notice that in version 2.0 or older versions, there is a

“core_cm0.c”, whereas in newer versions, all the processor core HAL (Hardware

Abstraction Layer) functions are handled by header files (.h) and therefore the file

“core_cm0.c” has disappeared.

In most cases, software device driver packages from microcontroller vendors should

already contain the files needed. If necessary, you can download a preferred version of

CMSIS on the ARM Web site (www.arm.com/cmsis).

510 Chapter 18

http://www.arm.com/cmsis

CHAPTER 19

Ultralow-Power Designs

19.1 Examples of Using Low-Power Features
19.1.1 Overview

More and more chip designers are using the ARM� Cortex�-M0 and Cortex-M0þ
processors in wide range of ultralow-power (ULP) microcontrollers and System-on-Chip

products. In Section 2.6.1 (Chapter 2) we have already covered the low-power benefits of

the Cortex-M0 and Cortex-M0þ processors, and then in Chapter 9, we have also covered

the low-power features of the Cortex-M0 and Cortex-M0þ processors. Here we will go

into more details of how to utilize various features, and what we should be aware of when

creating low-power applications.

Before we start going into the details, a key point that software developers need to

understand is that low-power features are very device specific. What we illustrated in the

examples here is not sufficient to enable the software developers to get the longest battery

life. Software developers should refer to application notes or examples from

microcontroller vendors to utilize the low-power features available.

19.1.2 Entering Sleep Modes

By default, the Cortex-M0 and Cortex-M0þ processors support a sleep mode and a deep

sleep mode. However, please note that microcontroller vendors can define additional sleep

modes using device-specific programmable registers. Inside the processor, the selection

between sleep mode and deep sleep mode is defined by the SLEEPDEEP bit in the System

Control Register (Table 9.9).

For the users of CMSIS-compliant device driver library, the System Control Register can

be accessed by the register symbol “SCB->SCR.” For example, to enable deep sleep

mode, you can use:

SCB->SCR j= SCB_SCR_SLEEPDEEP_Msk; /* Enable deep sleep feature */

The System Control Register must be accessed using a word size transfer.

The actual differences between normal sleep mode and deep sleep mode on a

microcontroller depend on the chip’s system level design. For example, normal sleep

might result in some of the clock signals being switched off, while deep sleep might also

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00019-9

Copyright © 2015 Elsevier Inc. All rights reserved. 511

http://dx.doi.org/10.1016/B978-0-12-803277-0.00019-9

reduce voltage supplies to the memory blocks and might switch off additional components

in the system.

After selecting the sleep mode, you can enter sleep mode using either the WFE (Wait-for-

Event) or WFI (Wait-for-Interrupt) instructions. It is recommended to add a DSB (Data

Synchronization Barrier) instruction before executing WFI/WFE to allow better portability

(e.g., in other high-performance processors, there could be outstanding memory transfers

that need to be completed before entering sleep).

In most cases, the device driver libraries from microcontroller vendors contain functions to

enter low-power modes that are customized for the corresponding microcontrollers. Using

these functions will often help achieving the best level of power optimization for the

microcontrollers.

However, if you are developing C code that needs to be portable between multiple Cortex-

M microcontrollers, you can use the following CMSIS functions to access WFE and WFI

instructions directly (Table 19.1).

For users that are not using CMSIS-compliant device drivers, you can use intrinsic

functions provided by the C compilers, or using in-line assembly to generate the WFE and

WFI instructions. In these cases, the software code will be tool chain dependent and less

portable. For example, Keil� MDK-ARM and ARM DS-5� provides the following C

intrinsic functions (unlike the CMSIS version, they are in lower cases) (Table 19.2).

From architecture point of view, a DSB instruction should be executed before executing

WFE or WFI. This ensures that outstanding data memory operations (e.g., buffered write)

are completed before entering sleep. However, on existing Cortex-M0 and Cortex-M0þ
processor, omitting the DSB instruction does not cause any issue.

Table 19.2: Keil® MDK or ARM® DS-5 intrinsic functions for WFI and WFE

Instruction

Built-in intrinsic functions provided in ARM

DS-5 or Keil MDK

WFE __wfe();
WFI __wfi();

Table 19.1: CMSIS intrinsic functions for WFE

and WFI instructions

Instruction CMSIS functions

WFE __WFE();
WFI __WFI();

512 Chapter 19

Since the WFE can be woken up by various sources of events, including event occurred in

the past, it is usually used in an idle loop. For example:

while (processing_required()==0) {
__DSB();// Use of memory barrier is recommended for portability
__WFE();

}

Users of assembly programming environments can use WFE and WFI directly in their

assembly codes.

19.1.3 WFE versus WFI

One of the commonly asked questions about sleep modes on the Cortex-M processors is

when to use WFI and when to use WFE. Typically, for interrupt-driven applications, the

WFI instruction is used.

A simple interrupt-driven application

int main(void)
{

peripheral_setup();
while (1) {
__DSB();// Use of memory barrier is recommended for portability
__WFI();
}

}
void Timer0_Handler(void)
{

// do work
.

}

However, if there are interactions between the interrupt handlers and the main program,

the WFE instruction should be used.

A simple application with interaction between interrupt handler and the main program

volatile int timer_irq_occurred = 0;
int main(void)
{

peripheral_setup();
while (1) {

while (timer_irq_occurred==0) {
__DSB();// Use of memory barrier is recommended for portability

Continued

Ultralow-Power Designs 513

__WFE();
}

printf ("[Timer IRQ]\n");
.

timer_irq_occurred = 0;
}

}
void Timer0_Handler(void)
{

// do work
.

timer_irq_occurred = 1;
}

The reason for using WFE is to prevent a corner case that if the interrupt took place

between the comparison of “timer_irq_occurred” and the sleep operation, the processor

would go to sleep despite the timer interrupt has took place and the main program should

continue. By using WFE, the processor’s event register is set by the IRQ and therefore the

WFE will not enter sleep, thus enable the “printf” statement to execute.

19.1.4 Using Sleep-On-Exit Feature

The Sleep-On-Exit feature is ideal for interrupt-driven applications. When it is enabled,

the processor can enter sleep as soon as it completes an exception handler and returns to

thread mode. It does not cause the processor to enter sleep if the exception handler is

returning to another exception handler (nested interrupt). By using Sleep-On-Exit, the

microcontroller can stay in sleep mode as much as possible (Figure 19.1).

When the Cortex-M processor enters sleep using Sleep-On-Exit, it is just like executing

WFI immediately after the exception exit. However, the unstacking process is not carried

Thread
mode

Handler
mode

Reset
WFI

Sleep
Initialization

IRQ 1

ISR 1

stacking

IRQ 2

Sleep-On-Exit
enabled

Sleep

ISR 2

ISR 3

ISR 2

Sleep

IRQ 3

Sleep-On-Exit

(Nested
interrupt)(Interrupt

handling)

Time

Figure 19.1
Sleep-On-Exit operations.

514 Chapter 19

out because the registers will have to be pushed on to the stack at the next exception entry.

The Sleep-On-Exit feature reduces the power consumption of the system by

1. avoiding unnecessary program execution in thread in interrupt-driven applications and

2. reducing unnecessary stack push and pop operations.

In the case when the processor is woken up by a halt debug request, then the unstacking

process will be carried out automatically.

When the Sleep-On-Exit feature is used, the WFE or WFI instruction is normally placed

in an idle loop.

SCB->SCR j= SCB_SCR_SLEEPONEXIT_Msk; // Enable Sleep-On-Exit feature
while (1) {

__DSB(); // Use of memory barrier is recommended for portability
__WFI(); // Execute WFI and enter sleep
};

The loop is required because if the processor is woken up by a halt debug request, the

instruction after the WFI (branch back to WFI loop) would be executed when the

processor is unhalted after debugging.

If you are not using CMSIS-compliant device driver, you can use the following C code to

enable the Sleep-On-Exit feature.

#define SCB_SCR (*((volatile unsigned long *)(0xE000ED10)))
/* Set SLEEPONEXIT bit in System Control Register */
SCB_SCR = SCB_SCR j 0x2;

Users of assembly language can enable this feature using the following assembly code.

LDR r0, =0xE000ED10 ; System Control Register address
LDR r1, [r0]
MOVS r2, #0x2
ORR r1, r2 ; Set SLEEPONEXIT bit
STR r1, [r0]

In interrupt-driven applications, do not enable Sleep-On-Exit feature too early during the

initialization. Otherwise if the processor receives an interrupt request during the

initialization process, it will enter sleep automatically after the interrupt handler executed,

before the rest of the initialization process completes.

19.1.5 Using Send-Event-on-Pend Feature

The Send-Event-on-Pend feature allows any interrupt (including disabled ones) to wake up

the processor if the processor entered sleep by executing the WFE instruction. When the

Ultralow-Power Designs 515

SEVONPEND bit in the System Control Register is set, an interrupt switching from

inactive state to pending state generates an event, which wakes up the processor from

WFE sleep.

If the pending status of an interrupt was already set before entering sleep, a new request

from this interrupt during WFE sleep will not wake up the processor.

For users of CMSIS-compliant device driver libraries, the Send-Event-on-Pend feature can

be enabled by setting bit 4 in the System Control Register. For example, you can use:

SCB->SCR j= SCB_SCR_SEVONPEND_Msk; /* Enable Send-Event-on-Pend */

If you are not using a CMSIS-compliant device driver library, you can use the following C

code to carry out the same operation:

#define SCB_SCR (*((volatile unsigned long *)(0xE000ED10)))
/* Set SEVONPEND bit in System Control Register */
SCB_SCR j= 1<<4;

Users of assembly language can enable this feature using the following assembly code.

LDR r0, =0xE000ED10 ; System Control Register address
LDR r1, [r0]
MOVS r2, #0x10 ; Set SEVONPEND bit
ORR r1, r2
STR r1, [r0]

To utilize the Send-Event-on-Pend feature, the program must execute WFE instruction

rather than using WFI or Sleep-On-Exit to enter sleep mode.

19.1.6 Using Wake-up Interrupt Controller

The Wake-up Interrupt Controller (WIC) feature allows the Cortex-M0/Cortex-M0þ
processor to enter a sleep state with all clock signals stopped, or even powered down with

state retention in the processor logic, while still be able to wake up and resume operations

quickly. Details of this feature are covered in Section 9.5.6.

Since the interrupt masking information is transferred between NVIC and WIC

automatically using a hardware interface, there is no additional programming step for

interrupt management. However, the enabling of some of the ULP states might involve

additional device-specific programming steps. For example:

• A device-specific system level power management unit might need to be programmed

to enable the WIC functionality and other sleep mode options.

516 Chapter 19

• Depending on the device you are using, you might need to switch on deep sleep mode

to use the WIC feature. (Note: in Cortex-M3 r2p0 and r2p1, and Cortex-M4 r0p1, it is

necessary to enable deep sleep mode to use the WIC feature. Whereas in Cortex-M0

and Cortex-M0þ processors, both sleep and deep sleep modes can use the WIC

feature.)

Apart from these, the presence of the WIC feature is usually transparent to the software.

Since all the clock signals connected to the processor could be stopped in WIC-enabled

sleep, the SysTick timer (which is inside the processor) could also be stopped. As a result,

it could be necessary to set up a separate peripheral timer to wake up the processor

periodically if your application requires an embedded OS and need the OS to operate

continuously. In addition, when developing simple applications that need a periodic timer

interrupt, and if WIC-mode deep sleep is required, it might be necessary to use a

peripheral timer for periodic interrupt generation instead of the SysTick timer even

embedded OS is not used.

Not all Cortex-M processor-based microcontrollers support the WIC feature. The reduction

of power using the WIC depends on the application and the semiconductor process being

used. Currently, the State Retention Power Gating (see Section 9.5.6) technology is only

supported in a limited number of silicon technology processes (cell libraries), therefore

some chip designs might use the WIC but without using the state retention power down

state.

19.1.7 Using Event Communication Interface

One of the wake-up sources for the WFE sleep operation is an external event signal. (Here

the word “external” refers external to the processor boundary. The source generating the

event can be on chip or off chip.) The event signal could be generated by on-chip

peripherals, or another processor on the same chip. The event communication and WFE

can be used together to reduce power in polling loops.

On the Cortex-M processors, there are two signals for event communication:

• TXEV: Transmit Event. A pulse is generated when the SEV instruction is executed.

• RXEV: Receive Event. When a pulse is received on this signal, the event latch inside

the processor would be set and can cause the processor to wake up from WFE sleep

operation.

First, we look at a simple use of the event connection in a single-processor system: the

event can be generated by a number of peripherals. For this example, a DMA controller is

illustrated here (Figure 19.2).

Ultralow-Power Designs 517

In a microcontroller system, a memory block copying process can be accelerated using a

DMA controller. If a polling loop is used to determine the DMA status, this will waste

energy and consume memory bandwidth and might end up slowing down the DMA

operation. To save energy, WFE is used to put the processor into sleep state. When the

DMA operation completes, we can then use a “Done” status signal (DMA completed) to

wake up the processor and continue program execution.

In the application code, instead of using a simple polling loop that continuously monitor

the status of the DMA controller, the polling loop can include WFE instruction as follows:

Enable_DMA_event_mask(); // Write to programmable enable mask register
// to enable DMA event

Start_DMA(); // Start DMA operation
do {

__DSB(); // Use of memory barrier is recommended for portability
__WFE(); // WFE Sleep operation, wake up when an event is received

} while (check_DMA_completed()==0);
Disable_DMA_event_mask(); // Write to programmable enable mask register

// to disable DMA event

Since the processor could be woken up by other events, the polling loop must still check

the DMA controller status.

For applications using an embedded OS, an OS-specific delay function should be used

instead of using WFE to allow the processor to switch to another task that is waiting to be

executed. Using of embedded OS is covered in Chapter 20.

In multiprocessor systems, interprocessor communication such as spin lock often involves

polling software flags in shared memory. Similar to the DMA controller example, the

Cortex-M
processor

TXEV

(not used)

RXEV

Programmable
enable mask

register

Peripheral #1

Peripheral #2

DMA controller
Done

Figure 19.2
Usage of event interface: example 1dDMA controller.

518 Chapter 19

WFE sleep operation can be used to reduce power consumption during these activities. In

a dual processor system, the event communication interface can be connected in a cross

over configuration as shown in Figure 19.3.

In this arrangement, the polling loop for a shared software flag could be written as:

do {
__DSB(); // Use of memory barrier is recommended for portability
__WFE(); // WFE Sleep operation, wake up when an event is received

} while (sw_flag_x==0); // poll software flag
task_X(); // execute task X when software flag for task X is received

On the other process that changes “sw_flag_x,” it needs to generate an event after the

shared variable is updated. This can be done by executing the SEV (Send event)

instruction.

sw_flag_x = 1; // Set software flag in shared memory
__DSB(); // Data synchronization barrier to ensure the write is completed

// not essential for Cortex-M0/M0+ but is added for software porting
__SEV(); // execute SEV instruction

Using this arrangement, the processor running the polling loop can stay in sleep mode

until it receives an event. Since the SEV execution sets the internal event latch, this

method works even if the polling process and the process that sets the software variable

are running at different times on the same processor, as in a single processor multitasking

system.

For applications using an embedded OS, OS-specific event-passing mechanism should be

used instead of directly using WFE and SEV.

Cortex-M
Processor

TXEV

RXEV

Peripheral events

Cortex-M
Processor

TXEV

RXEV

Figure 19.3
Usage of event interface: example 2ddual processor event cross over connection.

Ultralow-Power Designs 519

19.2 Requirements of Low-Power Designs

There are many low-power microcontrollers on the market. Traditionally,

many microcontroller vendors classify their microcontrollers as low-power or ULP

based on:

• Active current during program execution

• Idle current during sleep

Today, when selecting microcontrollers for low-power applications, designers should also

consider:

• Energy efficiencydhow much processing work can be done with certain amount of

energy.

• Code densitydhow much program memory is need for an application. ROM

(or flash) size requirement can have a significant impact on the system level power.

• Latenciesdhow long would it take to wake up the processor from sleep, and how

long it will take for the processor to complete an interrupt processing task? This can

be important for some applications with real-time requirements that the processor

might have to run at higher clock frequency to response to an interrupt request

quickly.

In many applications, energy efficiency is the key for better battery life. If a

microcontroller has lower active current but need several times higher number clock cycles

to complete a task, overall it can burn off more power. As a result, the Cortex�-M

processors have been very popular in low-power design as they offer excellent energy

efficiency as well as high code density.

In addition to longer battery life, there are many other benefits for having energy-efficient

processor in low-power designs. For example,

• Smaller battery is requireddenable smaller, more portable products

• Low-power requirement might simplify the design of power supply, cooling

• Might enable easier PCB design (thinner power tracks) and thinner wires inside

products

• Reduce the electromagnetic interference the microcontroller generates. This can be

important to wireless communication product as it affects the quality of the wireless

communications

• Enable energy harvesting

Many of these factors can also have direct impact to product cost and product

development time.

520 Chapter 19

19.3 Where Does the Power Go?

To create better low-power design, it would be helpful if we first understand where the

power is consumed on a silicon chip. We start by first looking into a photo of a

microcontroller die with a Cortex�-M3 processor, as shown in Figure 19.4.

Note on Figure 19.4: Integrated circuit die photo of a STM32F100C4T6B ARM� Cortex-

M3 MCU (microcontroller) with 16 KB Flash, 4 KB SRAM, 24 MHz CPU, motor control,

and CEC functions.

While it is not clear where the processor is in the photo (it is likely to have merged with

the digital logic on the upper right-hand side of the photo, which might also contains

digital peripherals, DMA controller, and bus interconnect components), it is clear that the

memory blocks (left-hand side) takes a significant space. The bottom right contains some

nicely structured components. Some of these blocks could be the analog components (this

chip has one 12-bit ADC and two 12-bit DACs).

Figure 19.4
Die of a STM32F100C4T6B ARM Cortex�-M3 microcontroller. Wikipedia (http://en.wikipedia.org/

wiki/ARM_Cortex-M).

Ultralow-Power Designs 521

http://en.wikipedia.org/wiki/ARM_Cortex-M
http://en.wikipedia.org/wiki/ARM_Cortex-M

And next to each of the I/O pads, there are also some transistors to help boosting the drive

current and also components for protection and voltage level conversions.

Somewhere in the chip, there are also other clock-related components like three internal

oscillators, an external Phase Locked Loop (PLL).

In general, the power consumption of a component in the chip is closely related to its area

and its signal toggling activities (Table 19.3).

Today we see many low-power Cortex-M microcontrollers with very sophisticated system

features which enable longer battery life. For example:

• Various run modes and sleep modes available

• Ultralow-power Real Time Clock (RTC), watchdog, and Brown Out Detector (BOD)

• Smart peripherals that can operate while the processor remains in sleep modes

• Flexible clock system control features to allow clock signals for inactive parts of the

design to be turned off.

While we will not be able to cover the details of all the low-power features in individual

microcontroller devices here, we can cover some of the general concepts. Since different

Table 19.3: Common elements that consume power in a microcontroller

Components Description

Memories Typically memories are the most power hungry part of the chip,
especially if the microcontroller supports large memory size. The power
consumption of the system could also depend on the application code.
If the application task is intensive on memory accesses, this can increase
the power consumption of the memory system.

Processor Since the Cortex�-M0 and Cortex-M0þ processors are quite small, the
actual power consumption of the processor is also fairly small.

Peripherals Some of the peripherals, especially analog peripherals like ADC and DAC
can also consume fair amount of power when they are enabled.
However, in most all microcontrollers some of these peripherals can
often be powered down if they are not used.

Oscillators Some external crystal oscillators could consume fair amount of power
when enabled. Many modern microcontrollers have internal RC
oscillator which can be lower power but less accurate.

I/O pads When enabled, especially when configured as an output pin, the I/O
pad can consume fair amount of power due to the transistor size and
potentially, additional power for pull up or pull down support. Many
microcontrollers allow the I/O pads to be enabled/disabled via software.

Clock distribution network Hidden in the chip photo there is also a range of transistors that
distributes the clock signals to different parts of the chip. These
transistors can also consume quite a bit of power when the clock is
running.

522 Chapter 19

microcontrollers have different low-power features, if you want to fully utilize the low-

power capability of the microcontrollers, you need to check out the details of the low-

power features from reference materials or examples available from the microcontroller

vendors. In many cases, example code could be available for download from the

manufacturer Web site.

19.4 Developing Low-Power Applications
19.4.1 Overview of Low-Power Design Practices

In general, there are various measures that can be taken to reduce power consumption:

• Reduction of active power

• Choose the right microcontroller devicedOnce the basic system and memory size

requirements of the project are clear, you can select a microcontroller with enough

memory and peripherals but not too much more.

• Run the processor at suitable clock frequencydMany applications do not require a

high clock frequency. When a processor is running at high clock speed, it might

require wait states due to flash memory access time and hence reduce the energy

efficiency.

• Choose the right clock sourcedMany low-power microcontrollers provide multiple

clock sources including internal ones. Depending on the requirements of your appli-

cations, some clock sources might work better than others. There is no general rule

of “best choice” for which clock source to use. It entirely depends on the applica-

tion and the microcontroller you are using.

• Do not enable a peripheral unless it is neededdsome low-power microcontrollers

allow you to turn off clock signals to each peripheral. In some cases, you can even

turn off the power supply to certain peripheral to reduce power.

• Other clock system featuresdSome microcontrollers provide various clock dividers

for different parts of the system. You can use these dividers to reduce the power, for

example, reduce the processor speed when the processing requirement is low.

• Good power supply designdGood choice of power supply design can provide

optimum voltage for the application.

• Reduction of active cycles

• When the processor is idle, sleep modes can be used to reduce power consumption,

even it is going to enter sleep only for a short period of time.

• Application code can be optimized for speed to reduce active cyclesdIn some cases

(e.g., C compiler option set to speed optimization), it might increase code size, but

when there is spare space in the flash memory then the optimization is worth trying.

• Features like Sleep-On-Exit can be used to reduce active cycles in interrupt-driven

applications.

Ultralow-Power Designs 523

• Reduce of power during sleep

• Select the right low-power featuresdA low-power microcontroller might support

various low-power sleep modes. Using the right sleep modes might help you to

reduce the power consumption significantly.

• Turn off unneeded peripherals and clock signals during sleep. This can reduce the

power consumption, but it might also increase the time required to restore the

system to operation state after exiting sleep mode.

• Some microcontrollers can even turn off power supply to some parts inside the mi-

crocontroller like flash memory and oscillators during sleeps. But doing this usually

needs a longer time to wake up the system.

Most microcontroller vendors would provide code library and example codes to

demonstrate the low-power features of their microcontrollers. Those examples can make

the application development much easier.

The first step of developing a low-power application is to be familiar with the

microcontroller device you are using. A few areas to investigate when developing sleep

mode support code included:

• Determine which sleep mode should be used

• Determine which clock signals need to be remain turn on

• Determine if some clock support circuits like crystal oscillators can be switched off

• Determine if clock source switching is needed

19.4.2 Various Approaches to Reduce Power

There are several approaches for creating low-power applications.

Run the Application Quickly and Then Go to Sleep as Much as Possible

This is a very common approach to use. Sleep-mode supports are very common in modern

microcontrollers and this approach allows a very good performance margin. So in case

there are more interrupt requests arriving than usual, the system can still cope with the

processing demand. The down side is that the peak current could be high, and you might

need to enable and switch the clock to a fast clock every time the microcontroller wakes

up, which could take some time.

Slow Down the Clock as Much as Possible

Many microcontrollers allow you to run the processor at a very slow clock rate, for

example, using the RTC 32 KHz oscillator as the processor clock. This enables a much

lower active current, and is suitable for applications that only need to deal with periodic

tasks where latency to other requests is not an issue.

524 Chapter 19

Power Down and Restart

Depending on the application requirements, some designers choose to power down the

microcontroller and configure the microcontroller to wake up on certain hardware events.

This can help getting the lowest idle power. But the time required to restart the processor

can result in longer response latency, and the restarting process could also consume fair

amount of energy.

Some microcontroller vendors include a state retention SRAM and firmware to help

shortening the restart process. Firmware APIs could be available to store processor

registers and states into the retention SRAM before power down, and the boot loader can

then restore the information automatically so that the processor resumes from where it was

in the application code. However, there could be some limitations, for example, some

processor states like exception status (i.e., IPSR) might not be restored and therefore such

power down feature might only be used in thread mode.

Other Possibilities

Some designers have investigated other approaches such as Dynamic Voltage and

Frequency Scaling (DVFS) for microcontrollers (mostly academic research studies).

However, DVFS is not suitable for some applications because in some microcontrollers, the

clock outputs from on-chip PLL is unstable during switching and the PLL switching time

could be too long to allow such system to deal with interrupt requests in real time. In

addition, this method is unsuitable for many microcontrollers where the peripherals are

operating on a clock derived from the processor’s clock and require a constant clock speed.

19.4.3 Selecting the Right Approach

The actual selection of the low-power approach depends on many device-specific factors

and application-specific requirements. For example, if in your application it might have to

deal with unpredictable processing loading requirements, then it is better to run the

processor faster so that it can cope with occasional high processing demand periods, and

get the system to sleep mode as long as possible. However, running the clock faster than

needed can also have drawbacks:

• Excessive power consumption on the oscillator, and potentially high power wastage in

the PLL (if used).

• Clock signals going to some of the peripherals could still be on all the time. If avail-

able, consider utilizing some of the clock prescalars to reduce the clock speed of certain

peripherals.

You can also consider running the clock in a medium frequency range, and only increase the

clock speed when certain processing tasks (that require longer execution time) are executed.

Ultralow-Power Designs 525

In some applications, you could find that instead of using a PLL to get a high clock

frequency, you can use a higher frequency crystal and use clock prescalar to reduce the

processor’s clock to lower operating frequency when the work load is low. If the

processing requirement increases, then reprogram the prescalar to increase the processor’s

clock speed. This avoids the need to use the PLL (especially if the PLL is power hungry)

and reduce the clock speed switching time (reprogram a clock prescalar is normally much

faster than a PLL frequency switch).

In applications that the role of the processor is just to wake up periodically and do some

processing, and the processing latency is not an issue, then running the clock slow could

be one good way to reduce power. This is particularly useful for systems based on energy

harvesting because it reduces the peak current to a minimum. However, there are some

cases where running the clock as slow as possible might not able to save energy:

• At low frequency range, the power consumption does not necessarily reduce linearly

as the clock rate reduced due to leakage current, or active power of external compo-

nents connected to the microcontroller. If the leakage current of the system is high,

then running the system for longer can increase the power consumed due to leakage

current. This is particularly true for microcontroller devices with memories that

have high leakage current, or when certain analog components need to be turned on

throughout the processing. If the leakage current is much lower during sleep,

running the system faster and putting it into sleep mode longer might save more

power.

• There can be various limitations of frequency range and low-power characteristics of

the oscillator and clock circuit designs. If the oscillator and PLL power consumption is

significant and the power of these components cannot be able to reduce any further

under certain frequency range, then reducing clock frequency further lower is not going

to help.

• Do not use a crystal with frequency lower than the specified frequency range stated by

the microcontroller data sheet. Not only the crystal oscillator might not be able to

startup properly, it might end up with harmonic in the oscillation which might result in

an unreliable system and the oscillator could consume more power. It is also important

to use the right capacitors with the crystal as stated in data sheet.

For applications that stay in sleep mode for extensive amount of time and if wake-up

latency is not an issue, power down the design when the system is idle could be the best

choice. In such case, care must be taken to reduce the power consumed in the start-up

sequence. For example, a slow oscillator (e.g., 32 KHz) might take much longer time than

a fast crystal oscillator to startup, therefore could end up with higher start-up energy

consumption.

526 Chapter 19

19.5 Debug Considerations
19.5.1 Debug and Low-Power

Depending on the microcontroller devices used, in some cases the sleep modes can disable

all the clock signals or can disable the signal paths for debug connections. In such cases, if

you are running a debug session on a debug host and such sleep mode is used, the debug

session would terminate as the debugger can no longer talk to the chip.

In some other cases, you might find that when a debugger is connected, it disables certain

low-power features so that the debug session can continue during sleep. However, the power

of the system during debug will not reflect the real-world scenarios (it will be higher).

19.5.2 “Safe Mode” for Debug and Flash Programming

If you are using a microcontroller device that could terminate your debug connection

during sleep mode, and if you are developing an application that could go into sleep mode

fairly quickly after the system powers up, you could find that your microcontroller device

get locked out from the debug connections after the program image is programmed. This

is because the debugger does not have enough time to connect to the device before the

sleep mode takes place (unless you can force the processor clock to run very slowly). This

could also prevent you from updating the program image in the flash, because that also

requires a debug connection.

For this case, you should consider adding a “safe mode” at the starting of the application

so that the device will not go into sleep mode, or at least, not immediately when the safe

mode is activated. Alternatively, the safe mode can force the application to use a sleep

mode that does not disconnect the debugger. Such safe mode can be implemented by

adding a simple status check on an input pin at start-up.

In some microcontroller devices, there are boot mode configurations and you can use that

to enable flash programming instead of using a safe mode. However, the “safe mode”

feature in the application is still useful for enabling debug operations.

19.5.3 Debug Interface and Low-Voltage Pins

Some microcontrollers can work at low voltage supply and this enables them to have very

low-power consumption. However, some debug adaptors are not designed for low-voltage

debug interface. As a result, you might need to increase the supply voltage for the

development board during software development, or to get a debug adaptor that can

operate at lower voltage.

Ultralow-Power Designs 527

19.6 Benchmarking of Low-Power Devices
19.6.1 Background of ULPBench�

Currently, most microcontroller vendors describe the low-power characteristic of their

products by quoting active current and idle current. However, as highlighted in the

beginning of Section 19.2, this is no longer enough for designers. As there were no

standardized rules of how active current should be measured, some of the quoted active

current from microcontroller vendors could be controversial because:

• The data can be obtained by running “while(1)”dthe instruction could be fetched from

a prefetch buffer and therefore no memory access activity in the flash and SRAM.

• The data can be obtained by running program code from SRAM, with the flash memory

turned off.

• The data can be obtained by running program with wait states for flash memory

enabled. This reduces the signal toggling and therefore reduces power.

• The test could be carried out with a voltage supply that is only suitable for labs envi-

ronment and is not suitable for real-world applications.

As a result, there is a need to come up a standardize way to demonstrate energy efficiency

in low-power microcontroller devices.

Although it is possible to use existing benchmark code like EEMBC� CoreMark� as a

reference for measuring power, the data processing complexity of CoreMark is somewhat

overkill for a lot of the ULP applications. On the other hand, Dhrystone is too small to

illustrate processing requirements and therefore is not suitable either.

There is also the need to demonstrate the sleep mode current. If the program execution is

too long, the active power will dominate the test result.

As a result, the EEMBC ULPBench workgroup was formed in 2012. The aim of the

work group is to create benchmark suites that are suitable for measuring energy efficiency

of low-power and ULP microcontroller devices, with a consistent and well-defined

method.

The ULPBench project is divided into multiple phases. The first phase focuses on the

energy efficiency of the processors inside the microcontroller, and is named ULPBench-

Core Profile (or ULPBench-CP). Currently, additional profiles are being discussed and

investigated in the EEMBC ULPBench workgroup.

19.6.2 Overview of the ULPBench-CP

The score of the ULBench-CP is to measure the energy efficiency of ULP microcontroller

devices, including 8-, 16-, and 32-bit devices. Unlike traditional benchmarks, the

528 Chapter 19

ULPBench needs a piece of hardware to measure the actual energy consumption by a

device. Therefore the ULPBench-CP has defined:

• A workload (in C language) that can be used on 8-, 16-, and 32-bit architectures,

• A reference energy measurement hardware, called the EnergyMonitor,

• AWindows-based GUI to access the measurement hardware and control the test process

and to display and compute the results.

In order to reflect the work load pattern of real-world applications, the workload executes

a workload once every second and enter sleep mode the rest of the time (Figure 19.5).

The measurement process spans 10 occurrences of the processing. In order to ensure the

data is accurate, 12 occurrences of the processing are needed and the software controlling

the test detects the middle 10 occurrences and uses them for calculation of benchmark

result.

The workload contains data processing functions including:

• Data processing of 8-, 16-, and 32-bit data types,

• Control functions (7-segment LCD),

• Sorting,

• String functions,

• Task scheduling.

Power

Time

Initialization

Workload
execution

1 second

Sleep

Measurement
Accumulative

energy

Time

Figure 19.5
Processor activities in ULPBench-CP execution.

Ultralow-Power Designs 529

A simple task scheduler is included as part of the workload, but no actual context

switching takes place because such operation is not supported by a number of 8-bit

microcontrollers targeting ULP applications.

On existing Cortex�-M0, Cortex-M0þ, Cortex-M3, and Cortex-M4 processors, the

execution time of the workload takes around 10e14 k clock cycles. So if you wish, you

can execute the workload with an on-chip 32-KHz crystal provided it has the required

accuracy (�50 ppm).

To support the measurement setup, EEMBC provides a reference hardware tool called

EnergyMonitor that you can buy from EEMBC Web site, and a software running on a

personal computer to collect the data from EnergyMonitor and compute the result. The

EnergyMonitor hardware is shown in Figure 19.6.

The Energy Monitor receives the power from the USB connector, and supplies the power

to the DUT (Device Under Test) using jumper connector (Figure 19.7).

Some software porting work is required to get the ULPBench-CP working on a

microcontroller. ARM� has already contributed a template for the Cortex-M processors,

but software developers need to add device-specific low-power feature support code, and

might need to port the timer code to use device-specific low-power timer instead of the

generic SysTick timer for best results. Also, some I/O control functions are defined in

ULPbench-CP to indicate that the system is indeed running ULPBench-CP correctly

(signal toggling can be observed with an oscilloscope). These functions also need to be

ported.

After the software porting work is done, we can then test the ULPBench-CP with the

ULPBench EnergyMonitor software. The measurement process is repeated a number of

Figure 19.6
EEMBC Energy Monitor.

530 Chapter 19

times before the score were computed. The result can then be optionally uploaded to the

EEMBC Web site for display. Figure 19.8 shows the ULPBench-CP test result of a

STM32L476, a microcontroller with Cortex-M4 with FPU processor, 1 MB on-chip flash

and 12 KB of SRAM, which has an impressive official score of 123.5 ULPMark�-CP.

Additional ULPBench-CP scores can be found on EEMBC Web site.1

Unlike traditional power measurement tools, the EnergyMonitor essentially measures the

charging time of a capacitor which supplies current to the device under test. Unlike ADC

sampling, this method provides higher accuracy by avoiding any error stemming from

current spikes between samples.

In order to make sure the test provides a fair and equitable comparison, the measurement

setup has a number of requirements:

• The supply voltage is 3 V.

• The wake-up timer must be accurate (within �50 ppm).

• The program code must run from the microcontroller’s flash memory (or NVM).

The benchmark result is represented as ULPMark-CP ¼ 1000/(median of 5 times average

energy per second for 10 ULPBench cycles). The energy is measure in microjoules.

EEMBC
Energy
Monitor

USB +3V

0V

DUT

Figure 19.7
ULPBench-CP test setup.

1 EEMBC ULPbench Web site: http://eembc.org/ulpbench/.

Ultralow-Power Designs 531

http://eembc.org/ulpbench/

19.7 Example of Using Low-Power Features on Freescale KL25Z
19.7.1 Objective

The aim of this test example is to generate a 1-Hz- period interrupt to output a message

via the UART interface, and have the processor put in low-power mode to reduce the

overall current as much as possible.

In this example, we assume that the timing of the wake-up event needs to be very

accurate. As a result, we use the external crystal for the clock source during operation.

19.7.2 Test Setup

The test is based on the Freescale Freedom board (FRDM-KL25Z). In this development

board, you can do a small modification so that you can measure the electric supply current

going into the microcontroller by connecting an ammeter across jumper J4 (Figure 19.9).

• If you are using REV-D of the FRDM-KL25Z, there is a solder shorter right under

jumper J4 that you need to cut out.

• If you are using REV-E of the FRDM-KL25Z, there are two resistors connected across

J4 and both are placed next to J4: a 0 U (R73) and a 10 U (R81). If you want to

measure the current using an ammeter, you should desolder both of them. Alternatively

you can remove just the 0-U resister and measure the current using a voltmeter.

Figure 19.8
ULPBench Energy Monitor GUI.

532 Chapter 19

After doing the modification, you can put the board back into normal operations again by

putting a jumper header on jumper J4. In case you want to find out more about the

differences between the REV D and REV E of the Freedom board, Erich Styger wrote a

very good blog about this which can be found in http://mcuoneclipse.com/2013/06/09/

frdm-kl25z-reve-board-arrived/.

19.7.3 Low-Power Modes on KL25Z

The KL25Z128VL microcontroller device supports a number of power modes, as shown in

Figure 19.10.

In this example, we use the VLPS (Very Low Power Stop) mode. Alternatively LLS (Low

Leakage Stop) could be used but the UARTwill be stopped during sleep. If the processor entered

sleep before the UART transmission completed, the output UART data could be corrupted.

The selection of the operation mode is handled by a unit called System Mode Controller (SMC).

19.7.4 Clocking Arrangement

The clock generation involved several components, as illustrated in Figure 19.11. This

included:

• System oscillatordThis can be configured for high-speed crystal operation or low-

power 32 KHz operation. On the Freescale Freedom Board, the system oscillator is

connected to an external 8-MHz crystal.

Figure 19.9
Jumper J4 on the FRDM-KL25z Board.

Ultralow-Power Designs 533

http://mcuoneclipse.com/2013/06/09/frdm-kl25z-reve-board-arrived/
http://mcuoneclipse.com/2013/06/09/frdm-kl25z-reve-board-arrived/

• Multipurpose Clock Generator (MCG)dThis unit contains the internal RC oscillators

(4 MHz and 32 KHz), a Frequency Locked Loop (FLL) and a Phase Locked Loop

(PLL). The FLL and PLL can utilize the clock generated from the System Oscillator.

• System Integration Module (SIM)dThis unit provides various clock multiplexing/

routing/prescaling options, as well as controls the clocks to peripherals.

• Power Management Controller (PMC)dThis unit contains the internal voltage regu-

lator, power on reset (POR), and low-voltage detect system. (Not used in this example.)

• Real Time Clock (RTC)dGenerate Timer interrupts and a 1-Hz clock. (Not used in this

example.)

Instead of using RTC for the 1-Hz interrupt generation, we use the LPTMR (Low-Power

Timer) because the external crystal is connected to an 8-MHz crystal. The RTC works best

with an external 32-KHz crystal.

Normal Run Normal WAIT
(WFI/WFE)

Normal STOP
(WFI/WFE)

VLPR
(Very Low Power

Run)

VLPW (Very Low
Power Wait)

VLPS (Very Low
Power Stop)

LLS (Low Leakage
Stop)

VLLS3 (Very Low
Leakage Stop3)

VLLS1 (Very Low
Leakage Stop1)

Sleep with
SLEEPDEEP = 0

Sleep with
SLEEPDEEP = 1Processor Running

Wake up with NVIC

Wake up with LLWU IRQ

VLLS0 (Very Low
Leakage Stop0)

Wake up with LLWU reset

Core & system clocks
limited to 4MHz, bus
clock & flash limited

to 1MHz

Core clock stopped &
flash in low power

state. System clocks
limited to 4MHz, bus
clock limited to 1MHz

All clocks to processor core stopped (SysTick
stopped) and use WIC to wake up. LVD (Low
Voltage Detection) protection on. By default

peripheral clocks are stopped.

All clocks to processor core stopped (SysTick
stopped) and use WIC to wake up. LVD

protection off and by default peripheral clocks
are stopped.

State retention power mode. Most peripherals
are in state retention mode (clock stopped)
but OSC, LLWU, LPTMR, RTC, CMP and

TSI can be used.

Similar to LLS, with SRAMs in retention state
and I/O state held.

Similar to VLLS3 but SRAM is off.

Similar to VLLS1 but CMP cannot be used,
and internal LPO (Low Power Oscillator) off

LLWU – Low Leakage Wakeup Unit

LPTMR – Low Power Timer

CMP - Comparator

OSC - Oscillator

RTC – Real Timer Clock

TSI – Touch Sensing Input

Figure 19.10
Power modes in KL25Z microcontrollers.

534 Chapter 19

To make things slightly more challenging, software developers also need to understand the

operation states of the MCG (Figure 19.12).

In our example, the system starts-up in FEI state, then switches the FBE state, and then

switches to BLPE state. The switching of the operation states are done inside the

“SystemInit()” function at start-up.

19.7.5 The Test Setup

The overview of the setup can be summarized as:

• MCG running in BLPE (Bypassed Low-Power External) state. External crystal oscil-

lator running at 8 MHz is used with PLL and FLL disabled and bypassed.

Figure 19.11
Clocking diagram from Freescale KL25 Subfamily Reference Manual (KL25P80M48SF0RM, rev3).

Ultralow-Power Designs 535

• For first step of our experiment, the microcontroller uses Normal Run and Normal Stop.

The system runs on 8-MHz clock frequency.

• Then we enhance the design to use Very Low-Power Run (VLPR) and Very Low-Power

Stop (VLPS) modes to further reduce the power.

• The wake-up source selected is the Low-Power Timer (LPTMR) module.

• UART0 is used and is configured to run at 38,400 bps.

Reset FEI
(FLL Engaged

Internal)

FEE
(FLL Engaged

External)

FBI
(FLL Bypassed

Internal – FLL on but
not used)

FBE
(FLL Bypassed

External – FLL on but
not used)

BLPI
(Bypassed Low Power
Internal – both FLL and

PLL are disabled)

BLPE
(Bypassed Low Power

External – both FLL and
PLL are disabled)

PBE (PLL Bypassed External
– PLL is on but is not used.
FLL is disable. Useful for

waiting for PLL lock)

PEE
(PLL Engaged External –

Use PLL for clock generation
and FLL disabled)

Stop

Any
state

Deep sleep

Wake up

Return to
previous state
(unless it is a

wake up reset)

Use External Crystal OscillatorUse Internal Crystal Oscillator

Figure 19.12
Multipurpose Clock Generator operating states.

536 Chapter 19

The setup of the MCG is easy. The control code is already included in the default.

"system_MKL25Z4.c". We only need to select the define option in this file:

#define DISABLE_WDOG 1

#define CLOCK_SETUP 2
/* Predefined clock setups

0 . Multipurpose Clock Generator (MCG) in FLL Engaged Internal (FEI) mode
Reference clock source for MCG module is the slow internal clock source
32.768kHz
Core clock = 41.94MHz, BusClock = 13.98MHz

1 . Multipurpose Clock Generator (MCG) in PLL Engaged External (PEE) mode
Reference clock source for MCG module is an external crystal 8MHz Core
clock = 48MHz, BusClock = 24MHz

2 . Multipurpose Clock Generator (MCG) in Bypassed Low Power External (BLPE)
mode
Core clock/Bus clock derived directly from an external crystal 8MHz with
no multiplication
Core clock = 8MHz, BusClock = 8MHz

*/

The code to get the system running is as follows. Please note that at the start of the test

program, a UART input function is called so that the test does not start until it has

received a character from the UART interface. This prevents the board from being

locked out completely by the low-power mode and allow the program flash to be

reprogrammed (see safe mode operation in 19.5.2).

Example code to program LPTMR to wake up the system at 1-Hz interval. Normal Run and
Normal STOP modes are used

#include <MKL25Z4.H>
#include "stdio.h"

void LPTimer_Config(void);
void Low_Power_Config(void);

// UART functions
extern void UART_config(void);
extern char UART_putc(char ch);
extern char UART_getc(void);
extern void UART_echo(void);

volatile int irq_count=0;

int main(void)
{

SystemCoreClockUpdate();

Continued

Ultralow-Power Designs 537

UART_config();

printf("Low Power Sleep test\n");
printf("Press ANY key to start .\n");
UART_getc();
printf("Continue.\n");

// Low power optimizations
Low_Power_Config();
LPTimer_Config();

// Enable Sleep-on-Exit
SCB->SCR j= SCB_SCR_SLEEPONEXIT_Msk;
while(1){

__DSB();// Use of memory barrier is recommended for portability
__WFI();
};

}
// --
// Configure Low Power Timer
// --
void LPTimer_Config(void)
{

SIM->SCGC5 j= SIM_SCGC5_LPTMR_MASK; // enable access to LPTMR
LPTMR0->CSR = 0; // Disable timer
LPTMR0->PSR = LPTMR_PSR_PRESCALE(8)j // Prescalar set to 512, OSCERCLK

LPTMR_PSR_PCS(3); // OSCERCLK
LPTMR0->CMR = 15625; // 8MHz / 512 / 15625 = 1Hz
// Clear pending interrupt if any
NVIC_ClearPendingIRQ(LPTimer_IRQn);
// Enable Timer in free running mode
LPTMR0->CSR = LPTMR_CSR_TIE_MASK j LPTMR_CSR_TEN_MASK j LPTMR_CSR_TCF_MASK;
// Enable NVIC
NVIC_EnableIRQ(LPTimer_IRQn);
return;

}
// --
// Low Power Timer interrupt handler
// --
void LPTimer_IRQHandler(void)
{

irq_count++;
printf ("[LPTimer_IRQHandler] %d\n", irq_count);
LPTMR0->CSR j= LPTMR_CSR_TCF_MASK;
return;

}
// --
// Low Power Configuration
// --

538 Chapter 19

void Low_Power_Config(void)
{

// Enable deep sleep mode
SCB->SCR j= SCB_SCR_SLEEPDEEP_Msk;
// Enable OSCERCLK in STOP mode
OSC0->CR j= OSC_CR_EREFSTEN_MASK;
// Need this for UART and Low Power Timer to continue
return;

}

Once this is working, the "void Low_Power_Config(void)" function is updated to include the

additional enhancement:

• To enable the use of VLPR and VLPS modes, we need to reduce the clock frequency of

the system from 8 MHz to a lower frequency at 4 MHz or lower. A frequency value of

1 MHz is selected.

• To save more power, the flash memory is turned off during sleep (this is referred as

Flash Doze feature in Freescale document).

• Turn off internal oscillator.

• Enable the very-low power modes by programming to the System Mode Controller

(SMC) module.

The modified “void Low_Power_Config(void)” function is as follows.

Modified “void Low_Power_Config(void)”
// --
// Low Power Configuration
// --
void Low_Power_Config(void)
{

// Enable deep sleep mode
SCB->SCR j= SCB_SCR_SLEEPDEEP_Msk;

// Enable OSCERCLK in STOP mode
OSC0->CR j= OSC_CR_EREFSTEN_MASK;
// Need this for UART and Low Power Timer to continue

// Switch system to run at 1MHz
SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(7)jSIM_CLKDIV1_OUTDIV4(7);
// Turn off flash during sleep (Flash Doze)
SIM->FCFG1 j= SIM_FCFG1_FLASHDOZE_MASK;

MCG->C2 j= MCG_C2_LP_MASK; // Low Power Select
//Controls whether the FLL or PLL is disabled in

Continued

Ultralow-Power Designs 539

//BLPI and BLPE modes. In FBE or PBE modes, setting this
//bit to 1 will transition the MCG into BLPE mode;
//in FBI mode, setting this bit to 1 will transition the MCG
//into BLPI mode. In any other MCG mode, LP bit has no affect.
//0 FLL or PLL is not disabled in bypass modes.
//1 FLL or PLL is disabled in bypass modes (lower power)

MCG->C2 &= wMCG_C2_HGO0_MASK;
// Controls the crystal oscillator mode of operation.
// See the Oscillator (OSC) chapter for more details.
// 0 Configure crystal oscillator for low-power operation.
// 1 Configure crystal oscillator for high-gain operation.
// Note: HGO0 of MCG->C2 might already be zero
// Turn off internal reference clock, as we are
// using external crystal

MCG->C1 &= wMCG_C1_IRCLKEN_MASK;

// Enable Very Low Power modes
SMC->PMPROT j= SMC_PMPROT_AVLP_MASK;
// Enable Very-Low-Power Run mode (VLPR)
// and Very-Low-Power Stop (VLPS)
SMC->PMCTRL = SMC_PMCTRL_RUNM(2) j // VLPR

SMC_PMCTRL_STOPM(2); // VLPS
printf ("Waiting to enter VLPR.\n");
while ((SMC->PMSTAT & 0x7F)!=0x04);
printf ("VLPR activated!\n");
return;

}

19.7.6 Measurement Results

After the test is created, several measurements were made (Table 19.4). Please note that

the measurements should be made without debugger connected. Note: Due to the

limitation of the multimeter used and other potential factors in the setup (e.g., potentially

activities of the onboard SDA debugger chip might have affected the debug operation

state), the results shown here might not be accurate.

The sleep current of 1.27 mA seems a bit high. With a CR2032 coin cell of 225 mAh, this

gives only 177 h of operations (just over 1 week). However, the KL25Z data sheet quotes

the power of using an external 4 MHz crystal adds around 228 mA electric current. Since

540 Chapter 19

we are using an 8-MHz crystal, the actual power used by the external crystal oscillator can

be quite significant. In addition, the 8-MHz clock routing paths to peripherals (e.g., clock

buffers and capacitance of clock lines) can also contribute to the higher power.

In order to double check how the system power can be further reduced, the test setup is

modified to use the internal 4-MHz RC oscillator. The “SystemInit()” function is edited to

add a new clock setup so that the system is Started with MCG unit in BLPI (Bypassed

Low Power Internal) mode. The processor and bus clocks are reduced to 1 MHz by the

clock dividers (Table 19.5).

To help investigate the power activities, a 10-U resistor can be used to connect along the

voltage supply connection and the voltage across the resistor can be measured with an

oscilloscope (Figure 19.13). However, due to the small electrical current in this test, the

result cannot be read from the graph accurately.

Assume that most of the time the microcontroller is sleeping (using 0.04 mA), this now

gives us 5500 h, or over 200 days of battery life from a single CR2032 battery.

Additional power saving could be possible by reducing the active cycles. For example, by

using interrupt-driven mechanism to output the text string into the UART, instead of

polling-based UART function, could help. However, an experimental trial of changing the

printf message to just output one character do not seems to be able to reduce the power

consumption. This potentially highlight that the majority of the power is not consumed by

the processor or the UART, but could be by other components inside the chip.

Table 19.4: Test results with 8-MHz clock source

Condition Current

Running the processor at 8 MHz without entering sleep 3.23 mA
Running the processor at 1 MHz without entering sleep
(Note: Oscillator still running at 8 MHz)

2.52 mA

Sleep current 1.27 mA

Table 19.5: Test results with 4-MHz internal

clock source

Condition Current

Run current 0.11 mA
Sleep current 0.04 mA

Ultralow-Power Designs 541

The active cycles can also be reduced by compiler optimizations and software

optimizations. Also, potential delay could also be resulted if some of the bus clock

frequency and memory clock speed are set too low. It is important to carefully investigate

the clock frequency requirements for each part of the design.

If the application is not using the UART interface, potentially we can run the system at a

much lower clock frequency. According to the datasheet, the electric current of the

oscillator can be reduced to w0.5 mA if using a 32 KHz. Also, with such arrangement, the

RTC can be used for the periodic 1-Hz interrupt generation instead of the Low-Power

Timer module.

Do not forget that we have not utilized all the low-power modes in the KL25Z design yet.

There are a number of other low-leakage power modes available and can further reduce

the idle/sleep current.

19.8 Example of Using Low-Power Feature on LPC1114
19.8.1 Overview of LPC1114FN28

While the LPC1114 product series is not the lowest power Cortex�-M0/Cortex-M0þ
microcontroller from NXP, it is an interesting product as it is available in DIP package. It

means even hobbyists can construct low-power circuit boards at home (e.g., on

breadboard). While there are plenty of other microcontroller development boards that can

plug onto breadboard, often those boards do not allow users to isolate the power of the

Figure 19.13
Measurement of power pattern.

542 Chapter 19

microcontroller from the power supply of the other components. So that adds to

complexity when creating simple low-power systems.

The LPC111x supports four power modes (Table 19.6).

The LPC1114FN28 device has an internal 12-MHz RC oscillator (trimmed), and a

programmable low-power watchdog oscillator. In addition, there is an external crystal

oscillator. The clock generation unit of the LPC111x is shown in Figure 19.14.

The power management of the LPC111x is controlled by a number of registers

(Table 19.7).

The details of these registers can be found in NXP LPC111x User Manual.

Table 19.6: Power modes in LPC111x

Power modes Descriptions

Run mode The microcontroller system in normal operation.
• Clocks to various parts of the microcontroller can be turned on/off using
System AHB clock control register (LPC_SYSCON->SYSAHBCLKCTRL)

• Clocks to several components including the processor can be divided to
lower frequency

• Several parts of the system (ADC, oscillator, PLL, etc.) can be powered down
using Power-down Configuration Register (LPC_SYSCON->PDRUNCFG)

Sleep mode The processor entered sleep mode with SLEEPDEEP bit in System Control
Register (SCB->SCR) cleared.
• Clock to the processor stopped
• Peripheral clock continues to run (based on LPC_SYSCON-
>SYSAHBCLKCTRL)

Deep sleep mode The processor entered sleep mode with DEEPSLEEP bit in System Control
Register (SCB->SCR) set to 1.
• Clock to the processor stopped
• Several parts of the system (flash, oscillator, PLL, etc.) can be powered down
using the Deep Sleep Configuration Register (LPC_SYSCON->PDSLEEPCFG)

• The microcontroller can be wake up from “start logic” feature on the I/O
port

• When wake up from deep sleep, value of Power-down Configuration Register
(LPC_SYSCON->PDRUNCFG) is updated from Wake-Up Configuration
Register (LPC_SYSCON->PDAWAKECFG)

Deep power down
mode

In this mode, most parts of the system are powered down. The status of the
processor and RAM is lost. However, data in four general purpose register
inside the Power Management Unit are retained. This mode is entered by
entering sleep mode with
• Deep sleep mode enabled (SLEEPDEEP bit in SCB->SCR set)
• DPDEN bit in the PCON register in the power management unit is set
The processor can be wake up by reset or by “start logic” feature on the I/O
port.

Ultralow-Power Designs 543

Figure 19.14
LPC111x clock generation unit. Image from LPC111x User Manual.

Table 19.7: Device-specific system configuration registers needed for deep sleep program

Register Symbol Descriptions

Power-down Configuration
Register

LPC_SYSCON->PDRUNCFG Power down control for
running mode.

Deep sleep mode Configuration
Register

LPC_SYSCON->PDSLEEPCFG Power down configuration to
be used when the Cortex�-M0
is in deep sleep.

Wake-up Configuration
Register

LPC_SYSCON->PDAWAKECFG Value to be copied to
LPC_SYSCON->PDRUNCFG
when the microcontroller wakes
up from deep sleep.

544 Chapter 19

19.8.2 First ExperimentdRunning at 12 MHz with Internal and External Crystal

In the first test, a small experiment is carried out to compare the power consumption when

running the system at 12 MHz, with internal and external crystals.

In the project, we set the CLOCK_SETUP macro in system_LPC11xx.c to 0. And handle all the

clock initialization in the main program code if needed. We added a C macro

USE_EXT_CRYSTAL to select between internal crystal and external crystal.

Simple test to compare between internal and external crystals

#include "LPC11xx.h"
#include "stdio.h"

/* Power down control bit definitions */
#define IRC_OUT_PD (0x1<<0)
#define IRC_PD (0x1<<1)
#define FLASH_PD (0x1<<2)
#define BOD_PD (0x1<<3)
#define ADC_PD (0x1<<4)
#define SYS_OSC_PD (0x1<<5)
#define WDT_OSC_PD (0x1<<6)
#define SYS_PLL_PD (0x1<<7)

//#define USE_EXT_CRYSTAL

// UART functions
extern void UART_config(void);
extern char UART_putc(char ch);
extern char UART_getc(void);
extern void UART_echo(void);

void Timer_Config(void);
void Clock_Config(void);
void Low_Power_Config(void);

volatile int irq_count=0;

int main(void)
{

// Initialize UART
UART_config();
printf("Sleep test\n");
printf("Press any key to start...");
UART_getc();
printf("Continue\n");

Clock_Config();
Low_Power_Config();
Timer_Config();

Continued

Ultralow-Power Designs 545

// Enable Sleep-on-Exit
SCB->SCR j= SCB_SCR_SLEEPONEXIT_Msk;

while(1){
__DSB();// Use of memory barrier is recommended for portability
__WFI();

};
}
// --
// Low Power Configuration
// --
void Low_Power_Config(void)
{

// To be added
return;

}
// --
// Clock Configuration
// --
void Clock_Config(void)
{
#ifdef USE_EXT_CRYSTAL

int i;
// Power Down Configuration Register
LPC_SYSCON->PDRUNCFG &= w(SYS_OSC_PD); // Power-up System Osc
LPC_SYSCON->SYSOSCCTRL = 0; // Osc not bypassed, 1-20Mhz range
for (i = 0; i < 200; i++) __NOP();

LPC_SYSCON->SYSPLLCLKSEL = 0x1; // System oscillator
LPC_SYSCON->SYSPLLCLKUEN = 0x01; // Update Clock Source
LPC_SYSCON->SYSPLLCLKUEN = 0x00; // Toggle Update Register
LPC_SYSCON->SYSPLLCLKUEN = 0x01;
while (!(LPC_SYSCON->SYSPLLCLKUEN & 0x01)); // Wait Until Updated

LPC_SYSCON->MAINCLKSEL = 0x1; // Select PLL input
LPC_SYSCON->MAINCLKUEN = 0x01; // Update MCLK Clock Source
LPC_SYSCON->MAINCLKUEN = 0x00; // Toggle Update Register
LPC_SYSCON->MAINCLKUEN = 0x01;
while (!(LPC_SYSCON->MAINCLKUEN & 0x01)); // Wait Until Updated

// Power down internal RC oscillator
LPC_SYSCON->PDRUNCFG j= IRC_PDjIRC_OUT_PD;

#endif
// Zero flash wait state for upto 20MHz
LPC_FLASHCTRL->FLASHCFG = (LPC_FLASHCTRL->FLASHCFG & 0xFFFFFFFC) j (0 & 0x3);

}

546 Chapter 19

// --
// Timer Configuration
// --
void Timer_Config(void)
{

// Use 16-bit timer 0
// Enable clock to 16-bit timer 0 (bit 7)
// Enable clock to IO configuration block (bit[16] of AHBCLOCK Control

register)
// and enable clock to GPIO (bit[6] of AHBCLOCK Control register
LPC_SYSCON->SYSAHBCLKCTRL j= (1<<7);

LPC_TMR16B0->TCR = 2; // Disable and reset timer
LPC_TMR16B0->TCR = 0; // Disable timer

// 12MHz setup
LPC_TMR16B0->PR = (10000-1);// Prescaler set to 9999 (TC increment every 10K

cycles)
LPC_TMR16B0->TC = 0; // Timer counter current value clear
LPC_TMR16B0->MR1 = 1200-1; // Match Register set to “1200 - 1”

// because System freq is 12 MHz,prescale reduce
to 1200Hz

// match occur once every second
LPC_TMR16B0->MCR = (1<<4)j(1<<3); // Reset & interrupt on MR1 match

LPC_SYSCON->SYSAHBCLKCTRL &= w((1<<16)j(1<<6)); // Remove clock from IOCON &
GPIO

LPC_TMR16B0->TCR = 1; // Enable
NVIC_EnableIRQ(TIMER_16_0_IRQn);
return;

}
// --
// Interrupt Handler
// --
void TIMER16_0_IRQHandler(void)
{

LPC_TMR16B0->IR = (1<<1); // Clear Interrupt request
irq_count++;
printf ("[Timer16B0 IRQ] %d\n", irq_count);
return;

}

Ultralow-Power Designs 547

After compiling and executing the program, some measurements are carried out

(Table 19.8).

From here, we can see that you can have lower power with an external crystal oscillator.

Of course, this result is device-specific and in general the result can be affected by many

factors like the crystal component being used and if there is any special low-power feature

for either oscillators.

19.8.3 Second ExperimentdRunning at Reduced Frequencies
of 1 MHz and 100 KHz

We can save a large portion of power by reducing the operation frequency. In the

LPC1114, we can do this by programming the System AHB clock divider

(LPC_SYSCON->SYSAHBCLKDIV). Please note this can have an impact to the timer’s

programming if we need to wake up the system at the same 1-Hz rate.

Most of the codes are similar from the previous example, with the addition of:

Additional code for void Clock_Config(void)
#ifdef SLOWER_TO_1MHZ

LPC_SYSCON->SYSAHBCLKDIV = 12;
#endif
#ifdef SLOWER_TO_100KHZ

LPC_SYSCON->SYSAHBCLKDIV = 120;
#endif

And the timer configuration code needs to deal with the new preprocessing macros.

Adjustment for void Timer_Config(void)
#ifdef SLOWER_TO_1MHZ

LPC_TMR16B0->PR = (10000-1);
// Prescaler set to 9999 (TC increment every 10K cycles)

LPC_TMR16B0->TC = 0; // Timer counter current value clear
LPC_TMR16B0->MR1 = 100-1; // Match Register set to "100 - 1"

// because System freq is 1 MHz, prescale reduce to 100Hz
// match occur once every second

Table 19.8: Comparison of using internal and external crystals for low-power design

With internal RC OSC With external crystal OSC

Run mode 3.3 mA 3.09 mA
Sleep current 2.22 mA 2.16 mA

548 Chapter 19

#else
#ifdef SLOWER_TO_100KHZ

LPC_TMR16B0->PR = (1000-1);
// Prescaler set to 999 (TC increment every 1K cycles)

LPC_TMR16B0->TC = 0; // Timer counter current value clear
LPC_TMR16B0->MR1= 100-1; // Match Register set to "100 - 1"

// because System freq is 100KHz MHz, prescale reduce to 100Hz
// match occur once every second

#else
// 12MHz setup
LPC_TMR16B0->PR = (10000-1);

// Prescaler set to 9999 (TC increment every 10K cycles)
LPC_TMR16B0->TC = 0; // Timer counter current value clear
LPC_TMR16B0->MR1= 1200-1; // Match Register set to “1200 - 1”

// because System freq is 12 MHz, prescale reduce to
1200Hz

// match occur once every second
#endif // end of not SLOWER_TO_100KHZ
#endif // end of not SLOWER_TO_1MHZ

After doing the changes, we can measure the result and compare to the previous 12-MHz

setup (Table 19.9). All results here are based on using of external 12-MHz crystal as

source.

Here, we can see that at low-clock frequencies (using clock divider or prescalar), the

reduction of power is not linear. So even the operating frequency is reduced by 10� from

1 MHz to 100 KHz, the active current reduction is only around 11%.

19.8.4 Additional Improvements

Some simple additional improvements can help. In the project you might have noticed that

we have an empty function call “void Low_Power_Config(void).” Here we add the addition

code to reduce the power further.

Table 19.9: Comparison of using different internal clock frequencies

12 MHz 1 MHz 100 KHz

Run mode 3.09 mA 1.29 mA 1.15 mA
Sleep current 2.16 mA 1.22 mA 1.14 mA

Ultralow-Power Designs 549

Additional code for void Clock_Config(void)
void Low_Power_Config(void)
{

// Power down BOD
LPC_SYSCON->PDRUNCFG j= BOD_PD;
/* Turn off all other peripheral dividers */
LPC_SYSCON->SSP0CLKDIV = 0;
LPC_SYSCON->SSP1CLKDIV = 0;
LPC_SYSCON->WDTCLKDIV = 0;
return;

}

After doing the changes, we can measure the result and compare to the previous 100 KHz

setup (Table 19.10). Again, all results here are based on using of external 12-MHz crystal

as source.

So these minor changes give approximately 10% reduction in power.

19.8.5 Using Deep Sleep on LPC1114

While we can get to just w1 mA operation, this is not good enough for some of the ULP

applications. You might notice that so far the deep sleep mode feature has not been

enabled in the previous examples. To use deep sleep mode, the program code quite a few

changes because of several restrictions on the LPC1114 deep sleep mode support:

• In deep sleep mode, the only available clock source is the watchdog oscillator. It is very

low power, but can have up to �40% tolerance of the clock frequency value.

• In deep sleep mode, the timer interrupt will not operate and it can only be wake up by

one of the Wake-Up interrupts.

There are a couple of other areas we need to take care of:

• Due to the inaccuracy of the clock source, it is not ideal for UART communication. As

an experiment, it is still usable by tuning the UART baud rate setting based on the

actual frequency, but this is not suitable for product production.

Table 19.10: Comparison of using different internal clock frequencies

100 KHz 100 KHz improved

Run mode 1.15 mA 1.04 mA
Sleep current 1.14 mA 1.02 mA

550 Chapter 19

• When the LPC1114 microcontroller is in deep sleep mode, it will not be able to be

wake up by a debugger and therefore could lock out the device from flash program

updates.

Note

Depending on the microcontroller product, there can be special boot mode(s) to disable
execution of application programmed in the flash memory. In the NXP LPC111x, port 0 bit 1
can be used in such situation. The NXP111x has an In-System Programming (ISP) feature to
allow the flash to be programmed using the boot loader and the serial port. By pulling bit 1
of port 0 to low at power up reset, the ISP program in the boot loader will be executed.
You can use the ISP feature to update flash, or connect the in-circuit debugger to the
microcontroller and update the flash.

Before using the deep sleep mode, we need to configure a number of registers as shown in

Table 19.7, and then program the System Control Register (SCB->SCR) to enable the

deep sleep mode. We also need to program the NVIC, timer, watchdog clock, and start

logic.

Start logic on the NXP LPC111x is triggered by I/O port activities. So we use the timer

match event output to drive an I/O port output, and then use this signal level to trigger the

wake up as shown in Figure 19.15.

16-bit timer #0

Port 0, bit 9

I/O pad

MAT1 (Match Output 1)

I/O Port 0

Pin multiplexing

I/O pin configuration
registers (IOCON)

Timer
match
event

Start logic
Wake up
InterruptCortex-M0

Wakeup

Figure 19.15
Deep sleep wake up mechanism used for LPC1114 example.

Ultralow-Power Designs 551

In this example, we are going to toggle pin 9 of port 0. The processor is put into sleep

mode most of the time, and woken up only when the 16-bit timer 0 reaches the required

value.

Deep sleep example

#include “LPC11xx.h”
#include “stdio.h”

/* Power down control bit definitions */
#define IRC_OUT_PD (0x1<<0)
#define IRC_PD (0x1<<1)
#define FLASH_PD (0x1<<2)
#define BOD_PD (0x1<<3)
#define ADC_PD (0x1<<4)
#define SYS_OSC_PD (0x1<<5)
#define WDT_OSC_PD (0x1<<6)
#define SYS_PLL_PD (0x1<<7)

// UART functions
extern void UART_config(void);
extern char UART_putc(char ch);
extern char UART_getc(void);
extern void UART_echo(void);
extern int uart_status_rxd(void);

void Timer_Config(void);
void Clock_Config(void);
void Low_Power_Config(void);

volatile int irq_count=0;

int main(void)
{

// Initialize UART
UART_config();
printf("Sleep test\n");
printf("Press any key to start...");
UART_getc();
printf("Continue\n");

Clock_Config();
Low_Power_Config();
Timer_Config();

// Enable Sleep-on-Exit
SCB->SCR j= SCB_SCR_SLEEPONEXIT_Msk;

552 Chapter 19

while(1){
__DSB();// Use of memory barrier is recommended for portability
__WFI();
};

}
// --
// Low Power Configuration
// --
void Low_Power_Config(void)
{

// Power down BOD
LPC_SYSCON->PDRUNCFG j= BOD_PD;
/* Turn off all other peripheral dividers */
LPC_SYSCON->SSP0CLKDIV = 0;
LPC_SYSCON->SSP1CLKDIV = 0;
LPC_SYSCON->WDTCLKDIV = 0;

/* Enable flash */
//LPC_SYSCON->PDRUNCFG &= w(IRC_OUT_PD j IRC_PD j FLASH_PD);
LPC_SYSCON->PDRUNCFG &= w(FLASH_PD);
// Power down IRC OSC and other unused components
LPC_SYSCON->PDRUNCFG j= (IRC_OUT_PD j IRC_PD j BOD_PD j ADC_PD j SYS_OSC_PD j

SYS_PLL_PD);

/* Copy current run mode power down configuration
to wake up configuration register so that
current configuration is restored at wakeup */

LPC_SYSCON->PDAWAKECFG = LPC_SYSCON->PDRUNCFG;

/* For deep sleep - retain power to flash, watchdog and reserved */
//LPC_SYSCON->PDSLEEPCFG = 0x000018B7; // WD osc on, BOD on
LPC_SYSCON->PDSLEEPCFG = 0x000018BF; // WD osc on, BOD off
//LPC_SYSCON->PDSLEEPCFG = 0x000018F7; // WD osc off, BOD on
//LPC_SYSCON->PDSLEEPCFG = 0x000018FF; // WD osc off, BOD off

// Enable deep sleep mode
SCB->SCR j= SCB_SCR_SLEEPDEEP_Msk;
return;

}
// --
// Clock Configuration
// --
void Clock_Config(void)
{

int i;
// In Deep sleep mode, the only clock you can get is Watchdog oscillator
LPC_SYSCON->PDRUNCFG &= w(1 << 6); // Power-up Watchdog Osc
// Select Watchdog freq and divider
// FREQSEL Fclkana

Continued

Ultralow-Power Designs 553

// 0x1 0.6MHz
// 0x2 1.05MHz
// 0x3 1.4MHz
// 0x4 1.75MHz
// 0x5 2.1MHz
// 0x6 2.4MHz
// 0x7 2.7MHz
// 0x8 3.0MHz
// 0x9 3.25MHz
// 0xA 3.5MHz
// 0xB 3.75MHz
// 0xC 4.0MHz
// 0xD 4.2MHz
// 0xE 4.4MHz
// 0xF 4.6MHz
// DIVSEL
// wdt_osc_clk = Fclkana/ (2 x (1 + DIVSEL))
// 0x0 1/2
// 0x1 1/4
// 0x1F 1/64

#define WDT_FREQSEL 0x6
#define WDT_DIVSEL 0x0

LPC_SYSCON->WDTOSCCTRL = (WDT_FREQSEL <<5)j(WDT_DIVSEL<<0);
for (i = 0; i < 200; i++) __NOP();

LPC_SYSCON->MAINCLKSEL = 0x2; // Select Watchdog Osc
LPC_SYSCON->MAINCLKUEN = 0x01; // Update MCLK Clock Source
LPC_SYSCON->MAINCLKUEN = 0x00; // Toggle Update Register
LPC_SYSCON->MAINCLKUEN = 0x01;
while (!(LPC_SYSCON->MAINCLKUEN & 0x01)); // Wait Until Updated

// Main clock Frequency =
// 2.4MHz / 2 = 1.2MHz

// Need to reprogram UART!
// Enable access to divisor latch
// bit[7] - DLAB (Divisor Latch Access Bit)
// bit[1:0] - Word length (0= 5bits, 1= 6bits, 2= 7bits, 3= 8bits)
LPC_UART->LCR = (1<<7) j 3;

// Baud rate 38400, system clock 1.2MHz
// PCLK / Baud Rate / 16 = 1.953 = (256 x DLM + DLL) x (1 + DivAddVal/MulVal)
// DLM = 0
// DLL = 1
// MulVal = 15
// DivAddVal = 13
// 1 * (1 + 13/15) = 1.8666
LPC_UART->DLM = 0;
LPC_UART->DLL = 1;
LPC_UART->FDR = (15 << 4) j (13 << 0);

554 Chapter 19

LPC_UART->LCR = 3;

// Interrupt Disable (IER can only be programmed when DLAB = 0)
// bit[0] - RBR (Receive Data Available Enable)
// bit[1] - THRE (Transmit Enable)
// bit[2] - RX Line (Receive Line Interrupt Enable)
// bit[8] - ABEOIntEn (auto band interrupt)
// bit[9] - ABTOIntEn (auto band timeout interrupt)
LPC_UART->IER = 0;

// Wait until TX buffer is empty
while (((LPC_UART->LSR >> 6) & 0x1) == 0);
// Drain RX buffer
while (uart_status_rxd()!=0) UART_getc();

LPC_SYSCON->SYSAHBCLKDIV = 12; // Divide processor system clock to 100KHz
// Zero flash wait state for upto 20MHz
LPC_FLASHCTRL->FLASHCFG = (LPC_FLASHCTRL->FLASHCFG & 0xFFFFFFFC) j (0 & 0x3);

}
// --
// Timer Configuration
// --
void Timer_Config(void)
{

// Use 16-bit timer 0
// Enable clock to 16-bit timer 0 (bit 7)
// Enable clock to IO configuration block (bit[16] of AHBCLOCK Control

register)
// and enable clock to GPIO (bit[6] of AHBCLOCK Control register

LPC_SYSCON->SYSAHBCLKCTRL j= (1<<7) j (1<<16) j (1<<6);

LPC_TMR16B0->TCR = 2; // Disable and reset timer
LPC_TMR16B0->TCR = 0; // Disable timer
// Clock running at 100KHz (1.2MHz / 12)
LPC_TMR16B0->PR = (1000-1); // (TC increment every 10K cycles)
LPC_TMR16B0->TC = 0; // Timer counter current value clear
LPC_TMR16B0->MR1 = 100-1; // Match Register set to "1200 - 1"

// because System freq is 1 MHz, prescale reduce to 100Hz
// match occur once every second

// Cannot wake up from timer interrupt, use timer to trigger
// pin and route it to wakeup interrupt
LPC_TMR16B0->MCR = (1<<4)j(0<<3); // Reset on MR1 match
LPC_TMR16B0->EMR = (0x2<<6); // Enable match output MAT1
LPC_IOCON->PIO0_9= (2<<0); // Set PIO0_9 to MAT1 output function

/* Use port0_9 as wakeup source, i/o pin */
LPC_IOCON->PIO0_9 = (2<<0); // Function set to MAT1

Continued

Ultralow-Power Designs 555

/* Only edge trigger. Activation polarity on P0.9 is rising edge. */
LPC_SYSCON->STARTAPRP0 = LPC_SYSCON->STARTAPRP0 j (1<<9);
/* Clear all wakeup source */
LPC_SYSCON->STARTRSRP0CLR = 0xFFFFFFFF;
/* Enable Port 0.9 as wakeup source. */
LPC_SYSCON->STARTERP0 = 1<<9;

NVIC_ClearPendingIRQ(WAKEUP9_IRQn);
NVIC_EnableIRQ(WAKEUP9_IRQn); // Enable wake up handler

LPC_SYSCON->SYSAHBCLKCTRL &= w((1<<16)j(1<<6)); // Remove clock from IOCON &
GPIO

LPC_TMR16B0->TCR = 1; // Enable
NVIC_EnableIRQ(TIMER_16_0_IRQn);
return;

}
// --
// Interrupt Handler
// --
void WAKEUP_IRQHandler(void)
{

unsigned int regVal;
// Get Start logic status register 0
regVal = LPC_SYSCON->STARTSRP0;
if (regVal != 0)
{ // Clear status using Start logic reset register 0
LPC_SYSCON->STARTRSRP0CLR = regVal;
}
/* Clear the timer match output to 0 */
LPC_TMR16B0->EMR = LPC_TMR16B0->EMR & w(1<<1);
irq_count++;
printf ("[WAKEUP IRQ] %d\n", irq_count);
return;

}

The result is very encouraging (Table 19.11 and Figure 19.16).

To get a better view of the result, we connect a 10-U resistor in series with the voltage

supply of the microcontroller and measure the voltage across. The waveform obtained is

shown in Figure 19.16.

Although there are some limitations for the deep sleep mode in LCP1114, if the system

design does not have to wake up at a precise time interval, you can still utilize the deep

556 Chapter 19

sleep mode to get very low idle current. After the system woke up, you can optionally

turn on and switch to an alternate clock source (e.g., external crystal for higher

frequency accuracy) for the data processing, and switch that back off before returning

to sleep.

Figure 19.16
Test result using deep sleep mode.

Table 19.11: Result of using deep sleep mode

1.2 MHz with watchdog

oscillator

Run mode 0.54 mA
Sleep current 0.04 mA

Ultralow-Power Designs 557

CHAPTER 20

Programming with Embedded OS

20.1 Introduction
20.1.1 Background

In Chapter 10 we covered the hardware features in the Cortex�-M0 and Cortex-M0þ
processors related to OS operations:

• Banked stack pointers (Main Stack Pointer and Process Stack Pointer)

• The SVCall and PendSV exceptions and the SVC instruction

• SysTick timer

We have also covered the concept of context switching, and how it can be done. In this

chapter, we will cover examples of using various features in a typical embedded OS called

RTX (Real-Time eXecutive) kernel.

Before we start going into technical details of how to use an embedded OS, let us first

revisit some of the general concepts of OSs in embedded applications.

20.1.2 Embedded OS and RTOS

There are many types of OSs in the world. Most of you might already be very familiar

with OS for personal computers. For embedded systems, there are also a range of OSs

available. In general, an embedded OS can be anything from a simple task scheduler to a

fully-featured OS like Linux. Many of the OS running on small microcontrollers only

provide task scheduling and intertask communications. On these systems, you usually

would not find any fancy graphic user interface or a file system. Some of them might

provide additional features such as a TCP/IP stack.

Some of the embedded OS are called Real-Time Operating Systems (RTOSs), which is a

subset of embedded OS. What RTOS means is that when a certain event occurs, the design

of the OS can ensure that the OS responds within a defined period of time, providing that

the software developer sets up the system properly (e.g., task priorities). In addition,

typically an RTOS provides a very fast context switching time.

Unlike Cortex-A processors, Cortex-M processors cannot run a full-feature Linux system

because there is no virtual address support. In Cortex-A processors, a Memory

Management Unit (MMU) is available for remapping logical addresses to physical

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00020-5

Copyright © 2015 Elsevier Inc. All rights reserved. 559

http://dx.doi.org/10.1016/B978-0-12-803277-0.00020-5

addresses, which is required for Linux operations. Cortex-M processors have a Memory

Protection Unit (MPU), which does not handle address remapping. However, some

operations related to MMU features can result in significant latency and therefore most

systems running Linux do not guarantee a system response time. In Cortex-M processor

systems, the interrupt latency is low and the MPU operations do not introduce additional

delay, which makes Cortex-M processors ideal for many real-time applications.

20.1.3 Why Use an Embedded OS?

When the complexity of applications increase, the application code has to handle more

and more tasks in parallel and it is more and more difficult to ensure such applications run

smoothly without an embedded OS. An embedded OS divides the available CPU

processing time into a number of time slots and allocates different tasks to the time slots.

Since the switching of tasks can occur 100 times or more per second, it appears to the

application that the tasks are running simultaneously.

Many embedded applications do not require an OS. For example, if the applications do not

have to handle many tasks in parallel, or if the additional tasks are relatively short so they

can be processed inside interrupt handlers, the use of an embedded OS is not required. For

simple applications, use of an OS could result in unnecessary overhead. For example, extra

program size and RAM size are required by the OS, and the OS itself also requires a small

amount of processing time. On the other hand, if an application has a number of parallel

tasks and requires a fast response time for each task switch, then using an embedded OS

can be very important.

An embedded OS also requires hardware resources. For example, most embedded OSs

require a timer to generate an interrupt so that the OS can perform task scheduling and

system management. On the Cortex-M processors, the SysTick timer is designed for this

purpose and is supported by many RTOS. An embedded OS might also utilize various OS

features on the Cortex-M processors such as separate stack pointers for kernel and threads,

SVC and PendSV.

20.1.4 Role of CMSIS-RTOS

CMSIS-RTOS is one of the projects inside the Cortex Microcontroller Software Interface

Standard development. CMSIS-RTOS is an API specification that enables middleware to

be designed that works with multiple RTOS products. The CMSIS-RTOS itself is not a

product but companies can build an RTOS that is based on CMSIS-RTOS APIs, or add a

wrapper layer on top of their own OS APIs to do the same things.

Many middleware products are quite complex; many of them might need to utilize task

scheduling features in OS to work. For example, a TCP/IP stack might run as a task

560 Chapter 20

inside a multitasking system and might need to spawn out additional child tasks when

certain service requests are received. Traditionally, middleware includes an OS

emulation layer (Figure 20.1) that a software integrator needs to port when using a

different OS.

The porting of the OS emulation layer creates additional work for software developers, or

sometimes the middleware vendors, and can increase project risks because the porting

might not be straightforward.

CMSIS-RTOS was created to solve this issue. It can be implemented as an additional set

of API or a wrapper for existing OS APIs. Since the API is standardized, middleware can

be developed based on this API and the product should, in theory, be able to work with

any embedded OS that supports CMSIS-RTOS (Figure 20.2).

Middleware
#1

Middleware
#2

Application
code

RTOS

OS API (vendor specific)

OS emulation
layer

OS emulation
layer

Figure 20.1
The need for OS emulation layer for middleware components.

Middleware
#1

(with CMSIS-RTOS)
Application code

RTOS

CMSIS-RTOS API (standardized)Native OS
API (vendor

specific)

Middleware
#2

(with CMSIS-RTOS)

Figure 20.2
CMSIS-RTOS avoids the need for OS emulation layer for each middleware component.

Programming with Embedded OS 561

The RTOS products can still have their own native API interface and application code can

still use those directly for additional features or for higher performance. This is good news

for application developers because it saves a lot of time in porting middleware and reduces

project risks. It is also good news for middleware vendors because it allows their products

to work with more OSs.

The CMSIS-RTOS also benefits RTOS vendors: As the amount of middleware that works

with CMSIS-RTOS increases, having CMSIS-RTOS support in an embedded OS enables the

OS product to work with more middleware. Also, as software in embedded systems

increases in complexity and time-to-market becomes more important, the porting of OS

emulation layers for middleware is no longer feasible for some projects because of the extra

time needed and the associated project risk. CMSIS-RTOS enables RTOS products to reach

these markets, which previously could only be covered by a few software platform solutions.

20.1.5 About the Keil® RTX Kernel

There are a number of embedded OSs available for the Cortex-M processors. As an

example we will look at the Keil RTX. The OS APIs in RTX are based on the

CMSIS-RTOS API. Therefore, applications that are based on RTX can also be used in

other RTOS environment provided the RTOS supports CMSIS-RTOS APIs.

The Keil RTX Real-Time Kernel is a royalty-free RTOS targeted for microcontroller

applications. The CMSIS package can be downloaded from www.arm.com/CMSIS. The

RTX libraries and source files are included in the CMSIS-PACK package. So when the

CMSIS pack for Keil MDK is installed, the RTX is also included.

The RTX in the CMSIS package includes source code and precompiled libraries for ARM

tool chains, gcc, and IAR EWARM. The precompiled libraries support little endian as well

as big endian (Table 20.1).

Since May 2012, the RTX Kernel has become open sourced. This means you can freely

use and redistribute the RTX kernel source code under the conditions described in the

license document in the CMSIS installation.

Table 20.1: Precompiled libraries for RTX kernel in CMSIS-CORE version 4.2

Processor Endian

ARM tool chains

(Keil® MDK/ARM DS-5) gcc IAR EWARM

Cortex�-M0/
Cortex-M0+

Little Endian RTX_CM0.lib libRTX_CM0.a RTX_CM0.a
Big Endian RTX_CM0_B.lib libRTX_CM0_B.a RTX_CM0_B.a

Cortex-M3 Little Endian RTX_CM3.lib libRTX_CM3.a RTX_CM3.a
Big Endian RTX_CM3_B.lib libRTX_CM3_B.a RTX_CM3_B.a

Cortex-M4 Little Endian RTX_CM4.lib libRTX_CM4.a RTX_CM4.a
Big Endian RTX_CM4_B.lib libRTX_CM4_B.a RTX_CM4_B.a

562 Chapter 20

http://www.arm.com/CMSIS

The RTX kernel is supported on all Cortex-M processors in addition to traditional ARM

processors such as ARM7 and ARM9. It has the following features:

• Flexible scheduler: supports pre-emptive, round-robin, and collaborative scheduling

schemes

• Supports mailboxes, events (up to 16 per thread), semaphores, mutex, and timers

• Unlimited number of defined threads, with maximum of 250 active threads at a time

• Up to 254 thread priority levels

• Support for multithreading and thread-safe operations

• Kernel aware debug support in Keil MDK

• Fast context switching time

• Small memory footprint (less than 4 KB for Cortex-M version, less than 5 KB for

ARM7/9)

In addition, the Cortex-M version of RTX kernel has the following features:

• SysTick timer support

• No interrupt lock out in Cortex-M versions (the OS do not need to disable the interrupts

for any OS operations)

ARM also has a range of middleware (part of the Keil MDK Professional) including file

system, USB host and device library, TCP/IP networking suite, CAN interface library, and

GUI library. These middleware are designed to work seamlessly with the RTX kernel. The

RTX kernel can also work with third-parties software products such as communication

protocol stacks, data processing codecs, and other middleware.

20.1.6 Setting Up a Simple RTX Example with Keil MDK

The following examples are based on the Keil MDK-ARM development suite 5.12 and

CMSIS-RTOS RTX, using the Freescale Freedom FRDM-KL25Z board.

In the first example, we will look at a minimal setup with two threads: main() and a blinky

thread. The threads each toggle an LED on the development board. To set up the first

project, we use the precompiled version of CMSIS-RTOS RTX (library file RTX_CM0.lib)

to simplify the compilation. When creating a new project, the Keil RTX is selected as

shown in Figure 20.3.

After including the Keil RTX software component in the project, we would see a project

hierarchy as shown in Figure 20.4. The Keil RTX option added the following files to the

project.

• RTX_CM0.lib (the precompiled version of the Keil RTX)

• RTX_Conf_CM.c (a configuration file for various settings in the RTX kernel)

The main application file “blinky.c” is very simple. The LED control functions are moved

to a separate file “led_funcs.c”.

Programming with Embedded OS 563

Figure 20.3
Add Keil� RTX in the project in the Manage Run-Time Environment dialog.

Figure 20.4
Keil RTX software component option adds additional files to the project.

564 Chapter 20

Blinky.c with RTXdtwo threads running in parallel toggling the Red
and Green LED on board

#include <MKL25Z4.H>
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS
// System runs at 48MHz
// LED #0, #1 are port B, LED #2 is port D
extern void LED_Config(void);
extern void LED_Set(void);
extern void LED_Clear(void);
extern __INLINE void LED_On(uint32_t led);
extern __INLINE void LED_Off(uint32_t led);

/* Thread IDs */
osThreadId t_blinky; // Declare a thread ID for blinky
/* Function declaration */
void blinky(void const *argument); // Thread

// --
// Blinky
void blinky(void const *argument) {

while(1) {
LED_On(1); // Green LED on
osDelay(500); // delay 500 msec
LED_Off(1); // Green LED off
osDelay(500); // delay 500 msec
} // end while

} // end of blinky

// define blinky as thread function
osThreadDef(blinky, osPriorityNormal, 1, 0);

// --
int main(void)
{

SystemCoreClockUpdate();

// Configure LED outputs
LED_Config();

// Create a task "blinky" and assign thread ID to t_blinky
t_blinky = osThreadCreate(osThread(blinky), NULL);

while(1){
LED_On(0); // Red LED on
osDelay(200); // delay 200 msec
LED_Off(0); // Red LED off
osDelay(200); // delay 200 msec
};

}

The blinky program has the following two threads:

• main()dstart second thread blinky and toggling the red LED

• blinky()dtoggling the green LED

Before we start to compile the program, we need to edit a few settings:

• Clock frequency configuration in system_MKL25Z4.cdset the CLOCK_SETUP macro to 1 so

that the processor runs at 48 MHz. This is optional, but if the clock frequency of the

processor is different, you should update the clock frequency setting in the RTX as

well.

Figure 20.5
RTX Configuration settings display using Configuration Wizard.

566 Chapter 20

• RTX kernel configuration in RTX_Conf_CM.cdThis file contains various settings

regarding RTX operations, see below.

• Project’s debug settingdselect CMSIS-DAP and select Serial Wire debug protocol.

For RTX_Conf_CM.c, you could edit the C file directly in the Text Editor in the mVision IDE.

But to make things easier you can edit the settings by clicking on the Configuration

Wizard tab and edit the settings using the GUI, as shown in Figure 20.5.

As the system clock frequency is set to 48 MHz, and then we edited the RTOS Kernel

Timer input clock frequency to be 48 MHz as well.

After the configuration steps are done, we can then compile the project, download the

application to the board and test it. If everything is set up properly, you should see that the

LEDs on the microcontroller board start flashing with red and green colors at different

speed.

20.2 Overview of the RTX Kernel
20.2.1 Thread

In CMSIS-RTOS, each of the concurrent (parallel processing) programs (i.e., each piece of

code to be scheduled and executed by the OS) is called a “thread.” In typical computer

science prospective, a thread is a component inside a task. For example, in advanced

computing systems, an application task can contain multiple threads, and could also spawn

out additional threads during runtime. However, in simple scenarios, you can also have a

task execute as a thread.

Each thread has a programmable priority level. In the CMSIS-RTOS the thread’s priority

is defined using an enumeration type called osPriority, which maps into signed numerical

priority levels that are predefined in each RTOS implementation. For example, for the

RTX implementation the osPriority is defined in cmsis_os.h as:

enum osPriority {
osPriorityIdle = -3,
osPriorityLow = -2,
osPriorityBelowNormal = -1,
osPriorityNormal = 0,
osPriorityAboveNormal = +1,
osPriorityHigh = +2,
osPriorityRealtime = +3,
osPriorityError = 0x84

}

Programming with Embedded OS 567

Note that the thread priority-level arrangement is completely separated from interrupt

priority.

In the RTX environment, each thread can be in one of the following states (see Table 20.2).

The thread state transition diagram is shown in Figure 20.6.

In a simple single-core processor system, there can be only one thread in “running” state

at a time.

Unlike some other RTOS, the “main()” can be one of the threads, dependent on the actual

implementation of CMSIS-RTOS compliant RTOS. From execution of “main(),” additional

Table 20.2: Thread states in RTX kernel

State Description

RUNNING The thread is currently running.
READY The thread is in the queue of threads which are ready to

run (waiting for a time slot). When the current running
thread is completed, the RTX will select the next highest
priority thread in the ready queue and start it.

WAITING The thread has previously executed a function that indicates
it is waiting for a delay request to complete or an event
(signal/semaphore/mailbox/etc) from another thread. It can
switch from Waiting to Ready/Running (depending on task
priority) when the specified event has occurred.

INACTIVE The thread has not been started or the thread has been
terminated. A terminated task can be recreated.

Running

WaitingReady

Inactive

Create Terminate

Event occurred

Pre-emption
(Context

switching)

Pre-emption
Context switching

Event
occurred

Wait
(wait function

executed)

TerminateTerminate
Thread
Inactive

Thread
Active

Create

Figure 20.6
States of threads in CMSIS-RTOS.

568 Chapter 20

threads can be created. If the “main()” thread is not needed at some later stage, then we

can execute a wait function to put it in Waiting state or even terminate it to prevent it from

taking up execution time.

CMSIS-RTOS allows threads to execute in privileged state or unprivileged state. For an

RTX implementation, please refer to the OS_RUNPRIV parameter in “RTX_Conf_CM.c”

(Table 20.3). Please note that with the current RTX implementation, if threads are

configured to run in unprivileged state, the “main()” will also start in unprivileged

state. You can extend the SVC Handler service to support operations that require

privileged state (e.g., access to NVIC or any registers in the System Control

Space, SCS), see Section 20.2.13.

20.2.2 RTX Configurations

In Figure 20.5 we can see that there are a number of configuration options available in the

RTX_Conf_CM.c. These options are listed in Table 20.3. Please note that:

• When editing the stack size options in the Text Editor, the stack size unit is words, and

the unit used in the Configuration Wizard is bytes.

• Stack size options need to be a multiple of 8 bytes.

20.2.3 A Closer Look at the First Example

In the blinky example in 20.1.6, we have the following code.

/* Thread IDs */
osThreadId t_blinky; // Declare a thread ID for blinky
/* Function declaration */
void blinky(void const *argument); // Thread.

For each thread, there is an associated ID value with the data type osThreadId. This ID

value is assigned when the thread is created and is needed for intertask communication,

which will be demonstrated later. If no intertask communication is required, then an ID is

not necessary.

To create a new thread, we used the function osThreadCreate. Inside the main(), we create

the blinky thread and assign the thread ID:

// Create a task "blinky" and assign thread ID to t_blinky
t_blinky = osThreadCreate(osThread(blinky), NULL);

Programming with Embedded OS 569

Table 20.3: CMSIS-RTOS RTX options in RTX_Conf_CM.c

Parameter Descriptions Default value

OS_TASKCNT Number of concurrent running threads <1e250>:
Defines max number of threads that will run at the
same time.

6

OS_STKSIZE Default Thread stack size [bytes] <64e4096> (needs
to be a multiple of 8). It is used if the “osThreadDef”
statement does not specify stack size (stacksz set to 0).

200 (50 words)

OS_MAINSTKSIZE Main Thread stack size [bytes] <64e4096> (needs to
be a multiple of 8).

200 (50 words)

OS_PRIVCNT Number of threads with user-provided stack size <0
e250>

0

OS_PRIVSTKSIZE Total combined stack size [bytes] for threads with
user-provided stack size <0e4096> (needs to be a
multiple of 8).

0 (0 words)

OS_STKCHECK Enable check for stack overflow for threads. Note that
additional code reduces the Kernel performance.

1

OS_RUNPRIV Processor mode for thread execution: 0 ¼ Unprivileged
mode, 1 ¼ privileged mode.

0

OS_SYSTICK Use Cortex�-M SysTick timer as RTX Kernel Timer:
Set to 1 to use Cortex-M SysTick timer as RTX Kernel
Timer.

1

OS_CLOCK RTOS Kernel Timer input clock frequency
[Hz] <1e1000000000> Typically this is the same as
the processor clock frequency if SysTick is used.

12000000 (12 MHz)

OS_TICK RTX Timer tick interval value [us] <1e1000000>
Defines the OS Timer tick interval.

1000 (1 ms)

OS_ROBIN Enables Round-Robin Thread switching:
Set to 1 to enable Round-Robin Thread switching

1

OS_ROBINTOUT Round-Robin Timeout [ticks] <1e1000>
(valid if OS_ROBIN is 1)

5

OS_TIMERS Enables user Timers 0
OS_TIMERPRIO Timer Thread Priority (valid if OS_TIMERS is 1)

1. Low
2. Below normal
3. Normal
4. Above normal
5. High
6. Realtime (highest)

5

OS_TIMERSTKSZ Timer Thread stack size [bytes] <64e4096>
(needs to be a multiple of 8).

200 (50 words)

OS_TIMERCBQS Timer Callback Queue sizednumber of concurrent
active timer callback functions.

4

OS_FIFOSZ ISR FIFO Queue size (4 ¼ 4 entries. Can be 4, 8, 12,
16, 24, 32, 48, 64, 96). ISR functions store requests to
this buffer when they are called from the interrupt
handler.

16

570 Chapter 20

In some cases it is not necessary to keep track of the thread ID. For example, in this

simple blinky code we do not have to use the thread ID in the rest of the program so we

could have created the thread using the following code:

// Create a task "blinky" and assign thread ID to t_blinky
osThreadCreate(osThread(blinky), NULL);

However, if we want to use some of the task management features on this thread later on,

for example, to change its priority, then the thread ID would be needed.

For each thread (apart from main()), we also need to declare the function as a thread

using osThreadDef. You can define the priority of the thread using osThreadDef. During

runtime, the priority of a thread can also be changed dynamically afterward using

CMSIS-RTOS API.

In the RTX, the main() function is a thread and the RTX kernel is started before

entering main(). In other CMSIS-RTOS implementations, it is possible that the OS

kernel does not start when the processor enter the “main()” program. In such cases you

will need to start the OS kernel specifically. CMSIS-RTOS provides a predefined

constant called osFeature_MainThread to indicate if thread execution starts with the

function “main().” If this is 1, then the OS kernel starts with “main().”

For example, you can use the following code to start the OS kernel conditionally:

int main(void)
{

.

#if(osFeature_MainThread==0)
if(osKernelInitialize()! = osOK) { // Initialize OS Kernel explicity e not

required in RTX
// exit with an error message
}
if (!osKernelRunning()) {

if (osKernelStart() ! = osOK) { // Start the OS kernel and
begin thread switching
// exit with an error message.

}
}

#endif

.

Programming with Embedded OS 571

or

int main(void)
{
.

if (osFeature_MainThread==0) {
if (osKernelInitialize() != osOK) { // Initialize OS Kernel explicity e

not required in RTX

// exit with an error message.
}

if (!osKernelRunning()) {
if (osKernelStart() != osOK) { // Start the OS kernel and begin

thread switching
// exit with an error message.
}

}
}
.

Table 20.4 shows the APIs for kernel management.

When We Created the blinky Thread, a Number of Macros Are Used

The osThread(name) macro is used in the example for accessing a Thread definition. For

example, when a function’s input parameter needs to be a Thread (e.g., blinky), then we

use osThread(blinky) to specify that the parameter is a Thread.

In this example, we also used a macro called osThreadDef(name, priority, instances,

stacksz). The macro creates a Thread definition with the specified function, priority level,

and stack size requirements of the thread. If the stack size requirement is set to 0, the

default stack size is used, as defined by OS_STKSIZE in RTX_Config_CM.c.

The following table (Table 20.5) lists some of the commonly used functions for OS kernel

management and Thread management.

Table 20.4: CMSIS-RTOS functions for OS kernel Management

Return type Function Description

osStatus osKernelInitialize(void) Initialize the RTOS kernel for creating objects
osStatus osKernelStart(void) Start the RTOS kernel
int osKernelRunning (void) Check if the RTOS kernel is already started:

Returns 0 if the RTOS is not started. Returns 1 if started.
uint32_t osKernelSysTick(void) Get the RTOS kernel system timer counter. The value is a

rolling 32-bit counter that is typically composed of the
kernel system interrupt timer value and a counter that
counts these interrupts.

572 Chapter 20

Some of these functions use an enumeration type called osStatus. The definition of the

osStatus is listed in Table 20.6. Most of the functions will only be able to return a subset

of these enumerations.

20.2.4 Interthread Communciation Overview

In most applications with RTOS, there can be a lot of interactions between threads. Instead

of using shared data and polling loops to check the status of other tasks, or passing

information, we should use the interthread communication features provided in the OS to

Table 20.5: CMSIS-RTOS functions for Thread Management

Return type Function Description

osThreadID osThreadCreate(osThreadDef_t
*thread_def, void *argument)

Create a thread and add it to Active Threads and set it
to state READY.

osThreadID osThreadGetId(void) Return the thread ID of the current running thread.
osStatus osThreadTerminate

(osThreadId thread_id)
Terminate execution of a thread and remove it from
Active Threads.

osStatus osThreadSetPriority
(osThreadId thread_id,
osPriority priority)

Change priority of an active thread.

osPriority osThreadGetPriority
(osThreadId thread_id)

Get current priority of an active thread.

osStatus osThreadYield (void) Pass control to the next thread that is in state READY.

Table 20.6: osStatus enumeration definition

osStatus Enumerator Description

osOK Function completed; no event occurred.
osEventSignal Function completed; signal event occurred.
osEventMessage Function completed; message event occurred.
osEventMail Function completed; mail event occurred.
osEventTimeout Function completed; time-out occurred.
osErrorParameter Parameter error: a mandatory parameter was missing or specified an

incorrect object.
osErrorResource Resource not available: a specified resource was not available.
osErrorTimeoutResource Resource not available within given time: a specified resource was not

available within the time-out period.
osErrorISR not allowed in ISR context: the function cannot be called from interrupt

service routines.
osErrorISRRecursive Function called multiple times from ISR with same object.
osErrorPriority System cannot determine priority or thread has illegal priority.
osErrorNoMemory System is out of memory: it was impossible to allocate or reserve

memory for the operation.
osErrorValue Value of a parameter is out of range.
osErrorOS Unspecified RTOS error: runtime error but no other error message fits.
os_status_reserved Reserved error value to prevent C compilers from performing enum

down-size optimization.

Programming with Embedded OS 573

make the operation more efficient. Otherwise, a thread waiting for input from another

thread could stay in the READY queue for a long time and this can consume a lot of

processing time and power.

A modern RTOS typically provides a number of methods to support communications

between threads. In CMSIS-RTOS, the supported methods include the following:

• Signal events

• Semaphores

• Mutex

• Mailbox/message

There are also additional features to support some of these communication methods such

as memory pool management features, which are often used with mailboxes.

20.2.5 Signal Event Communication

Signal is the simplest interthread communication feature. A thread can be in a WAITING

state, waiting for some signals from another thread. When the signal is received, the OS

scheduler puts the thread back into READY/RUNNING state.

In RTX, by default each thread can have up to 16 signal events (This configuration

depends on a C macro called osFeature_Signals in “cmsis_os.h” of RTX. This macro

should not be changed for CMSIS-RTOS compliance, but in theory RTX could support up

to 31 signals).

A thread enters WAITING state when it executes the function osSignalWait. One of the

input parameters, a 32-bit value called “signals” defines the signal events required to put

the thread back to READY state. Each bit (apart from the MSB) of the “signals”

parameter defines the signal events required and if this parameter is set to 0 any signal

event can put this thread back to READY state. Table 20.7 listed the CMSIS-RTOS

functions for signal event communications.

The signal event functions osSignalSet and osSignalClear return 0x80000000 in case of

incorrect parameters.

By default the “cmsis_os.h” in RTX specifies osFeature_Signals as 16. So it can work with

16 signal events (from 0x00000001 to 0x00008000).

Please note that signal flags that are used as events for waking up a thread from the

WAITING state are cleared automatically. For example, in the following example, event

flag 0x0001 is used to enable “main()” thread to send a signal to the blinky thread as

shown in Figure 20.7.

574 Chapter 20

Table 20.7: Signal event functions

Function Description

osEvent osSignalWait (int32_t signals,
uint32_t millisec)

Wait for one or more Signal Flags to become
signaled for the current RUNNING thread.
If “signals” is non-zero, all specified Signal Flags need
to be set to return to READY state. If “signals” is
zero, any signal flag can put the thread back to
READY.
“millisec” is the time-out value. Set to
osWaitForever for no time-out, or zero to return
immediately

int32_t osSignalSet (osThreadId
thread_id, int32_t signal)

Set the specified Signal Flags of an active thread.

int32_t osSignalClear (osThreadId
thread_id, int32_t signal)

Clear the specified Signal Flags of an active thread.

Signal Event Generator - main()

Wait 500 ticks

Send event
0x0001

Wait for event
0x0001

Green LED on

blinky thread

Red LED on

Red LED off

Wait 500 ticks Wait 500 ticks

Green LED off

Figure 20.7
Simple signal event communication.

Programming with Embedded OS 575

Example code for simple signal event communication

#include <MKL25Z4.H>
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS
// System runs at 48MHz
// LED #0, #1 are port B, LED #2 is port D
extern void LED_Config(void);
extern void LED_Set(void);
extern void LED_Clear(void);
extern __INLINE void LED_On(uint32_t led);
extern __INLINE void LED_Off(uint32_t led);

/* Thread IDs */
osThreadId t_blinky; // Declare a thread ID for blinky
/* Function declaration */
void blinky(void const *argument); // Thread

// --
// Blinky
void blinky(void const *argument) {

while(1) {
osSignalWait(0x0001, osWaitForever);
LED_On(1); // Green LED on
osDelay(500); // delay 500 msec
LED_Off(1); // Green LED off
} // end while

} // end of blinky

// define blinky as thread function
osThreadDef(blinky, osPriorityNormal, 1, 0);

// --
int main(void)
{

SystemCoreClockUpdate();
// Configure LED outputs
LED_Config();

// Create a task "blinky" and assign thread ID to t_blinky
t_blinky = osThreadCreate(osThread(blinky), NULL);

576 Chapter 20

while(1){
LED_On(0); // Red LED on
osDelay(500); // delay 500 msec
LED_Off(0); // Red LED off
osSignalSet(t_blinky, 0x0001); // Set Signal
osDelay(500); // delay 500 msec
};

}

A thread can wait for multiple signal events. This is done by setting the first parameter of
osSignalWait() to 0. The osSignalWait() function itself can return an osEvent result, which

can then be used to determine which event occurred. The returned event value can then be

used to determine what actions should be taken on return to READY state, as shown in

Figure 20.8.

Thread A

Thread B

Thread C

E = osSignalWait(0,
osWaitForever)

0x01

0x02

0x04

E bit-0 = 1? Response to
Thread A

E bit-1 = 1? Response to
Thread B

E bit-2 = 1? Response to
Thread C

Y

Y

Y

Y

E.status =
osEventSignal?

osSignalWait woke
up by something

else

Figure 20.8
Using the osSignalWait function to detect which thread generated the signal.

Programming with Embedded OS 577

An example code could be implemented as:

Simple example to wait for multiple events

osEvent evt;
.

evt = osSignalWait(0, osWaitForever);
if (evt.status = = osEventSignal) {

// handle event status
if (evt.value.signals & 0x1) {

// response to Thread A
} else if (evt.value.signals & 0x2) {

// response to Thread B
} else if (evt.value.signals & 0x4) {

// response to Thread C
}

}

20.2.6 Mutual Exclusive (Mutex)

Mutual Exclusive, or commonly known as Mutex, is a common resource management feature

in many types of OS. Many resources in a processor system can only be used by one thread

at a time. For example, a “printf” output communication channel (as shown in Figure 20.9)

can only be used by one thread at a time. The Mutex feature can be used to ensure that only

one of the threads can access to the output communication channel resource at a time.

Before using a Mutex, we first need to define a Mutex object using “osMutexDef(name).”

When referencing a Mutex using the CMSIS-RTOS Mutex API, we need to use the

“osMutex(name)” macro. Each Mutex also has an ID value that is needed by some of the

Mutex functions. Table 20.8 lists the CMSIS-RTOS functions for Mutex operations.

In the following example, the program code contains two threads. Both of them use the

UART to output text messages.

Thread A PrintLock

MUTEX

Thread B

printf
operation

Figure 20.9
Using Mutex to control hardware resource sharing.

578 Chapter 20

Example code for simple mutex communication

#include <MKL25Z4.H>
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS
#include "stdio.h"

// System runs at 48MHz
// LED #0, #1 are port B, LED #2 is port D
extern void LED_Config(void);
extern __INLINE void LED_On(uint32_t led);
extern __INLINE void LED_Off(uint32_t led);
// UART functions
extern void UART_config(void);

/* Thread IDs */
osThreadId t_blinky; // Declare a thread ID for blinky
/* Function declaration */
void blinky(void const *argument); // Thread
/* Declare Mutex */
osMutexDef(PrintLock); // Declare a Mutex for printf control
/* Mutex IDs */
osMutexId PrintLock_id; // Declare a Mutex ID for printf control

// --
// Blinky
void blinky(void const *argument) {
while(1) {

osSignalWait(0x0001, osWaitForever);
LED_On(1); // Green LED on
osDelay(500); // delay 500 msec

// Printf happen about the same time as main’s
osMutexWait(PrintLock_id, osWaitForever); // Get Mutex

Continued

Table 20.8: Mutex functions

Function Description

osMutexId osMutexCreate(const osMutexDef_t
*mutex_def)

Create and initialize a Mutex object.

osStatus osMutexWait (osMutexId mutex_id,
uint32_t millisec)

Wait until a Mutex becomes available.

osStatus osMutexRelease (osMutexId
mutex_id)

Release a Mutex that was obtained by
osMutexWait.

osStatus osMutexDelete (osMutexId mutex_id) Delete a Mutex that was created by
osMutexCreate.

Programming with Embedded OS 579

printf ("blinky is running\n");
osMutexRelease(PrintLock_id); // Release Mutex

LED_Off(1); // Green LED off
} // end while

} // end of blinky

// define blinky as thread function
osThreadDef(blinky, osPriorityNormal, 1, 0);

// --
int main(void)
{

SystemCoreClockUpdate();

// Configure LED outputs
LED_Config();
UART_config();

// Create a task "blinky" and assign thread ID to t_blinky
t_blinky = osThreadCreate(osThread(blinky), NULL);

while(1){
LED_On(0); // Red LED on
osDelay(500); // delay 500 msec

LED_Off(0); // Red LED off
osSignalSet(t_blinky, 0x0001); // Set Signal
osDelay(500); // delay 500 msec
// Printf happen about the same time as blinky’s
osMutexWait(PrintLock_id, osWaitForever); // Get Mutex
printf ("main() is running\n");
osMutexRelease(PrintLock_id); // Release Mutex
};

}

20.2.7 Semaphore

In some cases we would like to allow a limited number of threads to access certain

resources. For example, a DMA controller might be able to support multiple DMA

channels. Or a simple embedded server might be able to support a limited number of

580 Chapter 20

simultaneous requests due to memory size constraints. In these cases, we can use a

semaphore instead of a Mutex.

The semaphore feature is very similar to Mutex. Whereas a Mutex permits just one thread

to access a shared resource at any one time, a semaphore can permit a fixed number of

threads to access a pool of shared resources. So a Mutex is a special case of a Semaphore

for which the maximum number of available tokens is 1.

A semaphore object needs to be initialized to the maximum number of available tokens,

and each time a thread needs to use a shared resource, it uses the semaphore to check out

a token and then checks it back in when it has finished using the resource. If the number

of available tokens reaches zero, then all the available resources are allocated and the next

thread that requests the shared resource must wait for a token to become available.

Semaphore objects are defined using “osSemaphoreDef(name).” When referencing a

semaphore object using the CMSIS-RTOS semaphore API, we need to use the

“osSemaphore(name)” macro. Each semaphore also has an ID value that is needed by some

of the semaphore functions. Table 20.9 listed the CMSIS-RTOS functions for semaphore

operations.

On the Freescale Freedom board, the LED actually consists of three LEDs (R, G, B). In

the following example, we create three threads that each toggles a color of the LED on the

development board, and use a semaphore to limit the number of active LEDs to 2.

Example code for simple semaphore communication

#include <MKL25Z4.H>
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS

Continued

Table 20.9: Semaphore functions

Function Description

osSemaphoreId osSemaphoreCreate(const
osSemaphoreDef_t *semaphore_def,
int32_t count)

Create and initialize a semaphore
object.

int32_t osSemaphoreWait(osSemaphoreId
semaphore_id, uint32_t millisec)

Wait until a semaphore becomes
available. Returns number of available
tokens or –1 in case of incorrect
parameters

osStatus osSemaphoreRelease(osSemaphoreId
semaphore_id)

Release a semaphore that was
obtained by osSemaphoreWait.

osStatus osSemaphoreDelete(osSemaphoreId
semaphore_id)

Delete a semaphore that was created
by osSemaphoreCreate.

Programming with Embedded OS 581

// System runs at 48MHz
// LED #0, #1 are port B, LED #2 is port D
extern void LED_Config(void);
extern void LED_Set(void);
extern void LED_Clear(void);
extern __INLINE void LED_On(uint32_t led);
extern __INLINE void LED_Off(uint32_t led);

/* Thread IDs */
osThreadId t_blinky_red; // Declare a thread ID for blinky
osThreadId t_blinky_green; // Declare a thread ID for blinky
osThreadId t_blinky_blue; // Declare a thread ID for blinky
/* Function declaration */
void blinky_red(void const *argument); // Thread
void blinky_green(void const *argument); // Thread
void blinky_blue(void const *argument); // Thread
/* Declare Semaphore */
osSemaphoreDef(two_LEDs); // Declare a Semaphore for LED control
/* Semaphore IDs */
osSemaphoreId two_LEDs_id; // Declare a Semaphore ID for LED control

// --
// Blinky
void blinky_red(void const *argument) {

while(1) {
osSemaphoreWait(two_LEDs_id, osWaitForever);
LED_On(0); // Red LED on
osDelay(400); // delay 400 msec
LED_Off(0); // Red LED off
osSemaphoreRelease(two_LEDs_id);
osDelay(600); // delay 600 msec
} // end while

} // end of blinky

void blinky_green(void const *argument) {
while(1) {

osSemaphoreWait(two_LEDs_id, osWaitForever);
LED_On(1); // Green LED on
osDelay(400); // delay 400 msec
LED_Off(1); // Green LED off
osSemaphoreRelease(two_LEDs_id);
osDelay(600); // delay 600 msec
} // end while

} // end of blinky

void blinky_blue(void const *argument) {
while(1) {

osSemaphoreWait(two_LEDs_id, osWaitForever);
LED_On(2); // Blue LED on
osDelay(400); // delay 400 msec

582 Chapter 20

LED_Off(2); // Blue LED off
osSemaphoreRelease(two_LEDs_id);
osDelay(600); // delay 600 msec
} // end while

} // end of blinky

// define blinky as thread function
osThreadDef(blinky_red, osPriorityNormal, 1, 0);
osThreadDef(blinky_green, osPriorityNormal, 1, 0);
osThreadDef(blinky_blue, osPriorityNormal, 1, 0);

// --
int main(void)
{

SystemCoreClockUpdate();

// Configure LED outputs
LED_Config();

// Create Semaphore with 2 tokens
two_LEDs_id = osSemaphoreCreate(osSemaphore(two_LEDs), 2);

// Create threds "blinky_xxx" and assign thread ID to t_blinky_xxx
t_blinky_red = osThreadCreate(osThread(blinky_red), NULL);
t_blinky_green = osThreadCreate(osThread(blinky_green), NULL);
t_blinky_blue = osThreadCreate(osThread(blinky_blue), NULL);

// Terminate main
osThreadTerminate(osThreadGetId());
while(1){

osDelay(1000); // delay 1000 msec
};

}

20.2.8 Message Queue

A message queue can be used to pass a sequence of data from one thread to another in a

FIFO-like operation (Figure 20.10). The data can be of type integer or pointer.

Message queue objects are defined using “osMessageQDef(name, queue_size, type).” When

referencing a message queue object using the CMSIS-RTOS API, we need to use

“osMessageQ(name)” macro. Each message queue also has an ID value that is needed by

some of the message queue functions. Table 20.10 lists the CMSIS-RTOS functions for

message queue operations.

In the following example, a number sequence 1, 2, 3, . is sent from “main()” to another

thread called “receiver.”

Programming with Embedded OS 583

Example code for message queue communication

#include <MKL25Z4.H>
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS
#include "stdio.h"

// System runs at 48MHz
// UART functions
extern void UART_config(void);

/* Thread IDs */
osThreadId t_receiver_id; // Declare a thread ID for blinky
/* Function declaration */
void t_receiver(void const *argument); // Thread

/* Declare message queue */
osMessageQDef(numseq_q, 4, uint32_t); // Declare a Message queue, size=4
osMessageQId numseq_q_id; // Declare a ID for message queue

// --
// Receiver thread
void t_receiver(void const *argument) {

while(1) {
osEvent evt = osMessageGet(numseq_q_id, osWaitForever);

Thread A or ISR

Message queue

Thread B or ISR

Queue size

Integer/pointer values

Figure 20.10
Message queue.

Table 20.10: Message queue functions

Function Description

osMessageQId osMessageCreate (const
osMessageQDef_t *queue_def,
osThreadId thread_id)

Create and initialize a message queue.

osStatus osMessagePut (osMessageQId
queue_id, uint32_t info,
uint32_t millisec)

Put a message to a queue.

os_InRegs osEvent osMessageGet (osMessageQId
queue_id, uint32_t millisec)

Get a message or wait for a message from a
queue.

584 Chapter 20

if (evt.status == osEventMessage) { // message received
printf ("%d\n", evt.value.v); // ".v" indicate message as 32-bit value
} // end if

} // end while
} // end of t_receiver

// define t_receiver as thread function
osThreadDef(t_receiver, osPriorityNormal, 1, 0);

// --
int main(void)
{

uint32_t i=0;
SystemCoreClockUpdate();

UART_config(); // initialize UART for printf

// Create Message queue
numseq_q_id = osMessageCreate(osMessageQ(numseq_q), NULL);

// Create a task "t_receiver" and assign thread ID to t_receiver_id
t_receiver_id = osThreadCreate(osThread(t_receiver), NULL);

while(1){
i++;
osMessagePut(numseq_q_id, i, osWaitForever);
osDelay(1000); // delay 1 sec

};
}

Additional examples of using a message queue to pass pointers are in Section 20.2.10, a

Memory Pool example, and Section 20.3, Using RTX in an application.

20.2.9 Mail Queue

A mail queue is very similar to a message queue, but the information being transferred

consists of memory blocks that need to be allocated before putting data in and need to be

freed after taking data out (Figure 20.11). Memory blocks can hold more information, for

example, a data structure, whereas a message queue can only transfer a 32-bit value or a

pointer.

Mail queue object is defined using “osMailQDef(name, queue_size, type).” When

referencing a mail queue using CMSIS-RTOS API, we need to use the “osMailQ(name)”

macro. Each mail queue also has an ID value that is needed by some of the mail queue

functions. Table 20.11 lists the CMSIS-RTOS functions for mail queue operations.

The following example shows how to use a mail queue to pass a block of memory

containing a data structure with three elements.

Programming with Embedded OS 585

Mail queue example

#include <MKL25Z4.H>
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS
#include "stdio.h"

// System runs at 48MHz
// UART functions
extern void UART_config(void);

/* Thread IDs */
osThreadId t_receiver_id; // Declare a thread ID for blinky
/* Function declaration */
void t_receiver(void const *argument); // Thread

/* Data structure for mail queue */
typedef struct {

Thread A or ISR

Mail queue

Thread B or ISR

Queue size
osMailFree

Free memory space

osMailAlloc

osMailPut osMailGet
Memory blocks

Figure 20.11
Mail queue.

Table 20.11: Mail queue functions

Function Description

osMailQId osMailCreate (const osMailQDef_t
*queue_def, osThreadId thread_id)

Create and initialize a mail queue.

void* osMailAlloc (osMailQId queue_id,
uint32_t millisec)

Allocate a memory block from a mail.

void* osMailCAlloc (osMailQId queue_id,
uint32_t millisec)

Allocate a memory block from a mail
and set memory block to zero.

osStatus osMailPut (osMailQId queue_id,
void *mail)

Put a mail to a queue.

os_InRegs osEvent osMailGet (osMailQId queue_id,
uint32_t millisec)

Get a mail from a queue.

osStatus osMailFree (osMailQId queue_id,
void *mail)

Free a memory block from a mail.

586 Chapter 20

uint32_t length;
uint32_t width;
uint32_t height;

} dimension_t;
/* Declare mail queue */
osMailQDef(dimension_q, 4, dimension_t); // Declare a Mail queue
osMailQId dimension_q_id; // Declare an ID for Mail queue

// --
// Receiver thread
void t_receiver(void const *argument) {

while(1) {
osEvent evt = osMailGet(dimension_q_id, osWaitForever);
if (evt.status == osEventMail) { // mail received

dimension_t *rx_data = (dimension_t *) evt.value.p;
// ".p" indicate message as pointer
// Output result in printf message
printf ("Received data: (L) %d, (W), %d, (H) %d\n",

rx_data->length,rx_data->width,rx_data->height);
osMailFree(dimension_q_id, rx_data); // Free allocated space
}

} // end while
} // end of t_receiver

// define t_receiver as thread function
osThreadDef(t_receiver, osPriorityNormal, 1, 0);

// --
int main(void)
{

uint32_t i=0;
dimension_t *tx_data; // Pointer to data structure

SystemCoreClockUpdate();
UART_config(); // initialize UART for printf

// Create Mail queue
dimension_q_id = osMailCreate(osMailQ(dimension_q), NULL);

// Create a task "t_receiver" and assign thread ID to t_receiver_id
t_receiver_id = osThreadCreate(osThread(t_receiver), NULL);
while(1){

i++;
// Allocate memory space for data structure
tx_data = (dimension_t *) osMailAlloc(dimension_q_id, osWaitForever);
tx_data->length = i; // demo data generation
tx_data->width = i + 1;
tx_data->height = i + 2;
osMailPut(dimension_q_id, tx_data);
osDelay(1000); // delay 1 sec

};
}

Programming with Embedded OS 587

20.2.10 Memory Pool Management Feature

CMSIS-RTOS has a feature called Memory Pool Management that you can use to define a

memory pool with a certain number of memory blocks and allocate these blocks during

runtime.

Memory pool object is defined using “osPoolDef(name, pool_size, type).” When

referencing a memory pool object using CMSIS-RTOS API, we need to use

“osPool(name)” define. Each memory pool also has an ID value that is needed by some of

the memory pool functions. Table 20.12 lists the CMSIS-RTOS functions for memory pool

management.

For example, we can repeat the data structure passing in the Mail queue example using the

Message queue feature, and use the memory pool feature for management of the data

block in the information transfer.

Example of message queue passing of data structures using memory pool

#include <MKL25Z4.H>
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS
#include "stdio.h"

// System runs at 48MHz
// UART functions
extern void UART_config(void);

/* Thread IDs */
osThreadId t_receiver_id; // Declare a thread ID for blinky
/* Function declaration */
void t_receiver(void const *argument); // Thread

/* Data structure for mail queue */
typedef struct {

uint32_t length;
uint32_t width;

Table 20.12: Memory pool functions

Function Description

osPoolQId osPoolCreate (const osPoolDef_t
*pool_def)

Create and initialize a memory pool.

void* osPoolAlloc (osPoolId pool_id) Allocate a memory block from a memory pool.
void* osPoolCAlloc (osPoolId pool_id) Allocate a memory block from a memory pool

and set memory block to zero.
osStatus osPoolFree (osPoolId pool_id,

void *block)
Return an allocated memory block back to a
specific memory pool.

588 Chapter 20

uint32_t height;
} dimension_t;

/* Declare memory pool, 4 entries deep */
osPoolDef(mpool, 4, dimension_t);
osPoolId mpool_id;

/* Declare message queue */
osMessageQDef(dimension_q, 4, dimension_t); // Declare a message queue
osMessageQId dimension_q_id; // Declare an ID for message queue
/* Note: Message queue has 4 entries, same as memory pool size */

// --
// Receiver thread
void t_receiver(void const *argument) {

while(1) {
osEvent evt = osMessageGet(dimension_q_id, osWaitForever);
if (evt.status == osEventMessage) { // message received

dimension_t *rx_data = (dimension_t *) evt.value.p;
// ".p" indicate message as pointer

printf ("Received data: (L) %d, (W), %d, (H) %d\n",
rx_data->length,rx_data->width,rx_data->height);

osPoolFree(mpool_id, rx_data);
} // end if

} // end while
} // end of t_receiver

// define t_receiver as thread function
osThreadDef(t_receiver, osPriorityNormal, 1, 0);

// --
int main(void)
{

uint32_t i=0;
dimension_t *tx_data; // Pointer to data structure

SystemCoreClockUpdate();
UART_config(); // initialize UART for printf

// Create Message queue
dimension_q_id = osMessageCreate(osMessageQ(dimension_q), NULL);

// Create Memory pool
mpool_id = osPoolCreate(osPool(mpool));

// Create a task "t_receiver" and assign thread ID to t_receiver_id
t_receiver_id = osThreadCreate(osThread(t_receiver), NULL);

// main() itself is a thread that sends out a message
while(1){

Continued

Programming with Embedded OS 589

i++;
// Allocate memory space from memory pool for data structure
tx_data = (dimension_t *) osPoolAlloc(mpool_id);
tx_data->length = i; // demo data generation
tx_data->width = i + 1;
tx_data->height = i + 2;
osMessagePut(dimension_q_id, (uint32_t)tx_data, osWaitForever);
osDelay(1000); // delay 1 sec
};

}

20.2.11 Generic Wait Function and Time-Out Value

In all the previous examples we have used a generic function called osDelay (Table 20.13).

This is commonly used to put a thread in the WAITING state. The input parameter is

“millisec” (milli-second).

In many CMSIS-API functions there is an input parameter called “millisec” to specify the

waiting time, for example, osSemaphoreWait, osMessageGet, etc. In the normal value range it

defines the time duration that will trigger a time-out which causes the function to return.

This parameter can be set to a constant definition called osWaitForever, which is defined as
0xFFFFFFFF in cmsis_os.h. When “millisec” is set to osWaitForever, the function will not

time-out.

When “millisec” is set to 0, the function returns immediately and does not wait. You can

use the function return value to determine if the required operation has succeeded or not.

It is undesirable and disallowed to enter WAITING state in any exception handler. As a

result, when using CMSIS-RTOS APIs that have the millisec input parameter, the millisec

parameter should be set to 0 so that they return immediately without stopping. Functions

that are intended to create delay like osDelay should not be used in any interrupt handler.

20.2.12 Timer Feature

In addition to the wait and delay functions, CMSIS-RTOS also supports Timer objects.

A timer object can trigger the execution of a function. (Note: Timer objects cannot trigger

Table 20.13: osDelay function

Function Description

osStatus osDelay (uint32_t millisec) Wait for a time period.

590 Chapter 20

a thread directly; this can be done indirectly by sending an event to a thread from that

function)

A Timer object can operate in periodic timer mode or one-shot mode. In periodic timer

mode, the timer repeats its operation until it is deleted/terminated. In one-shot mode, the

timer triggers the function only once.

A Timer object is defined using “osTimerDef(name, type, *argument).” When referencing a

Timer object using CMSIS-RTOS API, we need to use “osTimer(name)” define. Each Timer

object also has an ID value that is needed by some of the timer functions. Table 20.14 lists

the CMSIS-RTOS functions for timer operations.

The following example shows simple use of a Timer object in both periodic mode and

one-shot mode.

Example of OS Timer feature

#include <MKL25Z4.H>
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS

// System runs at 48MHz
/* Function declaration */
extern void LED_Config(void);
extern __INLINE void LED_On(uint32_t led);
extern __INLINE void LED_Off(uint32_t led);

void toggle_led(void const *argument); // Toggle LED

/* Declare osTimers */
osTimerDef(LED_1, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_2, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_3, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_4, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_5, toggle_led); // Declare a Timer for LED control
osTimerDef(LED_6, toggle_led); // Declare a Timer for LED control

Continued

Table 20.14: Timer functions

Function Description

osTimerId osTimerCreate (const
osTimerDef_t *timer_def,
os_timer_type type, void
*argument))

Create and initialize a timer.

osStatus osTimerStart (osTimerId timer_id,
uint32_t millisec)

Start or restart a timer.

osStatus osTimerStop (osTimerId timer_id) Stop the timer.
osStatus osTimerDelete (osTimerId

timer_id)
Delete a timer that was created by
osTimerCreate.

Programming with Embedded OS 591

/* Timer IDs */
osTimerId LED_1_id, LED_2_id, LED_3_id, LED_4_id, LED_5_id, LED_6_id;

// --
int main(void)
{

SystemCoreClockUpdate();
// Configure LED outputs
LED_Config();

// Create Timers - last parameter is the func argument for toggle_led
// Timer 1 - periodic, turn on Red LED
LED_1_id = osTimerCreate(osTimer(LED_1), osTimerPeriodic, (void *)1);
// Timer 2 - One-shot mode, triggered by Timer 1, turn off Red LED
LED_2_id = osTimerCreate(osTimer(LED_2), osTimerOnce, (void *)2);
// Timer 3 - One-shot mode, triggered by Timer 2, turn on Green LED
LED_3_id = osTimerCreate(osTimer(LED_3), osTimerOnce, (void *)3);
// Timer 4 - One-shot mode, triggered by Timer 3, turn off Green LED
LED_4_id = osTimerCreate(osTimer(LED_4), osTimerOnce, (void *)4);
// Timer 5 - One-shot mode, triggered by Timer 4, turn on Blue LED
LED_5_id = osTimerCreate(osTimer(LED_5), osTimerOnce, (void *)5);
// Timer 6 - One-shot mode, triggered by Timer 5, turn off Blue LED
LED_6_id = osTimerCreate(osTimer(LED_6), osTimerOnce, (void *)6);

osTimerStart(LED_1_id, 3000); // Start first timer

// Nothing to be done in main after Timer 1 is setup
while(1){

osDelay(osWaitForever); // delay
};

}
// --
// For each round this function is executed 6 times,
// with argument = 1,2,3,4,5,6
void toggle_led(void const *argument)
{

switch ((int)argument){
case 1:

osTimerStart(LED_2_id, 500);
LED_On(0); // Red LED on

break;
case 2:

osTimerStart(LED_3_id, 500);
LED_Off(0); // Red LED off
break;

case 3:
osTimerStart(LED_4_id, 500);
LED_On(1); // Green LED on
break;

592 Chapter 20

case 4:
osTimerStart(LED_5_id, 500);
LED_Off(1); // Green LED on
break;

case 5:
osTimerStart(LED_6_id, 500);
LED_On(2); // Blue LED on
break;

case 6:
LED_Off(2); // Blue LED off
break;

default:
break;
}

}

If you are using CMSIS-RTOS RTX, when using timer objects, you should check that

the configuration in RTX_Conf_CM.c has the OS_TIMERS parameter set to 1. You might

also need to configure settings for the Timer thread (see user timer settings in

Figure 20.5).

20.2.13 Adding SVC Services for Unprivileged Threads

Depending on the setting of CMSIS-RTOS RTX, “main()” can start in unprivileged state.

In this case you cannot access any registers in the NVIC or the SCS, and some of the

special registers in the processor core.

To enable “main()” and various threads to run in privileged state, you should set the
OS_RUNPRIV parameter in RTX_Conf_CM.c to 1. However, there are many applications that

require some threads to run in unprivileged state, for example, to enable the system to

utilize memory protection features. In this case, it is very likely that you still want to

execute some of the procedures in privileged state so that you can set up the NVIC or

access other registers in SCS, or special registers in the processor.

In order to solve this problem, the CMSIS-RTOS RTX provides an extendable SVC

mechanism. The SVC instruction supports up to 256 services using an 8-bit immediate

data. SVC #0 is used by the CMSIS-RTOS RTX, but other SVC services can be used by

user-defined functions. The application code can use SVC calls to execute these user-

defined functions inside the SVC handler, which executes in privileged state.

An SVC table code needs to be added to the project that performs the SVC service lookup

and defines the name of the user-defined SVC service.

Programming with Embedded OS 593

SVC table for extending SVC services

;/ *--
; * CMSIS-RTOS - RTX
; *--
; * Name: SVC_TABLE.S
; * Purpose: Pre-defined SVC Table for Cortex-M
; * Rev.: V4.70
; *--
; *
; * Copyright (c) 1999-2009 KEIL, 2009-2013 ARM Germany GmbH
; * All rights reserved.
; * Redistribution and use in source and binary forms, with or without
; * modification, are permitted provided that the following conditions are met:
; * - Redistributions of source code must retain the above copyright
; * notice, this list of conditions and the following disclaimer.
; * - Redistributions in binary form must reproduce the above copyright
; * notice, this list of conditions and the following disclaimer in the
; * documentation and/or other materials provided with the distribution.
; * - Neither the name of ARM nor the names of its contributors may be used
; * to endorse or promote products derived from this software without
; * specific prior written permission.
; *
; * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
; * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
; * ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
; * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
; * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
; * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
; * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
; * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
; * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
; * POSSIBILITY OF SUCH DAMAGE.
; *---*/

AREA SVC_TABLE, CODE, READONLY

EXPORT SVC_Count

SVC_Cnt EQU (SVC_End-SVC_Table)/4
SVC_Count DCD SVC_Cnt

; Import user SVC functions here.
IMPORT __SVC_1_HardwareInitialization
IMPORT __SVC_2_NVIC_EnableIRQ

594 Chapter 20

IMPORT __SVC_3_NVIC_DisableIRQ
IMPORT __SVC_4_Get_CPUID
EXPORT SVC_Table

SVC_Table
; Insert user SVC functions here. SVC 0 used by RTL Kernel.

; Hardware Initialization
DCD __SVC_1_HardwareInitialization
; SVC function to redirect NVIC_EnableIRQ
DCD __SVC_2_NVIC_EnableIRQ
; SVC function to redirect NVIC_DisableIRQ
DCD __SVC_3_NVIC_DisableIRQ
; SVC function to get CPUID
DCD __SVC_4_Get_CPUID

SVC_End

END
/*--
* end of file
---/

And inside the application code, we define Hardware_Initialization(void) as SVC #1, and

implement __SVC_1_HardwareInitialization which is referenced in the SVC table.

Implementation of extended SVC services

#include <MKL25Z4.H>d
#include "cmsis_os.h" // Include header file for RTX CMSIS-RTOS
#include "stdio.h"

// System runs at 48MHz
/* Function declaration */
extern void LED_Config(void);
extern __INLINE void LED_On(uint32_t led);
extern __INLINE void LED_Off(uint32_t led);
extern void UART_config(void);

/* Thread IDs */
osThreadId t_blinky_id; // Declare a thread ID for blinky
/* Function declaration */
void blinky(void const *argument); // Thread

// define blinky as thread function
osThreadDef(blinky, osPriorityNormal, 1, 0);

Continued

Programming with Embedded OS 595

// Define SVC #1, #2 and #3
void __svc(0x01) Hardware_Initialization(void);
void __svc(0x02) Redirect_NVIC_EnableIRQ(IRQn_Type IRQ_num);
void __svc(0x03) Redirect_NVIC_DisableIRQ(IRQn_Type IRQ_num);
uint32_t __svc(0x04) Get_CPUID(void);
void __SVC_4_Get_CPUID_C_part(unsigned int * svc_args);
// --
int main(void)
{
Hardware_Initialization(); // SVC service #1

// Create a thread "blinky" and assign thread ID to t_blinky
t_blinky_id = osThreadCreate(osThread(blinky), NULL);

// CPUID can only be read in privileged state
printf("CPU ID = 0x%x\n", Get_CPUID());

// Nothing to be done in main after Timer 1 is setup
while(1){

LED_On(0); // Red LED on
osDelay(200); // delay 200 msec
LED_Off(0); // Red LED off
osDelay(200); // delay 200 msec
};

}
// --
// Blinky
void blinky(void const *argument) {

while(1) {
LED_On(1); // Green LED on
osDelay(500); // delay 500 msec
LED_Off(1); // Green LED off
osDelay(500); // delay 500 msec
} // end while

} // end of blinky
// --
void HardFault_Handler(void)
{
printf ("[HardFault]\n");
__BKPT(0);
while(1);

}
// --
// User defined SVC service (#1)
// Note that the name must match the SVC service name defined in
// SVC_Table.s
void __SVC_1_HardwareInitialization(void)

596 Chapter 20

{
// add your System/NVIC/SCS initialization code here .

SystemCoreClockUpdate();
// Configure LED outputs
LED_Config();
// Configure UART
UART_config();
return;

}
// -------------------
void __SVC_2_NVIC_EnableIRQ(IRQn_Type IRQ_num)
{

// Add security check
// e.g. if IRQ_num is certain number then NVIC enable is allowed
NVIC_EnableIRQ(IRQ_num);
return;

}
// -------------------
void __SVC_3_NVIC_DisableIRQ(IRQn_Type IRQ_num)
{

// Add security check
// e.g. if IRQ_num is certain number then NVIC disable is allowed
NVIC_DisableIRQ(IRQ_num);
return;

}
// -------------------
unsigned int __SVC_4_Get_CPUID(void)
{ // Return function value as normal C function.

return SCB->CPUID;
}

Please note:

• Depending on the microcontroller’s design, some peripherals cannot be accessed in un-

privileged state. This can also affect printf (as it needs access to peripheral like UART).

• The design of the SVC extension in RTX allows you to implement parameter inputs and

return values as in standard C functions. There is no need to add SVC function wrapper

to extract function parameters in stack frame, or store return value in stack frame.

20.3 Using RTX in an Application

Using the RTX kernel, it is simple to develop applications that have to deal with several

concurrent tasks. For example, in Chapter 18 we cover an application example of a train

Programming with Embedded OS 597

controller. Here we can rewrite the application and partition the functions into different

parts, and link them together using various features in the RTX kernel, as shown in

Figure 20.12.

In this version, we moved the initial checking of the sensors and the direction detection

into the FSM. Unlike the previous design, the FSM code is in the RUNNING state only

when there is an event that needs to be processed. The acceleration and deceleration of the

train is handled by the output stage.

The input sampling threads for the sensors and push buttons, sample the inputs

periodically. Instead of executing as part of a timer interrupt ISR, these threads make use

of the osDelay feature. As a result, there is no need to use a separate timer peripheral.

Please note that unlike previous design which needed to define the button state

information as static data, these state variables are now declared as normal data variable

and the thread does not terminate between RUNNING state, as shown in the t_button

thread below:

Example of input sampling threaddt_button for button status sampling

// --
// Button sampling
#define BUTTON_HISTORY_MASK 0x3

// Take 2 cycle history only
void t_button(void const *argument) {
// Button - P1_8

uint32_t button_history=0; // active high shift reg
uint32_t button_state=0;
while(1) {

Start Peripheral
initialization

FSM thread

Sensor thread

Button thread Button event

Sensor events

Output stage

Target speed
(Message
queue)

Reach Max
speed event

FSM state display
(printf) for debug

OS threads
initialization

Current state
(Message
queue)

Figure 20.12
Partitioning of the rewritten train controller application.

598 Chapter 20

button_history = (button_history <<1) & BUTTON_HISTORY_MASK; // Shift
if ((LPC_GPIO1->MASKED_ACCESS[1<<8])==0) { // active low

button_history j= 1;
}

if ((button_history==BUTTON_HISTORY_MASK) & (button_state==0)){
// Send signal to main FSM
osSignalSet(t_fsm_id, EVT_BUTTON); // Set Signal
button_state = 1; // State set to 1 after 2 active samples

} else if ((button_history==0x0) & (button_state==1)){
button_state = 0; // State set to 0 after 2 inactive samples

}
osDelay(50);

} // end while
} // end t_button

The output stage code is coded with a mail queue that times out every 50 ms. In this way,

the current output speed is adjusted periodically during acceleration and deceleration, but

at the same time can be updated by the FSM. Similar to the input sampling threads, this

utilizes the OS timer and does not need a separate peripheral timer:

Use of time-out value in Message Queue Feature (osMessageGet) allows the thread to
update the speed control output periodically without the FSM thread waking up from
WAITING state

// --
// PWM speed control output thread
// - wait for message from main FSM.
// - if no new speed info adjust speed based on previous target
// - PWM speed update at 20Hz
void t_output(void const *argument) {

motor_set_PWM0(0); // Initial speed = 0
Current_Speed = 0;

while(1) {
osEvent evt = osMessageGet(speed_command_id, 50); // 20Hz, 50 msec
if (evt.status == osEventMessage) { // message received
Target_Speed = evt.value.v;

} else { // Timeout
if (Target_Speed > Current_Speed) { // Need speed increase

if ((Current_Speed + MAX_INCR) < Target_Speed) {
Current_Speed += MAX_INCR;

} else {
Current_Speed = Target_Speed;
// Send signal to main FSM to stop accelerate
osSignalSet(t_fsm_id, EVT_MAX_SPEED);

Continued

Programming with Embedded OS 599

}
} else if (Target_Speed < Current_Speed) { // Need speed decrease

if ((Current_Speed - MAX_DECR) > Target_Speed) {
Current_Speed -= MAX_DECR;

} else {
Current_Speed = Target_Speed;

}
} // end speed decrease

}
// Update PWM
motor_set_PWM0(Current_Speed);

} // end while
} // end of t_output

Various parts of the program code also make use of the timing functions in the OS. For

example, when the train is stopped at point A or point B, osDelay controls when the train

is going to move again.

Unlike the previous train controller example, which executes the input sampling, FSM and

the output stage all inside the timer ISR, the RTX version separates the threads and you

can run them at different speeds easily by adjusting the timing control of each thread. This

provides better flexibility in application development. However, please note that osDelay is

not as accurate as using a timer. If a thread needs to be executed periodically in a precise

manner, the osTimer feature should be used instead.

20.4 Debugging an Application with RTX

In order to make debugging applications with RTX easier, the Keil� MDK integrates a

range of features. For example, the local and call stack window automatically recognize

threads and shows the states of various threads, as shown in Figure 20.13.

In addition, the System and Thread Viewer (accessible from the pull-down menu

“Debug / OS support/ System and Thread Viewer”) also provides additional

information (Figure 20.14) such as stack usage.

Additional OS-related debug features for RTOS in Keil MDK are available for Cortex�-

M3, Cortex-M4, and Cortex-M7 processors, where the Serial Wire Viewer and trace

features on these processors (require trace connection and additional debug and trace

features in the processor) can provide real-time execution information about the systems.

More information can be found in “The Definitive Guide to ARM Cortex-M3 and Cortex-

M4 processors, 3rd edition.”

600 Chapter 20

20.5 Trouble Shooting

There are many possible reasons for an application to fail when using an RTX. Chapter 11

of this book already covers a range of topics related to HardFault exception and analysis

techniques. Here a few more areas that are more specific to embedded OS applications.

Figure 20.13
Keil� MDK uVision debugger call stack and local window is OS aware.

Programming with Embedded OS 601

20.5.1 Stack Size Requirements

It is important to set up sufficient stack memory for your project. This includes the stack

size setting in start-up code (e.g., Keil MDK) or linker configuration (e.g., IAR), default

stack size for main and thread, and stack size options in osThreadDef defines (Note: if set

to 0, then the default stack size is used).

If Keil MDK is used, the stack size required for a thread can be obtained from an HTML

file generated after the compilation. You can also see the stack usage in debugger at

certain time as shown in Figure 20.14. For IAR, the stack usage can be obtained from a

linker report file (see Section 15.5).

In addition, stack size should be multiple of 8. You might also need to check the linker

report or memory map report to make sure the stack areas are aligned to double-word

boundaries. By default, the Configuration Wizard in Keil mVision IDE (Figure 20.5)

ensures that the stack sizes are set up as multiple of 8 bytes. However, if you edit the file

manually, you need to make sure that the stack sizes are set up as multiple of 8 bytes.

20.5.2 Privileged Level

If your embedded OS runs threads (or some of them) in unprivileged state, then these

threads cannot access SCS memory areas such as NVIC registers. This might also affect

Figure 20.14
System and thread Viewer.

602 Chapter 20

accesses to certain peripherals. Please refer to Section 20.2.13 on how to extend SVC

services in CMSIS-RTOS RTX to allow threads to access privileged services.

20.5.3 Utilize OS Error Reporting Support

In the file RTX_Confg_CM.c, you can find a function called os_error. You can modify this

function to report various OS error scenarios.

os_error function in RTX

void os_error (uint32_t error_code) {
/* This function is called when a runtime error is detected. */
/* Parameter ’error_code’ holds the runtime error code. */

/* HERE: include optional code to be executed on runtime error. */
switch (error_code) {

case OS_ERROR_STACK_OVF:
/* Stack overflow detected for the currently running task. */
/* Thread can be identified by calling svcThreadGetId(). */
break;

case OS_ERROR_FIFO_OVF:
/* ISR FIFO Queue buffer overflow detected. */
break;

case OS_ERROR_MBX_OVF:
/* Mailbox overflow detected. */
break;

}
for (;;);

}

20.5.4 OS Feature Configurations

The file RTX_Config_CM.c defines a number of OS features to include in the project. It is

important to set up this file correctly (e.g., OS_TASKCNTdhow many concurrent threads you

have in your applications?).

20.5.5 Miscellaneous

When using CMSIS-RTOS features, remember to create the objects before using them

(e.g., using the osXxxxCreate functions). The program code can compile without any issue

when some of the create functions are accidentally omitted, but the results can be

unpredictable.

Programming with Embedded OS 603

20.6 Other Hints and Tips
20.6.1 Customization of RTX_Config_CM.c

There are a number of things you can change in RTX_Config_CM.c to improve the

application:

• By default it defines certain features to include and the stack sizes. If your applications

use only few features or the thread uses minimal stack space, then you can adjust this

file to reduce the memory size required.

• When the system is not doing anything, the idle thread is executed. The idle thread can

be customized in RTX_Config_CM.c (void os_idle_demon(void)). You can insert sleep

mode control code in your application to reduce power. For example,

void os_idle_demon (void) {
/* The idle demon is a system thread, running when no other thread is */
/* ready to run. */

for (;;) {
/* HERE: include optional user code to be executed when no

thread runs.*/
__WFE();

}
}

• For low-power applications, you might want to use an alternate timer instead of the

SysTick timer. If this is the case, you need to set OS_SYSTICK to 0, and implement addi-

tional timer functions (int os_tick_init (void), uint32_t os_tick_val(void) ,
uint32_t os_tick_ovf (void) and void os_tick_irqack (void)) in this file.

20.6.2 Thread Priority

You might need to adjust the priority of the thread so that some threads can have a higher

priority when they in READY state. This can improve the responsiveness of the system.

Do not forget that you can change thread priority during runtime.

20.6.3 A Short Waiting Time

In some cases, we need a short delay in the application code because some peripherals or

external system need a short period of time to respond. Instead of using traditional

approaches:

• polling loops (which is inefficient), or

• using interrupts (not all peripheral support interrupts, and setup interrupt also incur

software overhead), or

604 Chapter 20

• use OS timing function like osDelay (the delay duration might be too long for what you

want),

We can use the osThreadYield function so that the RTX kernel can switch to another thread

that is ready to run, and get back to this thread later. For example:

dma_copy_start(); // Start a DMA copy operation which does not take long
while (dma_copy_done()==0){
osThreadYield();

}

20.6.4 Additional Information

Details of the RTX and CMSIS-RTOS API are documented in the documentation in

CMSIS packages. In addition, the Keil� Web site has a Support knowledgebase (http://

www.keil.com/support/search.asp) which contains a lot of useful information about RTX

kernel.

Programming with Embedded OS 605

http://www.keil.com/support/search.asp
http://www.keil.com/support/search.asp

CHAPTER 21

Mixed Language Projects
(C/C++ with Assembly)

21.1 Use of Assembly in Project Developments

Most of the projects demonstrated so far are written in C (and Cþþ for the ARM�

mbed� platform). It is also possible to program the microcontroller in assembly language.

However, it is very uncommon for real-world applications to be developed in assembly

language because of various shortcomings of assembly language programming:

• It is more difficult to program in assembly language, especially when the application

involves a lot of complicated data processing.

• It takes time to learn assembly, and mistakes are not easy to spot. As a result, it can

take longer time to complete a project.

• Assembly program files are less portable. For instance, different development tools can

have different assembly directives and syntax.

• Modern C compilers can generate very efficient code; in many cases, better than

assembly code written by inexperienced engineers.

• Most microcontroller vendors provide libraries and header files for C/Cþþ
development. If assembly is used for accessing peripherals, you will need to create your

own device driver code and header files.

In many cases, the need for writing assembly code has been avoided thanks to

CMSIS-CORE. For example, many special instructions like WFE (Wait-for-Event)/WFI

(Wait-for-Interrupt) can be accessed using APIs defined in CMSIS-CORE. However, there

are still a few numbers of situations where assembly program codes are required.

Typically, in real-world software developments most parts of the application, or the whole

project would be created in C/Cþþ (or other high-level language), and if required, a small

part of the project is coded in assembly language. This makes system initialization and

peripheral accesses much easier, and allows much better software portability.

Assembly language codes are typically used in the following situations:

• Program operation that requires direct manipulation of stack memory (e.g., embedded

OS development)

• Optimize for maximum speed/performance for specific hardware

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00021-7

Copyright © 2015 Elsevier Inc. All rights reserved. 607

http://dx.doi.org/10.1016/B978-0-12-803277-0.00021-7

• Reuse of assembly code from other projects

• Education and studying of processor architecture

There are a number of ways to mix between C/Cþþ codes and assembly codes. For example:

• The assembly code can be written in a separated assembly code file and use an assem-

bler program in the tool chain to handle it.

• The assembly code can be inserted inside C function/subroutine as inline assembly

code. This is supported in most tool chains.

• The assembly code can be implemented as a function/subroutine inside C program code

and handled by the Embedded Assembler feature in the ARM Compiler. This is supported

by tool chains using ARM Compiler including Keil� MDK-ARM� and ARM DS-5�.

Many tool chains also provide microcontroller start-up codes in assembly language format.

Due to the fact that these files are already prepared by the tool chain vendors or available

from software packages such as CMSIS-PACK, software developers rarely need to write

assembly code directly.

21.2 Recommended Practices in Assembly Programming and AAPCS

Before we actually start doing assembly language programming, we need to understand

how various functions and subroutines interact with each other during function calls. There

is a range of requirements if the assembly code needs to work correctly with C/Cþþ
program code. These requirements are documented in a document called ARM

Architecture Procedure Call Standard (AAPCS, reference 6), which describes how

program codes should work together on an ARM processors.

By following the programming convention set out in the AAPCS document, various

software components can work together, allowing better software reusability and avoid

problems with integrating your assembly code with program code generated by compilers,

or program codes from third parties.

Even you are creating an application that only contains assembly code, it is still useful to

follow the AAPCS guideline as debug tools might make assumptions about the operations

of functions based on the AAPCS.

The main areas covered by the AAPCS include the following:

• Register usages in function callsdA function or a subroutine should retain the values in

R4eR11. If these registers are changed during the function or the subroutine, the values

should be saved onto the stack and be restored before return to the calling code.

• Parameters and return result passingdFor simple cases, input parameters can be passed

onto a function using R0 (first parameter), R1 (second parameter), R2 (third parameter),

and R3 (fourth parameter). Usually, the return value of a function is stored in R0.

608 Chapter 21

If more than four parameters have to be passed onto a function, the stack would be used

(details can be found in AAPCS).

• Stack alignmentdIf an assembly function needs to call a C function, it should ensure

that the current selected stack pointer points to a double-word aligned address location

(e.g., 0x20002000, 0x20002008, 0x20002010). This is a requirement for Embedded

Application Binary Interface (EABI) standard. Program code generates from an EABI

compliant C compiler can assume that the stack pointer is pointing to a double-word

aligned location. If the assembly code does not call any C function (either directly or

indirectly), this is not strictly required.

For example, when developing assembly functions to be used by C codes, we need to

ensure data contents in the Callee-Saved Registers (R4eR11, see Table 21.1) will not get

erased accidentally.

On the other way round, when implementing an assembly function that calls a C function

at some stage, we need to make sure that if there is any data in Caller-Saved Registers

(R0eR3 and R12, see Caller-Saved Registers in Table 21.1) that are required later on,

those values must be saved before calling any C function.

If a function call requires input parameters, or if the function returns a parameter, this can

be handled with registers R0eR3 (Table 21.2).

When coding in assembly language, we also need to be careful with the double-word stack

alignment requirement: At function entry and exit boundaries, the value of stack pointer

should be aligned to double-word address. In ARM/Keil� development tools, the

assembler provides the REQUIRE8 directive to indicate if the function requires double-

word stack alignment, and the PRESERVE8 directive to indicate that a function preserves

the double-word alignment.

Table 21.1: Register usages and requirements in function calls

Register Function call behavior

R0eR3, R12 Caller-Saved RegistersdContents in these registers can be changed by a
function. Assembly code calling a function might need to save the values in
these registers if the contents in these registers are required for operations in
later stages.

R4eR11 Callee-Saved RegistersdContents in these registers must be retained by a
function. If a function needs to use these registers for processing, they need to
be saved on-to the stack memory and restored before function return.

R14 (LR) Content in the Link Register (LR) needs to be saved to stack if the function
contains “BL”/“BLX” instruction (calling another function) because the value in
LR will be overwritten when “BL”/“BLX” executed.

R13 (SP), R15 (PC) Should not be used for normal processing.

Mixed Language Projects (C/C++ with Assembly) 609

These directives can help the assembler to analyze your code and generate warnings if a

function that requires a double-word aligned stack frame is called by another function that

does not guarantee double-word stack alignment. Depending on your application, these

directives might not be required, especially for projects build entirely with assembly code.

In this book, only the basis of the AAPCS requirements and mixed language projects are

covered. For full details please refer to the AAPCS document, which is available on the

ARM web site (reference 6).

21.3 Overview of an Assembly Function
21.3.1 ARM® Tool Chains

An assembly function can be very simple. For example, a function to add two input

parameters can be as simple as follows:

My_Add ADDS R0, R0, R1 ; Add R0 and R1, result store in R0
BX LR ; Return

To help improve clarity, we can add additional directives to indicate the start and end of a

function. In Keil� MDK-ARM or ARM DS-5, the FUNCTION directive indicates the start of

a function, and the ENDFUNC directive indicates the end of the function.

My_Add FUNCTION
ADDS R0, R0, R1 ; Add R0 and R1, result store in R0
BX LR ; Return
ENDFUNC

A similar pair of directives is PROC and ENDP, which are synonym for FUNCTION and ENDFUNC.

Each FUNCTION directive must has a matching ENDFUNC directive, and they must not be

nested. FUNCTION and ENDFUNC, PROC, and ENDP are specific to ARM tool chains.

In a simple assembly file, in addition to the assembly code, you need additional directives

to indicate the start of the program code and type of the memory where it is stored.

Table 21.2: Simple parameter passing and returning value in a function call

Register Input parameter Return value

R0 First input parameter Function return value
R1 Second input parameter e, or return value (64-bit result)
R2 Third input parameter e
R3 Fourth input parameter e

610 Chapter 21

For example, a simple assembly program file for ARM tool chains (e.g., Keil MDK or DS-

5) with the My_Add function can be written as follows:

PRESERVE8 ; Indicate the code here preserve
; 8 byte stack alignment

THUMB ; Indicate THUMB code is used
AREA j.textj, CODE, READONLY ; Start of CODE area
EXPORT My_Add ; Make My_Add visible from outside

My_Add FUNCTION
ADDS R0, R0, R1 ; Add R0 and R1, result store in R0
BX LR ; Return
ENDFUNC
END ; End of file

21.3.2 Gcc Tool Chains

In the GNU tool chain, a simple My_Add function can be implemented as follow. Please

note that .type declaration should be added to declare My_Add as a function:

.type My_Add, %function
My_Add ADDS R0, R0, R1 ; Add R0 and R1, result store in R0

BX LR ; Return

In most cases the program still works without the .type declaration, but when it is omitted,

the LSB of the value when “My_Addr” label is referenced will be 0. For example, the

following code will fail if My_Addr is not declared with .type:

LDR R0,=My_Add /* This code will fail because LSB of R0 will be 0 */
BX R0 /* which mean trying to switch to ARM state */

Similar failure can be resulted if an exception handler was written in assembly code but

without the .type declaration.

Similar to ARM tool chain, additional directives are needed for the complete assembly

code file. The simple assembly language file for GNU tool chain can be written as follows:

.text /* text section */

.syntax unified /* Unified Assembly Syntax e UAL */

.thumb /* Thumb instruction set */

.type My_Add, %function

.global My_Add /* Make My_Add visible from outside */

Continued

Mixed Language Projects (C/C++ with Assembly) 611

My_Add
ADDS R0, R0, R1 /* Add R0 and R1, result store in R0 */
BX LR /* Return */
.end /* End of file */

Please note that when the file extension is “.S” (upper case S), GNU Compiler Collection

(gcc) will first invoke the preprocessor before invoking the GNU Assembler. If the file

extension is “.s” (lower case), then the preprocessing step would be skipped.

21.3.3 IAR Embedded Workbench for ARM

In the IAR Embedded Workbench for ARM (EWARM), a simple My_Add function can be

implemented as follows:

My_Add:
ADDS R0, R0, R1 /* Add R0 and R1, result store in R0 */
BX LR /* Return */

To make this an assembly file, additional directives can be added as follows:

NAME My_Add.S
SECTION .text:CODE:NOROOT(2)
THUMB
PUBLIC My_Add /* Make My_Add visible from outside */

My_Add:
ADDS R0, R0, R1 /* Add R0 and R1, result store in R0 */
BX LR /* Return */
END /* End of file */

21.3.4 Structure of an Assembly Function

In more complex assembly functions, more steps might be required. In general, the

structure of an assembly function can be divided into the following stages:

• prologue (saving register contents to the stack memory if necessary)

• allocate stack space memory for local variables (decrement Stack Pointer (SP))

• copy some of R0eR3 (input parameters) to high registers (R8eR12) for later use

(optional)

• carry out processing/calculation

• store result in R0 if a result is to be returned

• stack adjustment to free space for local variables (increment SP)

612 Chapter 21

• epilogue (restore register values from stack)

• return

Most of these steps are optional, for example, prologue and epilogue are not required if

the function does not corrupt the contents in R4eR11 and if there is no call to other

functions. The stack adjustment are also not required if there are sufficient registers for the

processing. The following assembly function template illustrates some of these steps:

My_Func FUNCTION
PUSH {R4-R6, LR} ; 4 registers are pushed to stack

; double word stack alignment is
; preserved

SUB SP, SP, #8 ; Reserve 8 bytes for local variables
; Now local variables can be accessed with SP related
; addressing mode
. ; Carry out processing
MOVS R0, R5 ; Store result in R0 for return value
ADD SP, SP, #8 ; Restore SP to free stack space
POP (R4-R6, PC} ; epilog and return
ENDFUNC

In some cases, it can be useful to copy some of the contents in R0eR3 (input parameters)

to high registers in the beginning of the function because most 16-bit THUMB�

instructions can only use low registers. Moving the input parameters to high registers for

later use allow more registers available for data processing, and hence make it easier to

develop function code.

If the function is calling another assembly or C function, the values in registers R0eR3,

and R12 could be changed after the function call. So unless you are certain that the

function being called will not change these registers, you need to save the contents of

these registers if they will be used later. Alternatively, you might need to avoid using these

registers for the data processing in your function.

21.4 Inline Assembly
21.4.1 ARM® Tool Chains (Keil ® MDK/DS-5)

Inline assembly is one of the most common ways to insert assembly instructions into C/

Cþþ program codes. This is supported by most of the development tool chains including

ARM Compiler. From ARM C Compiler 5.01, and Keil MDK-ARM 4.60, the inline

assembler now supports Thumb-state code, with some limitations including the following:

• It can be used only when targeting v6T2, v6-M, and v7/v7-M cores (i.e., Cannot insert

assembly instructions in Thumb codes for ARM7TDMI).

Mixed Language Projects (C/C++ with Assembly) 613

• Some of the Thumb� instructions (e.g., TBB, TBH, CBZ, and CBNZ instructions for

ARMv7-M architecture) are not supported.

• In some cases, the compiler can replace IT (IF-THEN) blocks with branch codes. Please

note that Cortex�-M0 and Cortex-M0þ processors do not support IT instruction blocks.

So this restriction only applies to ARMv7-M processors.

• The instruction cannot modify PC (program counter) or SP.

• Label expression and dot notation (e.g., “B .” for branch to the same program address)

cannot be used.

• As with previous versions, some system instructions such as SETEND are not permitted

(they care not supported in the Cortex-M processor).

There are additional restrictions, please refer to ARM Compiler (armcc) User Guide for

more information.

You can specify inline assembly code using the following formats:

__asm("instruction[;instruction]");
__asm{instruction[;instruction]}

asm("instruction[;instruction]");
asm{instruction[;instruction]}

For example, you can create a function to extract the highest byte (bit 31e24) using the

following code:

int my_get_highest_byte(int x)
{ // Note: comments cannot be added inside the assembly code

int y;
__asm(" REV y, x\n");
__asm(" UXTB y, y\n");
return y;

}

Or put it in just one “_asm”/“asm” specifier for multiple instructions:

int my_get_highest_byte(int x)
{

int y;
__asm(" REV y, x\n"

" UXTB y, y\n");
return y;

}

614 Chapter 21

You can also use a multiple-line format:

int my_get_highest_byte (int x)
{ // Note: You can use C / C++ comments inside

int y;
__asm
{

REV y, x // Move top byte to lowest byte
UXTB y, y // Clear bit 31 to 8

}
return y;

}

Please note older versions of the ARM Compiler only support inline assembler for ARM

instructions (not Thumb instructions) and therefore cannot be used with the Cortex-M

processors. For older versions of ARM tool chains, a difference feature called Embedded

Assembler (see Section 21.5) is usually used for inserting assembly instruction in C code.

21.4.2 GNU Compiler Collection

The GNU C compiler also supports inline assembler. The general syntax is as follows:

__asm (" inst1 op1, op2, . \n"
" inst2 op1, op2, . \n"
.

" instN op1, op2, . \n"
: output_operands /* optional */
: input_operands /* optional */
: clobbered_operands /* optional */

);

In simple cases where the assembly instruction does not require parameters, it can be as

simple as follows:

void Sleep(void)
{ // Enter sleep using WFI instruction

__asm (" WFI\n");
return;

}

If the assembly code requires input and output parameters, then you might need to define

the input and output operands and the clobbered register lists if any other registers are

Mixed Language Projects (C/C++ with Assembly) 615

modified by the inline assembly operation. For example, inline assembly code to multiply

a value by 10 can be written as follows:

int my_mul_10(int DataIn)
{

int DataOut;
__asm(" movs r0, %0\n"

" movs r3, #10\n"
" mul r0, r3\n"
" movs %1, r0\n"
:"=r" (DataOut) : "r" (DataIn) : "cc", "r0", "r3");

return DataOut;
}

In the code example, %0 is the first input parameter and %1 is the first output parameter.

Since the operand order is output _operands, input_operands, and clobbered_operands,

“DataOut” is assigned to %0, and “DataIn” is assigned to %1. Since the code changes

register R3, it needs to be added to the clobbered operand list.

More details of the inline assembly in the GNU C compiler can be found online in the

GNU tool chain documentation GCC-Inline-Assembly-HOWTO.

21.5 Embedded Assembler Feature (ARM® Tool Chain)

In ARM tool chains (including Keil� MDK-ARM and DS-5 Professional), a feature called

Embedded Assembler allows you to implement assembly functions/subroutines inside a C

file. To do this, you need to add the __asm keyword in front of the function declaration.

For example, a function to add four integers can be written as follows:

__asm int My_Add(int x1, int x2, int x3, int x4)
{

ADDS R0, R0, R1
ADDS R0, R0, R2
ADDS R0, R0, R3
BX LR ; Return result in R0

}

Inside embedded assembly code, you can import address values or data symbols using the
__cpp keyword. For example:

__asm void function_A(void)
{

PUSH {R0-R2, LR}
BL __cpp(LCD_clr_screen) ; Call a C function - method 1

616 Chapter 21

LDR R0,=__cpp(&pos_x) ; Get address of a C variable
LDR R0, [R0]
LDR R1,=__cpp(&pos_y) ; Get address of a C variable
LDR R1, [R1]
LDR R2,=__cpp(LCD_pixel_set) ; Import the address of a function
BLX R2 ; Call the C function
POP {R0-R2, PC}

}

21.6 Mixed Language Projects
21.6.1 Overview

In some aspects, the majority of the projects we have covered in this book are mixed

language projects. For example, most of the tool chains use assembly language for start-up

codes to give them higher flexibility in low-level control such as stack manipulation. In

addition, the CMSIS-CORE intrinsic functions also make use of inline assembly or other

similar features to allow us to insert special instructions as C functions.

In some cases, as illustrated with the HardFault handler, SVC handler, and context

switching examples, there are occasional needs to insert assembly code to our C/Cþþ
projects. When doing so, it is important to ensure AAPCS compliant in the assembly code,

otherwise the result could be unpredictable.

Sometime problems related to AAPCS incompliant can be quite hard to debug: the

program might work with one version of the compiler, and when switching to a different

version, or if the compiler changes, the project might stop working because of conflicts in

register usage.

21.6.2 Calling C Functions from Assembly Codes

When calling a C function from an assembly file, we need to be aware of the following

areas:

• Register R0eR3, R12, LR could be changed. If these registers hold data that are needed

for later use, you need to save it to the stack before the function call.

• The value of SP should be aligned to a double-word address boundary at function

boundaries.

• You need to ensure that the input parameters are stored in the correct registers (in

simple cases of 1e4 parameters, register R0eR3 are used).

• The return value (assume 32 bit or smaller) is normally stored in R0.

Mixed Language Projects (C/C++ with Assembly) 617

For example, if you have a C function that add four values:

int my_add_c(int x1, int x2, int x3, int x4)
{

return (x1 + x2 + x3 + x4);
}

In Keil� MDK-ARM�, you can call the C function from assembly by using the following

code:

MOVS R0, #0x1 ; First parameter (x1)
MOVS R1, #0x2 ; Second parameter (x2)
MOVS R2, #0x3 ; Third parameter (x3)
MOVS R3, #0x4 ; Fourth parameter (x4)
IMPORT my_add_c
BL my_add_c ; Call "my_add_c" function. Result store in R0

If the assembly code is written as embedded assembly code inside C files, instead of using

IMPORT keyword to import the address symbol, the __cpp keyword should be used:

MOVS R0, #0x1 ; First parameter (x1)
MOVS R1, #0x2 ; Second parameter (x2)
MOVS R2, #0x3 ; Third parameter (x3)
MOVS R3, #0x4 ; Fourth parameter (x4)
BL __cpp(my_add_c) ; Call "my_add_c" function. Result store in R0

The __cpp keyword is required for Keil MDK in accessing C or Cþþ compile-time

constant expressions. For other tool chains the directive required can be different.

In GNU tool chain, you can use “.global” to enable a label in a different file to be visible.

21.6.3 Calling Assembly Functions from C Codes

When calling assembly functions from C codes, we need to aware of the following areas

when writing the assembly functions:

• If any values in registers R4eR11 will be changed, we need to save the original values

onto the stack and restore the original values before returning to the C code.

• If we need to call another function inside the assembly function, we need to save the

LR on the stack and use it for return.

• The function return value is normally stored in R0.

618 Chapter 21

For example, if we have an assembly function that add four values:

EXPORT my_add_asm
my_add_asm FUNCTION

ADDS R0, R0, R1
ADDS R0, R0, R2
ADDS R0, R0, R3
BX LR ; Return result in R0
ENDFUNC

In the C code, we need to declare the function as “extern”:

extern int my_add_asm(int x1, int x2, int x3, int x4);
int y;

.

y = my_add_asm(1, 2, 3, 4); // call the my_add_asm function

If your assembly code needs to access some data variables in your C code, you can also

use the IMPORT/__cpp keyword. For example, the following code locates the variable “y”

in the project, calculate the value of y2 (square) and put the result back:

EXPORT CALC_SQUARE_Y
CALC_SQUARE_Y FUNCTION

IMPORT y
LDR R0,=y ; Obtain the address value of variable "y"
LDR R1, [R0]
MULS R1, R1, R1
STR R1, [R0]
BX LR
ENDFUNC

The above example assumes the variable “y” is 32 bit (LDR instruction transfers data in

32 bit).

21.7 Creating Assembly Projects in Keil® MDK-ARM
21.7.1 A Small Project

It is entirely possible to create a project entirely in assembly language. However, in many

cases we might still want to reuse some of the C code such as system initialization

function and peripheral driver because recreating these codes in assembly can just be too

much work.

Mixed Language Projects (C/C++ with Assembly) 619

To do this in Keil MDK, we can use the following steps:

1. Create a project, but without adding the Cortex� Microcontroller Software Interface

Standard (CMSIS) software components to the project.

2. Manually copy a start-up code (for example, from one of the previous example project)

into a file and name is as an assembly language file (e.g., “startup_stm32l053.s”) and

add it to the project.

3. Optionally, manually modify this start-up code so that it does not call SystemInit().

4. In project setting, select MicroLib so that the assembly start-up file does not reference

to “__use_two_region_memory”. Alternatively, just remove the heap setup information

from the project.

5. Manually add a simple assembly file that contains __main, as follows.

PRESERVE8 ; Indicate the code here preserve
; 8 byte stack alignment

THUMB ; Indicate THUMB code is used
AREA j.textj, CODE, READONLY ; Start of CODE area

EXPORT __main ; Make function visible from outside
__main FUNCTION

B main
ENDFUNC

main FUNCTION
B . ; while(1)
ENDFUNC
END ; End of file

21.7.2 Hello World

One of the most common projects in programming classes is the hello world. It is

reasonably easy to do that in C/Cþþ. However, to do this in assembly language

programming requires quite a lot of work because existing device drivers and header files

are in C/Cþþ, and they need to be ported to assembly code.

To make the setup similar to what we have already got, the SystemInit() function and

clock/PLL configuration functions are also ported to assembly code files, and are called at

the beginning of main(). In many cases, such work can be very time-consuming and error

prone, and that is the key disadvantage of programming in assembly language.

To demonstrate this, I have create a simple program to print a text string via Universal

Asynchronous Receiver/Transmitter (UART). Although the main program code is fairly

short, the effort to create the system and clock initialization functions is significant (see

project example code from book companion web site).

620 Chapter 21

main.s e an assembly language program to print a “Hello” message via UART
PRESERVE8 ; Indicate the code here preserve

; 8 byte stack alignment
THUMB ; Indicate THUMB code is used
AREA j.textj, CODE, READONLY ; Start of CODE area

;--
EXPORT __main ; Make function visible from outside

__main FUNCTION
B main
ENDFUNC

;--
IMPORT SystemInit
IMPORT Config_32MHz_PLL_Clock
IMPORT UART_config
IMPORT UART_puts

main FUNCTION
BL SystemInit
BL Config_32MHz_PLL_Clock
BL UART_config
LDR r0,=HELLO_TEXT
BL UART_puts
B . ; while(1)
ENDFUNC

;--
LTORG ; Literal data

HELLO_TEXT DCB "Hello\n", 0 ; Null terminated string
ALIGN 4

;--
END ; End of file

It is possible to pull in some of the C program codes for SystemInit() and peripheral control

functions we have already prepared for C/Cþþ projects. However, since the C/Cþþ code

will require CMSIS-CORE header files, so you will also need to add CMSIS-CORE header

files, and might end up better off with creating the project in a C/Cþþ environment.

21.7.3 Additional Text Output Functions

In many case we need to display values, either it is UART or LCD, we still need some

functions to convert the binary numbers into strings of characters so that the information is

represent in a readable form. In the last example, we create a simple string printing function

call UART_puts:

; Input R0 - starting address of text string. Null terminated
EXPORT UART_puts

UART_puts FUNCTION

Continued

Mixed Language Projects (C/C++ with Assembly) 621

PUSH {R4, LR}
MOV R4, R0

UART_puts_loop
LDRB R0, [R4]
CMP R0, #0
BEQ UART_puts_end
BL UART_putc
ADDS R4, R4, #1
B UART_puts_loop

UART_puts_end
POP {R4, PC}
ENDFUNC

To make the collection of functions more complete, functions for outputting values in

hexadecimal and decimal formats are added.

A function call UART_put_Hex is developed to send hexadecimal numbers. This function

calls the UART_putc function, which outputs single ASCII character each time it is called.

; Input R0 - value to be converted and output via UART
EXPORT UART_put_Hex

UART_put_Hex FUNCTION
; Output register value in hexadecimal format
; Input R0 = value to be displayed
PUSH {R0, R4-R7, LR} ; Save registers to stack
MOV R4, R0 ; Save register value to R3 because R0 is used

; for passing input parameter
MOVS R0,#'0' ; Starting the display with "0x"
BL UART_putc
MOVS R0,#'x'
BL UART_putc
MOVS R5, #8 ; Set loop counter
MOVS R6, #28 ; Rotate offset
MOVS R7, #0xF ; AND mask

UART_put_Hex_loop
RORS R4, R6 ; Rotate data value left by 4 bits(right 28)
MOV R0, R4 ; Copy to R0
ANDS R0, R7 ; Extract the lowest 4 bit
CMP R0, #0xA ; Convert to ASCII
BLT UART_put_Hex_Char0to9
ADDS R0, #7 ; If larger or equal 10, then convert to A-F

; (R0=R0+7+48)
UART_put_Hex_Char0to9

ADDS R0, #48 ; otherwise convert to 0-9
BL UART_putc ; Output 1 hex character
SUBS R5, #1 ; decrement loop counter

622 Chapter 21

BNE UART_put_Hex_loop ; if all 8 hexadecimal characters been
displayed

POP {R0, R4-R7, PC} ; then return, otherwise process next 4-bit
ENDFUNC

A function called UartPutDec for outputting decimal numbers is also created. Similar to the

last function, it also uses the UART_putc function. An array of constant values (refer as

masks in the program code) are used in the function to speed up the conversion of the

value to a decimal string.

; Input R0 - value to be converted and output via UART
EXPORT UART_put_Dec

UART_put_Dec FUNCTION
; Output register value in decimal format
; Input R0 = value to be displayed
; For 32-bit value, the maximum number of digits is 10
PUSH {R4-R6, LR} ; Save register values
MOV R4, R0 ; Copy input value to R4 because R0 is

; used for character output
ADR R6, UART_put_Dec_Const ; Starting address of mask array

UART_put_Dec_CompareLoop1 ; compare until input value is same or
; larger than the current mask (./100/10/1)

LDR R5, [R6] ; Get Mask value
CMP R4, R5 ; Compare input value to mask value
BHS UART_put_Dec_Stage2 ; Value is same or larger than current mask
ADDS R6, #4 ; Next smaller mask address
CMP R4, #10 ; Check for zero to 9
BLO UART_put_Dec_SmallNumber0to9
B UART_put_Dec_CompareLoop1

UART_put_Dec_Stage2
MOVS R0, #0 ; Initial value for current digit

UART_put_Dec_Loop2
CMP R4, R5 ; Compare to mask value
BLO UART_put_Dec_Loop2_exit
SUBS R4, R5 ; Subtract mask value
ADDS R0, #1 ; increment current digit
B UART_put_Dec_Loop2

UART_put_Dec_Loop2_exit
ADDS R0, #48 ; convert to ascii 0-9
BL UART_putc ; Output 1 character
ADDS R6, #4 ; Next smaller mask address
LDR R5,[R6] ; Get Mask value
CMP R5, #1 ; Last Mask
BEQ UART_put_Dec_SmallNumber0to9
B UART_put_Dec_Stage2

UART_put_Dec_SmallNumber0to9 ; Remaining value in R4 is from 0 to 9
ADDS R4, #48 ; convert to ascii 0-9
MOV R0, R4 ; Copy to R0 for display

Continued

Mixed Language Projects (C/C++ with Assembly) 623

BL UART_putc ; Output 1 character
POP {R4-R6, PC} ; Restore registers and return
ALIGN 4

UART_put_Dec_Const ; array of mask values for conversion
DCD 1000000000
DCD 100000000
DCD 10000000
DCD 1000000
DCD 100000
DCD 10000
DCD 1000
DCD 100
DCD 10
DCD 1
ALIGN
ENDFUNC

Using these functions, it is fairly easy to transfer information between your targeted

systems to a different system via UART interface, e.g., a personal computer running a

terminal program or customize the code to output information to a display to help

software development, or as a user interface.

21.8 Generic Assembly Code for Interrupt Control

For C/Cþþ language users, a function library for interrupt control is already provided in the

CMSIS. The CMSIS-CORE APIs are included in the device driver libraries from all major

microcontroller vendors and is openly accessible. More details of the CMSIS are covered in

Chapter 3dIntroduction to Embedded Software Development (Section 3.5dCortex�

Microcontroller Software Interface Standard).

For users programming the Cortex-M0 or Cortex-M0þ processor using assembly

language, it could be handy to have a set of generic functions for handling interrupt

control with the Nested Vectored Interrupt Controller (NVIC).

21.8.1 Enable and Disable Interrupts

The enable and disable of interrupts is quite simple. The following functions

“nvic_set_enable” and “nvic_clr_enable” require the interrupt number as input, which is

stored in R0 before the function call.

;-------------------------
; Enable IRQ
; - input R0 : IRQ number. E.g. IRQ#0 = 0

624 Chapter 21

ALIGN
nvic_set_enable FUNCTION

PUSH {R1, R2}
LDR R1,=0xE000E100 ; NVIC SETENA
MOVS R2, #1
LSLS R2, R2, R0
STR R2, [R1]
POP {R1, R2}
BX LR ; Return
ENDFUNC
;-------------------------
; Disable IRQ
; - input R0 : IRQ number. E.g. IRQ#0 = 0
ALIGN

nvic_clr_enable FUNCTION
PUSH {R1, R2}
LDR R1,=0xE000E180 ; NVIC CLRENA
MOVS R2, #1
LSLS R2, R2, R0
STR R2, [R1]
POP {R1, R2}
BX LR ; Return
ENDFUNC
;-------------------------

To use the functions, just put the interrupt number in R0, and call the function. For

example,

MOVS R0, #3 ; Enable Interrupt #3
BL nvic_set_enable

The FUNCTION and ENDFUNC keywords are used to identify start and end of a function

in ARM� assembler (including Keil MDK-ARM). This is optional. The “ALIGN”

keyword ensures correct alignment of the starting of the function.

21.8.2 Set and Clear Interrupt Pending Status

The assembly functions for setting and clear of interrupt pending status are very similar to

the ones for enable and disable interrupts. The only changes are labels and NVIC register

address values.

;-------------------------
; Set IRQ Pending status
; - input R0 : IRQ number. E.g. IRQ#0 = 0
ALIGN

nvic_set_pending FUNCTION

Continued

Mixed Language Projects (C/C++ with Assembly) 625

PUSH {R1, R2}
LDR R1,=0xE000E200 ; NVIC SETPEND
MOVS R2, #1
LSLS R2, R2, R0
STR R2, [R1]
POP {R1, R2}
BX LR ; Return
ENDFUNC
;-------------------------
; Clear IRQ Pending
; - input R0 : IRQ number. E.g. IRQ#0 = 0
ALIGN

nvic_clr_pending FUNCTION
PUSH {R1, R2}
LDR R1,=0xE000E280 ; NVIC CLRPEND
MOVS R2, #1
LSLS R2, R2, R0
STR R2, [R1]
POP {R1, R2}

BX LR ; Return
ENDFUNC
;-------------------------

Note that sometimes clearing of pending status of an interrupt might not be enough to stop

the interrupt from happening. If the interrupt source generates an interrupt request

continuously (level output), then the pending status could remain high even if you try to

clear it at the NVIC.

21.8.3 Setting Up Interrupt Priority Level

The assembly function to set up priority level for as interrupt is a bit more complex. First, it

requires two input parameters: the interrupt number and the new priority level. Secondly, the

priority level register address has to be calculated as there are up to eight priority registers.

And finally, the function needs to perform a read-modify-write operation to the correct byte

inside the 32-bit priority level register, as the priority level registers are word access only.

;-------------------------
; Set interrupt priority
; - input R0 : IRQ number. E.g. IRQ#0 = 0
; - input R1 : Priority level
ALIGN

nvic_set_priority FUNCTION

626 Chapter 21

PUSH {R2-R5}
LDR R2,=0xE000E400 ; NVIC Interrupt Priority #0
MOV R3, R0 ; Make a copy of IRQ number
MOVS R4, #3 ; clear lowest two bit of IRQ number
BICS R3, R4
ADDS R2, R3 ; address of priority register in R2
ANDS R4, R0 ; byte number (0 to 3) in priority register
LSLS R4, R4, #3 ; Number of bits to shift for priority & mask
MOVS R5, #0xFF ; byte mask
LSLS R5, R5, R4 ; byte mask shift to right location
MOVS R3, R1
LSLS R3, R3, R4 ; Priority shift to right location
LDR R4, [R2] ; Read existing priority level
BICS R4, R5 ; Clear existing priority value
ORRS R4, R3 ; Set new level
STR R4, [R2] ; Write back
POP {R2-R5}
BX LR ; Return
ENDFUNC
;-------------------------

In most applications, however, you can use a much simpler code to set up priority levels

of multiple interrupts in one go at the beginning of the program. For example, you can

predefine the priority levels in a table of constant values, and then copy it to the NVIC

priority level registers using a short instruction sequence:

LDR R0,=PrioritySettings ; address of priority setting table
LDR R1,=0xE000E400 ; address of interrupt priority registers
LDMIA R0!,{R2-R5} ; Read Interrupt Priority 0-15
STMIA R1!,{R2-R5} ; Write Interrupt Priority 0-15
LDMIA R0!,{R2-R5} ; Read Interrupt Priority 16-31
STMIA R1!,{R2-R5} ; Write Interrupt Priority 16-31
.

ALIGN 4 ; Ensure that the table is word aligned
PrioritySettings ; Table of priority level values (example values)

DCD 0xC0804000 ; IRQ 3- 2- 1- 0
DCD 0x80808080 ; IRQ 7- 6- 5- 4
DCD 0xC0C0C0C0 ; IRQ 11-10- 9- 8
DCD 0x40404040 ; IRQ 15-14-13-12
DCD 0x40404080 ; IRQ 19-18-17-16
DCD 0x404040C0 ; IRQ 23-22-21-20
DCD 0x4040C0C0 ; IRQ 27-26-25-24
DCD 0x004080C0 ; IRQ 31-30-29-28

Mixed Language Projects (C/C++ with Assembly) 627

21.9 Other Programming Techniques for Assembly Language
21.9.1 Allocating Data Space for Variables

In the previous assembly language function examples, the data processing can be handled

with just a few registers, so it does not use any stack memory at all. By default, the stack

memory allocation is done for us in the default start-up code. We could reduce the stack

size allocated by modifying the Stack_Size definition from 0x200 to other stack size

required:

Stack_Size EQU 0x00000200

AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp

For most applications, there would be fair amount of data variables. For simple

applications, we can also allocate memory space in the RAM. For example, we can add a

section in our application code to define three data variables “MyData1” (a word size data

variable), “MyData2” (a half-word size data variable), and “MyData3” (a byte size data

variable).

PRESERVE8 ; Indicate the code here preserve
; 8 byte stack alignment

THUMB ; Indicate THUMB code is used
AREA j.textj, CODE, READONLY ; Start of CODE area

EXPORT __main ; Make function visible from outside
__main FUNCTION

B main
ENDFUNC

main FUNCTION
LDR R0,=MyData1
LDR R1,=0x00001234
STR R1,[R0] ; MyData1 = 0x00001234

LDR R0,=MyData2
LDR R1,=0x55CC
STRH R1,[R0] ; MyData2 = 0x55CC

LDR R0,=MyData3
LDR R1,=0xAA
STRB R1,[R0] ; MyData3 = 0xAA

628 Chapter 21

B . ; while(1)
ENDFUNC
ALIGN 4

; --
; Allocate data variable space

AREA j Header Dataj, DATA ; Start of Data definitions
ALIGN 4

MyData1 DCD 0 ; Word size data
MyData2 DCW 0 ; half Word size data
MyData3 DCB 0 ; byte size data

ALIGN 4
; --

END ; End of file

Once the program is compiled, we can examine the data memory layout by right clicking on

the target name (e.g., “Target 1”) in the project window and select “Open Map file”. From the

map report file, we can see the address location and size of the variables we allocated:

Image Symbol Table

Local Symbols

Symbol Name Value Ov Type Size Object(Section)

main.s 0x00000000 Number 0 main.o ABSOLUTE
startup_stm32l053.s 0x00000000 Number 0 startup_stm32l053.o ABSOLUTE
RESET 0x08000000 Section 192 startup_stm32l053.o(RESET)
.text 0x080000c0 Section 24 startup_stm32l053.o(.text)
.text 0x080000d8 Section 48 main.o(.text)
main 0x080000db Thumb Code 20 main.o(.text)
Header Data 0x20000000 Section 8 main.o(Header Data)

MyData1 0x20000000 Data 4 main.o(Header Data)
MyData2 0x20000004 Data 2 main.o(Header Data)
MyData3 0x20000006 Data 1 main.o(Header Data)
STACK 0x20000008 Section 1024 startup_stm32l053.o(STACK)

Since the RAM in microcontroller device used starts at address 0x20000000 onward, the

variables are located starting from this address.

In gcc, the same data space allocation can be done by using .lcomm:

/* Data in LC, Local Common section */
.lcomm MyData4 4 /* A 4 byte data called MyData4 */
.lcomm MyData5 2 /* A 2 byte data called MyData5 */
.lcomm MyData6 1 /* A 1 byte data called MyData6 */

Mixed Language Projects (C/C++ with Assembly) 629

The .lcomm pseudo-op is used to create an uninitialized block of storage inside the “bss”

region. The program code can then access this space using the defined labels MyData4,

MyData5, and MyData6.

Another way to allocate memory space is to use the stack memory. In order to allocate

memory space for local variables inside a function, we can modify the value of SP at the

beginning of a function:

MyFunction

PUSH {R4, R5}
SUB SP, SP , #8 ; Allocate two words for space for local variables
MOV R4, SP ; Make a copy of SP to R0
LDR R5,=0x00001234
STR R5,[R4,#0] ; MyData1 = 0x00001234
LDR R5,=0x55CC
STRH R5,[R4,#4] ; MyData2 = 0x55CC
MOVS R5,#0xAA
STRB R5,[R4,#6] ; MyData3 = 0xAA
.

ADD SP, SP, #8 ; Restore SP back to starting value to free space
POP {R4, R5}
BX LR

The main advantage of using the stack for local variables is that local variables in

functions that are not active do not take up any space in RAM. In contrast, many 8-bit

microcontroller architectures allocate all data variables in static memory locations, results

in larger SRAM requirements.

21.9.2 Complex Branch Handling

When a conditional branch operation is based on a combination of input variables, it can

take a complex decision sequence to decide if a branch should be taken. In some cases, it

is possible to simplify the decision steps using assembly code.

If the branch condition is based on the variable of 5 bits or less, we can encode the branch

condition as a 32-bit constant and extract the decision bit using shift or rotate instruction.

For example,

if ((x ¼¼ 0)jj(x ¼¼ 3)jj((x>12)&&(x<19))jj(x¼23)) goto label; // x is a 5-bit data

630 Chapter 21

The decision can be written as:

LDR R0,=x ; Get address of x
LDR R0,[R0] ; Read x from memory
LDR R1,=0x0087E009 ; Encoded branch condition bit 23, 18-13, 3, 0 are set to1
ADDS R0, R0, #1 ; Shift as least one bit
LSRS R1, R1, R0 ; Extract branch condition to carry flag
BCS label ; Branch if condition met

Alternatively, the branch condition can be encoded into an array of data bytes if the

branch condition is more than 5-bit wide.

LDR R0,=x ; Get address of x
LDR R0,[R0] ; Read x from memory
LSRS R1,R1,R0 ; Get byte offset in look up table
LDR R2,=BranchConditionTable
LDRB R2,[R2,R1] ; Get encoded condition
MOVS R1, #7
ANDS R1, R1, R0 ; Get lowest 3 bit of x
ADDS R0, R0, #1 ; Shift as least one bit
LSRS R2, R2, R0 ; Extract branch condition to carry flag
BCS label ; Branch if condition met
.

BranchConditionTable
DCB 0x09, 0xE0, 0x87, 0x00, . ; Byte array of encoded branch condition

21.10 Accessing Special Instructions
21.10.1 CMSIS-CORE

In C/Cþþ programming, sometimes we might want to access some special instructions

that cannot be generated by normal C/Cþþ code. If you are using CMSIS compliant

device drivers, a number of CMSIS-CORE functions are available (Table 21.3) so that you

can just use these functions to generate the required assembly instructions.

The C compiler itself might also provide similar feature, which is normally called intrinsic

functions. For example, the Keil� MDK-ARM� and the ARM Development Studio 5

(DS-5) provide the following intrinsic functions showing in Table 21.4. Beware that some

of these functions differ from the CMSIS versions by lowercase characters.

In order to allow your application code to be more portable, you should use CMSIS

intrinsic functions when possible.

Mixed Language Projects (C/C++ with Assembly) 631

21.10.2 Idiom Recognitions

Some C compilers also provide a feature called idiom recognition. When the C code is

constructed in a particular way, then the C compiler automatically converts the operation

Table 21.3: CMSIS functions support for the Cortex®-M0 and Cortex-M0+ processor

Instruction CMSIS-CORE functions

ISB void __ISB(void); // Instruction Synchronization Barrier
DSB void __DSB(void); // Data Synchronization Barrier
DMB void __DMB(void); // Data Memory Barrier
NOP void __NOP(void); // No Operation
WFI void __WFI(void); // Wait for Interrupt (enter sleep)
WFE void __WFE(void); // Wait for Event (enter sleep /

// clear event latch)
SEV void __SEV(void); // Send Event
REV uint32_t __REV(uint32_t value); // Reverse byte order

// within a word
REV16 uint32_t __REV16(uint16_t value); // Reverse byte order within

// each half word independently
REVSH int32_t __REVSH(int16_t value); // Reverse byte order in the

// lower halfword, and then sign extend
// the result in a 32-bit word

CPSIE I void __enable_irq(void); // Clear PRIMASK
CPSID I void __disable_irq(void); // Set PRIMASK

Table 21.4: Keil MDK or ARM DS-5 intrinsic functions support for the Cortex-M0

and Cortex-M0+ processors

Instruction Intrinsic function provided in Keil MDK or ARM DS-5

ISB void __isb(void); // Instruction Synchronization Barrier
DSB void __dsb(void); // Data Synchronization Barrier
DMB void __dmb(void); // Data Memory Barrier
NOP void __nop(void); // No Operation
WFI void __wfi(void); // Wait for Interrupt (enter sleep)
WFE void __wfe(void); // Wait for Event (enter sleep /

// clear event latch)
SEV void __sev(void);// Send Event
REV unsigned int __rev(unsigned int val); // Reverse byte order

// within a word
CPSIE I void __enable_irq(void); // Clear PRIMASK
CPSID I void __disable_irq(void); // Set PRIMASK
ROR unsigned int __ror(unsigned int val, unsigned int shift);

// rotate a value right by a specific number of bit
// "Shift" can be 1 to 31

632 Chapter 21

into a special instruction when certain optimization levels are used. For example, for ARM

tool chain the idiom recognitions listed in Table 21.5 are enabled for optimization level 2

or level 3.

If the software is ported to a different C compiler without the same idiom recognition

feature, the code will still compile because it is using standard C syntax, although the

generated instruction sequence might be less efficient than using idiom recognitions.

Table 21.5: Idiom recognition in Keil MDK or ARM Compiler for Cortex-M0/M0+ processors

Instruction C language code that can be recognized by Keil MDK or ARM Compiler

REV16 /* recognized REV16 r0,r0 */
int rev16(int x)
{

return
(((x&0xff)<<8)j((x&0xff00)>>8)j((x&0xff000000)>>8)j((x&0x00ff0000)<<8));
}

REVSH /* recognized REVSH r0,r0 */
int revsh(int i)
{
return ((i<<24)>>16)j((i>>8)&0xFF);
}

Mixed Language Projects (C/C++ with Assembly) 633

CHAPTER 22

Software Porting
22.1 Overview

The Cortex�-M0 and Cortex-M0þ processors are designed for wide range of applications.

Due to their low-power capabilities and flexible system designs, they fit very well into

many applications where traditional uses of 8-bit and 16-bit microcontrollers were

common. By switching to low-power 32-bit microcontroller, many designers can further

enhance their products without losing out on energy efficiency or battery life.

On the other hand, many designs that are using older generations of 32-bit

microcontrollers (for example, microcontrollers based on the ARM7TDMI�) or other

Cortex-M processor-based microcontrollers could also benefit from switching to some of

the Cortex-M0 or Cortex-M0þ microcontrollers too. For example, many Cortex-M0 and

Cortex-M0þ microcontrollers are selling at very low price.

As a result, software porting is becoming a common task for some of the embedded

software developers. In this chapter, we will look into the following:

• Porting of software from 8-bit and 16-bit architectures to Cortex-M0, Cortex-M0þ, or

Cortex-M processors in general.

• Differences between the Cortex-M0/Cortex-M0þ processors and various common

ARM� processors for microcontrollers, and what areas in a program need to be

modified when porting software between them.

22.2 Porting Software from 8-Bit/16-Bit Microcontrollers to ARM®

Cortex®-M
22.2.1 Common Modifications

Some application developers might need to port applications from 8-bit or 16-bit

microcontrollers to microcontrollers based on Cortex-M processors. By moving from these

architectures to the Cortex-M0, often you can get better code density, higher performance,

and lower power consumption.

When porting applications from these microcontrollers to the Cortex-M processors, the

modifications of the software typically involve the following:

• Start-up code and vector tabledDifferent processor architectures have different start-up

code and interrupt vector tables and therefore these codes need to be replaced.

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00022-9

Copyright © 2015 Elsevier Inc. All rights reserved. 635

http://dx.doi.org/10.1016/B978-0-12-803277-0.00022-9

• Stack allocation adjustmentdWith ARM Cortex-M processors, the stack size

requirement can be very different from an 8-bit or 16-bit architecture. In addition, the

methods to define stack locations and stack sizes can also be very different from 8-bit

and 16-bit development tools.

• Removal of architecture-specific/tool chain-specific C language extensionsdMany of

the C compilers for 8-bit and 16-bit microcontrollers require a number of C language

extensions features. This included special data type like Special Function Registers

(SFRs) and bit data in 8051, or various “#pragma” statements in various C compilers.

• Interrupt controldIn 8-bit and 16-bit microcontroller programming, the interrupt

configuration is usually done by directly writing to various interrupt control registers.

When porting the applications to the ARM Cortex-M processor family, these codes

should be converted to use the interrupt control functions from CMSIS-CORE for the

best software portability. For example, configuration of individual interrupts can be

handled by various Nested Vectored Interrupt Controller (NVIC) functions in CMSIS

(e.g., NVIC_EnableIRQ and NVIC_DisableIRQ), and enable and disable of all interrupts can

be converted to __enable_irq() and __disable_irq().

• Peripheral programmingdIn 8-bit and 16-bit microcontroller programming, the

peripherals control is usually handled with programming to registers directly. When

using ARM microcontrollers, many microcontroller vendors provide device driver

libraries to make use of the microcontroller easier. You can use these library functions

to reduce software development time, or write to the hardware registers directly if

preferred. If you prefer to program the peripherals by accessing the registers directly, it

is still beneficial to use the header files in the device driver library as these have all the

peripheral registers defined and can save you time preparing and validating the code.

• Assembly code and inline assemblydObviously all the assembly and inline assembly

code needs to be rewritten when switching to a completely different architecture. In

many cases, you can rewrite the required function in C when the application is ported to

a Cortex-M processor.

• Unaligned datadSome 8-bit or 16-bit microcontrollers might support unaligned data.

Since the Cortex-M0 and Cortex-M0þ processors do not support unaligned data, some

data structures definitions or pointer manipulation codes might need to be changed. For

data structures that require unaligned data handling, we can use the __packed attribute

when defining the structure. However, the Cortex-M0 and Cortex-M0þ require multiple

instructions to access an unaligned data. So it is best to convert the data structures so

that all elements inside are aligned. Alternatively, if the performance of unaligned data

accesses is crucial for the application, the Cortex-M3/M4/M7 processors could be more

suitable as these processors support unaligned data accesses.

• Be aware of data size differencesdThe integers in most 8-bit and 16-bit processors are

16 bit, while in ARM architectures integers are 32 bit. This difference causes changes

in overflow behavior, it can also affect memory size required for storing the data. For

example, when a program file defines an array of integers from 8-bit or 16-bit

636 Chapter 22

architecture, we might want to change the code to use “short int” or “int16_t” (in

“stdint.h”, introduced in C99) when porting the code to ARM architecture so that the

size remains unchanged.

• Floating pointdMany 8-bit and 16-bit microcontrollers define “double” (double

precision floating point) as 32-bit data. In ARM architecture a “double” data is 64 bit.

When porting applications containing floating-point operations, you might need to

change the double precision floating-point data to “float” (single precision floating

point). Otherwise the processing speed would be reduced and the program size could

increase due to the requirement to process the data in extra precision. For the same

reason, some function calls for mathematical operation might need to be changed to

ensure the single precision version is used. For example, by default the cosine function

“cos()” is a double precision version of the cosine function, for single precision

operation, use “cosf()” instead.

• Adding fault handlersdIn many 8-bit and 16-bit microcontrollers, there are no fault

exceptions. While embedded applications can operate without any fault handlers, adding

of fault handlers can help an embedded system to handle errors (e.g., data corruption

caused by voltage drop or electromagnetic interference).

22.2.2 Memory Requirements

One of the points mentioned above is the stack size. After porting to the ARM

architecture, the required stack size could increase or decrease, depending on the

application. The stack size might increase because of the following:

• Each register push takes 4 bytes of memory in ARM, while in 16-bit or 8-bit, each

register push takes 2 bytes or 1 byte.

• In ARM programming, local variables are often stored in stack. While in some

architecture local variables might be defined in a separate data memory area.

On the other hand, the stack size could decrease because of the following:

• With 8-bit or 16-bit architecture, multiple registers are required to hold a large data, and

often these architectures have fewer registers compared to ARM, so more stacking

would be required.

• More powerful addressing mode in ARM means address calculations can be carried out

on the fly without taking up register space. The reduction of register used for an

operation can reduce stacking requirement.

Overall, the total RAM size required could decrease significantly after porting because in

some legacy processor architectures such as the 8051, local variables are defined statically

in data memory space rather on the stack. For these architectures, the memory space is used

even when the function or subroutine is not running. Whereas in ARM processors, local

variables are typically allocated on stack memory and take up memory space only when the

Software Porting 637

function or subroutine is executing. Also, with more registers available in the ARM

processor’s register bank compared to some other architectures, some of the local variables

might only need to be stored in the register bank instead of taking up memory space.

Due to high code density, the program memory requirements in ARM Cortex-M

processors are normally much lower than 8-bit microcontrollers, and often lower than most

16-bit microcontrollers. So when you port your applications from these 8-bit or 16-bit

microcontrollers to ARM Cortex-M0 or Cortex-M0þ microcontrollers, you could possibly

use a device with smaller flash memory size. The reduction of the program memory size is

often caused by the following:

• Better efficiency at handling 16-bit and 32-bit data (including integers, pointers)

• More powerful addressing modes

• Some memory access instructions can handle multiple data, including PUSH and POP

There can be exceptionsdFor applications that contain only small amount of code, the

code size in ARM Cortex-M0/Cortex-M0þ microcontrollers could be larger compared to

8-bit or 16-bit microcontrollers because of the following:

• Most of the microcontrollers based on Cortex-M processors support more interrupts and

therefore have a much larger vector table (and each vector takes 4 bytes in ARM

Cortex-M instead of 2 bytes in 8-bit or 16-bit microcontrollers).

• The C start-up code for ARM Cortex-M processors might be larger. Most development

tool chains for ARM processor support full standard C libraries which support many

features not available in 8-bit or 16-bit architecture. However, many tool chains also

provide smaller version of C start-up libraries. For example, MicroLIB in ARM

development tools like Keil� MDK-ARM� or ARM DS-5�, and NewLib-Nano in

ARM gcc are designed to reduce the code size.

22.2.3 Nonapplicable Optimizations for 8-Bit or 16-Bit Microcontrollers

Some optimization techniques used in 8-bit/16-bit microcontroller programming are not

required on ARM processors. In some cases, these optimizations might result in extra

overhead due to architecture differences. For example, many 8-bit microcontroller

programmers uses character data as loop counter for array accesses:

unsigned char i; /* use 8-bit data to avoid 16-bit processing */
char a[10], b[10];
for (i=0;i<10;i++) a[i] = b[i];

When compiling the same program on ARM processors, the compiler will have to insert a

UXTB instruction to replicate the overflow behavior of the array index (“i”). To avoid this

extra overhead we should declare “i” as integer “int”, “int32_t”, or “uint32_t” for best

performance.

638 Chapter 22

Another example is the unnecessary use of casting. For example, the following code uses

casting to avoid the generation of 16 � 16 multiply operation in an 8-bit processor:

unsigned int x, y, z;
z = ((char) x) * ((char) y); /* assumed both x and y must be less than 256 */

Again, such casting operation will result in extra instructions in ARM architecture. Since

Cortex-M processors can handle 32 � 32 multiply with 32-bit result in a single instruction,

the program code can be simplified into:

unsigned int x, y, z;
z = x * y;

22.2.4 ExampledMigrate from 8051 to ARM Cortex-M0/Cortex-M0+

In general, since most applications can be programmed in C entirely on the Cortex-M

processors, the porting of applications from 8-bit/16-bit microcontrollers is usually

straightforward and easy. Here we will see some simple examples of modifications required.

Vector Table

In the 8051, the vector table contains a number of JMP (jump) instructions that branch to

the start of the interrupt service routines. In some development environments, the compiler

might create the vector table for you automatically. For ARM Cortex-M processors, the

vector table contains the address of the main stack pointer (SP) initial values, and starting

addresses of the exception handlers (Table 22.1). The vector table is part of the start-up

code, which is often provided by the development environment. For example, when

creating new project in the Keil MDK-ARM, the software component manager (“Manage

Runtime Environment”) in the project wizard can add the default start-up code into the

project, which contains the vector table.

Data Type

In some cases, we need to modify the data type so as to maintain the same program

behavior as shown in Table 22.2.

Some function calls might also need to be changed if we want to ensure only single

precision floating point is used (Table 22.3).

Some special data types for 8051 are not available on ARM architecture: bit, sbit, sfr,

sfr16, idata, xdata, bdata.

Interrupt

Interrupt control code in 8051 is normally written as direct access to SFRs. They need to

be changed to CMSIS-CORE function when porting to Cortex-M microcontrollers

(Table 22.4).

Software Porting 639

The interrupt service routine also requires minor modifications. Some of the special

directives used by interrupt service routines specific to 8051 need to be removed when the

application code is ported to the Cortex-M microcontrollers. For Cortex-M0/Cortex-M0þ

Table 22.2: Data type change during software porting

8051 Cortex®-M0/Cortex-M0+

int my_data[20]; // array of 16-bit values
double pi;

short int my_data[20]; // array of 16-bit values
float pi;

Table 22.3: Floating point C code change during software porting

8051 Cortex®-M0/Cortex-M0+

Y =T*atan(T2*sin(Y)*cos(Y)/
(cos(X+Y)+cos(X-Y)-1.0));

Y =T*atanf(T2*sinf(Y)*cosf(Y)/
(cosf(X+Y)+cosf(X-Y)-1.0F));

Table 22.1: Vector table comparison

8051 Cortex®-M0/Cortex-M0+

org 00h
jmp start

org 03h ; Ext Int0 vector
ljmp handle_interrupt0

org 0Bh ; Timer 0 vector
ljmp handle_timer0

org 13h ; Ext Int1 vector
ljmp handle_interrupt1

org 1Bh ; Timer 1 vector
ljmp handle_timer1

org 23h ; Serial interrupt
ljmp handle_serial0

org 2bh ; Timer 2 vector
ljmp handle_timer2

__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault
DCD 0,0,0,0,0,0,0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD 0,0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler

; External Interrupts
DCD WAKEUP_IRQHandler ; Wakeup PIO0.0
...

Table 22.4: Interrupt control change during software porting

8051 Cortex®-M0/Cortex-M0+

EA = 0; /* Disable all interrupts */
EA = 1; /* Enable all interrupts */

__disable_irq(); /* Disable all interrupts */
__enable_irq(); /* eEnable all interrupts */

EX0 = 1; /* Enable Interrupt 0 */
EX0 = 0; /* Disable Interrupt 0 */
PX0 = 1; /* Set interrupt 0 to high
priority*/

NVIC_EnableIRQ(Interrupt0_IRQn);
NVIC_DisableIRQ(Interrupt0_IRQn);
NVIC_SetPriority(Interrupt0_IRQn, 0);

640 Chapter 22

processors, the interrupt service routine can be a normal C function. In ARM tool chains

we can add “__irq” directive for clarify purpose (Table 22.5).

Sleep Mode

Entering of sleep mode is different too. In 8051 sleep mode can be entered by setting the

IDL (idle) bit in PCON. In Cortex-M processors, you can use the WFI/WFE instructions,

or use vendor-specific functions provided in the device driver library (Table 22.6).

22.3 Differences between ARM7TDMI™ and
Cortex®-M0/M0+ Processor

22.3.1 Overview of Classic ARM® Processors

Before the ARM Cortex-M processors are developed, there are a number of previous

generation ARM processors being used in microcontroller applications (Table 22.7).

For example, some of the ARM-based microcontrollers on the market are based on the

ARM7TDMI processor, a processor that was released around 1994 and is still being

used today.

While it is less common to find ARM920T, 922T, and 940T processors today, there are

still ranges of ARM926EJ-S and even ARM11 series processors on the market. However,

those designs are usually focussed on running embedded Linux systems and have quite

different application areas compared to the Cortex-M0 and Cortex-M0þ processors. For

these applications, it is more common to migrate to the newer Cortex-A processors.

Since there are still a number of ARM7TDMI-based microcontrollers on the market, we

will cover the key differences between the ARM7TDMI and the Cortex-M0 and

Cortex-M0þ processors, and then cover the software migration considerations.

Table 22.5: Interrupt handler change during software porting

8051 Cortex®-M0/Cortex-M0+

void timer1_isr(void) interrupt 1 using 2
{/* Use register bank 2 */
.;
return;

}

__irq void timer1_isr(void)
{
.;
return;

}

Table 22.6: Sleep mode control change during software porting

8051 Cortex®-M0/Cortex-M0+

PCON = PCON j 1; /* Enter Idle mode */ __WFI(); /* Enter sleep mode */

Software Porting 641

22.3.2 Operation Mode

The ARM7TDMI processor has a number of operation modes, while the Cortex-M0/

Cortex-M0þ processors only have two modes (Table 22.8).

Some of the exception models from the ARM7TDMI are combined in Handler mode in

the Cortex-M0/Cortex-M0þ processors with different exception types. For example, see

Table 22.9.

The reduction of operation modes simplifies the programs running on Cortex-M

processors. For example, in ARM7TDMI you need to set up different SPs for different

Table 22.7: Some of the classic ARM® processors that are used in microcontroller applications

Processor Descriptions

ARM7TDMI� A very popular 32-bit processor and widely supported by development tools.
It is based on ARM architecture version 4T and supports both ARM and
Thumb instruction set. Upward compatible to ARM9, ARM11, and
Cortex�-A/R processors.

ARM920T/922T/940T Microcontrollers based on these processors are less common nowadays. They
are based on ARM architecture version 4T but with Harvard bus architecture.
Some of them also support cache, MMU, or MPU features.

ARM9E processor family Most of the ARM9 microcontrollers are based on the ARM9E processor
family. They are based on ARM architecture version 5 TE (with Enhanced
DSP instructions) and provide various memory/system features (cache, TCM,
MMU, MPU, DMA, etc) depending on processor model. Usually they are
targeted at higher end of microcontroller application space with high
operating frequency, larger memory system support.

ARM11 processor family They are application processors based on ARM architecture version v6 (do not
confuse it with ARMv6-M). These processors are targeted at applications that
require full feature OS, so they support MMU and the pipeline design is
optimized for higher clock frequency. Today, ARM11 processors are still used
in a range of popular projects such as the Raspberry Pi (model A, B, and Bþ).

Note for Table 22.7: TCMdTightly Coupled Memory, MMUdMemory Management Unit, DMAdDirect Memory Accesses.

Table 22.8: Operation modes comparison between

ARM7TDMI™ and Cortex®-M0/Cortex-M0+ processors

Operation modes in

ARM7TDMI Operation modes in Cortex-M0

System
Supervisor
IRQ (interrupt)
FIQ (fast interrupt)
Undefined (Undef)
Abort
User

Thread
Handler

642 Chapter 22

modes, whereas in the Cortex-M processor it is fine to run many applications with just one

SP, and need a second SP when an Embedded OS is used.

22.3.3 Registers

The ARM7TDMI has a register bank with banked registers based on current operation

mode. In the Cortex-M0 or Cortex-M0þ processor, only the SP is banked. And in most

simple applications without an OS, only the Main Stack Pointer (MSP) is required.

Figure 22.1 shows the comparison of the register bank between ARM7TDMI and Cortex-

M0/M0þ processors.

Table 22.9: Exception comparison between ARM7TDMI™ and

Cortex®-M0/Cortex-M0+ processor

Exceptions in ARM7TDMI Exception in Cortex-M0

IRQ
FIQ
Undefined (Undef)
Abort
Supervisor

Interrupts
Interrupts
HardFault
HardFault
SVCall

Registers
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR

SPSR_fiq

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R13_irq

R14_irq

R13_svc

R14_svc

R13_undef

R14_undef

R13_abt

R14_abt

SPSR_irq SPSR_svc SPSR_undef SPSR_abt

FIQ mode
banked
registers

IRQ mode
banked
registers

SVC mode
banked

registers

Common
registers

Undef
mode

banked
registers

Abort
mode

banked
registers

Registers in ARM7TDMI
Registers in Cortex-M0 /
Cortex-M0+ Processor

Registers
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14 (LR)

R15 (PC)

R13 (PSP)

xPSR

CONTROL

PRIMASK

Figure 22.1
Register bank differences between ARM7TDMI� and the Cortex�-M0/Cortex-M0þ processors.

Software Porting 643

There are some differences between the CPSR (Current Program Status Register) in the

ARM7TDMI and the xPSR in the Cortex-M processors. For instance, the mode bits in

CPSR are removed, replaced by IPSR, and interrupt masking bit I-bit is replaced by the

PRIMASK register, which is separated from the xPSR.

Despite the differences between the register banks, the programmer’s model or R0 to R15

remains the same. As a result, most Thumb� instruction codes on ARM7TDMI can be

reused on Cortex-M processors, simplifying software porting.

22.3.4 Instruction Set

The ARM7TDMI supports the ARM instructions (32 bit) and Thumb instructions (16 bit)

in ARM architecture v4T. The Cortex-M0 and Cortex-M0þ processors support Thumb

instructions in ARMv6-M, which is a superset of the Thumb instructions supported by the

ARM7TDMI. However, the Cortex-M processors do not support ARM instructions.

Therefore applications for ARM7TDMI must be modified when porting to Cortex-M

microcontrollers.

22.3.5 Interrupts

The ARM7TDMI supports an IRQ interrupt input and an FIQ (Fast Interrupt) input.

Normally a separate interrupt controller is required in an ARM7TDMI microcontroller to

allow multiple interrupt sources to share the IRQ and FIQ inputs. As a result, the interrupt

control codes need to be modified.

In ARM7TDMI, since the FIQ has more banked registers and its vector is located at the

end of the vector table, it can work faster by reducing the register stacking required and

the FIQ handler can be placed at the end of vector table to avoid branch penalty.

Unlike the ARM7TDMI, the Cortex-M0 and Cortex-M0þ processors have a built-in

interrupt controller called NVIC with up to 32 interrupt inputs. Each interrupt can be

programmed at one of the four available priority levels. There is no need to separate

interrupts into IRQ and FIQ because stacking of registers is handled automatically by

hardware. In addition, the vector table in Cortex-M processors stores the starting address

of each interrupt service routine, while in ARM7TDMI the vector table holds instructions

(usually branch instructions that branch to interrupt service routines).

When the ARM7TDMI processor receives an interrupt request, the interrupt service

routine starts in ARM state (using ARM instruction set). Additional assembly wrapper

code is also required to support nested interrupts. In Cortex-M processors there is no need

to use assembly wrappers for normal interrupt processing.

644 Chapter 22

22.4 Porting Software from ARM7TDMI™ to the Cortex®-M0/
Cortex-M0+ Processors

Application codes for ARM7TDMI must be modified and recompiled to be used on the

Cortex-M0/Cortex-M0þ processors.

22.4.1 Start-up Code and Vector Table

Since the vector table and the initialization sequence are different between ARM7TDMI

and the Cortex-M0 or Cortex-M0þ processor, the start-up code and the vector table must

be replaced (See Table 22.10).

Examples of start-up code for Cortex-M0/Cortex-M0þ based microcontrollers can be

found in various examples in this book, which is available on the companion Web site.

22.4.2 Interrupt

Since the interrupt controller used in microcontrollers with ARM7TDMI would be

different from the NVIC in the Cortex-M0 or Cortex-M0þ processor, all the interrupt

control codes need to be updated. It is recommended to use NVIC access functions

defined in CMSIS-CORE for portability.

The interrupt wrapper functions for nested interrupt support for the ARM7TDMI processor

must be removed. If the interrupt service routine was written in assembly, the handler code

Table 22.10: Vector table differences between ARM7TDMI™ and Cortex®-M0/Cortex-M0+

processors

Vector table in Arm7TDMI Vector table in the Cortex-M0/Cortex-M0+

Vectors
B Reset_Handler
B Undef_Handler
B SWI_Handler
B PrefetchAbort_Handler
B DataAbort_Handler
B IRQ_Handler
B FIQ_Handler

Reset_Handler; Setup Stack for each mode
LDR R0,¼Stack_Top
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
MOV SP, R0
. ; setup stack for other modes
IMPORT __main
LDR R0, ¼ __main; Enter C startup
BX R0

Vectors
IMPORT __main
DCD _stack_top; Main SP starting value
DCD __main; Enter C startup
DCD NMI_Handler
DCD HardFault_Handler
DCD 0,0,0,0,0,0,0
DCD SVC_Handler
DCD 0, 0
DCD PendSV_Handler
DCD SysTick_Handler
.; vectors for other interrupt handlers

Software Porting 645

will probably require rewriting because many ARM� instructions cannot be directly

mapped to Thumb� instructions. For example, the exception handler in ARM7TDMI can

be terminated by “MOVS PC, LR” (ARM instruction). This is not valid for Cortex-M0/

M0þ processors and must be replaced by a “BX LR” instruction or a POP instruction.

FIQ handlers for the ARM7TDMI processor might rely on the behavior that R8 to R14 are

banked in ARM7TDMI to save execution time. For example, constants used by the FIQ

handler might be preloaded into these banked registers before the FIQ is enabled. When

porting such handlers to the Cortex-M processors, the constants must be loaded into the

registers within the handler.

In some cases you might find assembly code being used to enable or disable interrupts by

modifying the I-bit in CPSR. In Cortex-M processor, this is replaced by the PRIMASK

interrupt masking register. Note that in ARM7TDMI, you can carry out the exception

return and change I-bit in a single exception return instruction. In the Cortex-M

processors, this method cannot be used because the PRIMASK and xPSR are separate

registers. As a result, if the PRIMASK register is set during an exception handler, it must

be cleared before the exception exit. Otherwise the PRIMASK register will remain set and

no other interrupts (apart from NMI) can be accepted.

22.4.3 C Program Code

Apart from the usual changes due to peripherals, memory map, and system level feature

differences, the C applications might require changes in the following areas:

• Compile directives like “#pragma arm” and “#pragma thumb” are no longer required

because the Cortex-M processors support Thumb instructions only.

• For project previously created with ARM RealView Development Suite (RVDS), DS-5�

or Keil� MDK tool chains, it is likely that all inline assembly codes have to be

rewritten because the inline assembly in the ARM tool chain previously only supports

ARM instructions, which is not supported in the Cortex-M processors. To rewrite these

inline assembly codes, this could be done either using inline assembly, embedded

assembler, separate assembly code, or C functions. Users of GNU C compiler might

also need to modify their inline assembly code if that was written for ARM instructions,

or if the code attempts to switch to ARM state.

• Exception handlers can be simplified because in the Cortex-M processors, each interrupt

has its own interrupt vector. There is no need to use software to determine which inter-

rupt service is required and there is no software overhead in supporting nested interrupts.

• Although the “__irq” directive is not essential in the exception handlers for Cortex-M

processors, this directive for interrupt handlers can be retained in the ARM DS-5 or

Keil MDK-ARM� projects for clarity. It might also help software porting if the applica-

tion has to be ported to other ARM processors in the future.

646 Chapter 22

The C code should be recompiled to ensure that only Thumb instructions are used and no

attempt to switch to ARM state should be contained in the compiled code. Similarly,

library files must also be updated to ensure that it will work with Cortex-M processors.

22.4.4 Assembly Code

Due to the fact that the Cortex-M processors do not support the ARM instruction set,

assembly code which uses ARM instructions has to be rewritten.

Be careful with legacy Thumb programs that use the CODE16 directive. When the

CODE16 directive is used, the instructions are interpreted as traditional Thumb syntax.

For example, data processing op-codes without S suffixes are converted to instructions that

update APSR when CODE16 directive is used. However, you can reuse assembly files

with CODE16 directive because it is still supported by existing ARM development tools.

For new assembly code, the Thumb directive is recommended, which indicates to the

assembly that the UAL (Unified Assembly Language) is used. With UAL syntax, data

processing instructions updating the APSR require the S suffix.

Fault handlers and system exception handlers like SWI must also be updated to work with

Cortex-M processors.

22.4.5 Atomic Access

Since Thumb instructions do not support swap (SWP and SWPB instructions), code for

handling atomic access must be changed. For single processor systems without other bus

master, you can use either the exception mechanism or PRIMASK interrupt masking

register to achieve atomic operations. For example, you can use SVCall exception as a

gateway to handle atomic operations because there can only be one instance of the SVCall

exception handler running (when an exception handler is running, other exceptions of

same or lower priority levels are blocked).

22.4.6 Optimizations

After getting the software working on the Cortex-M0 or Cortex-M0þ processor, there are

various areas you can look into to optimize your application code.

For assembly code migrated from the ARM7TDMI, the data type conversion is one of the

potential areas for improvement due to new instructions available in the ARMv6-M

architecture.

If the interrupt handlers were written in assembly, there might be chance that the stacking

operations can be reduced since R0eR3, R12 are automatically stacked by the exception

sequence.

Software Porting 647

More sleep mode features are available in the Cortex-M processors which can be used to

reduce power consumption. To take the full advantages of the low power features on a

Cortex-M0 or Cortex-M0þ based microcontroller, you will need to modify your

application codes to make use of the power management features in the microcontroller.

These features are dependent on the microcontroller products and the information in this

area can usually be found in user manuals or application notes provided by the

microcontroller vendors. Chapter 19 covers some of the examples of using low power

features in microcontrollers.

With the nested interrupts being automatically handled by processor hardware and

availability of programmable priority levels in the NVIC, priority level of the exceptions

can be rearranged for best system performance.

22.5 Differences between Various Cortex®-M Processors
22.5.1 Overview

Today there are six processors in the Cortex-M processor family. In Chapter 1, Section

1.2.4dARM� Cortex-M Processor Seriesdalready covered the overview of different

Cortex-M processors. In this section we will cover additional technical details

(Table 22.11).

In terms of system level aspects, the main differences among the Cortex-M processors are

shown in Figure 22.2.

The Cortex-M3, Cortex-M4, and Cortex-M7 processors have higher performance than the

Cortex-M0 and Cortex-M0þ processors due to extra instructions, various differences in

the bus level architecture and processor’s pipeline (e.g., superscalar support in the Cortex-

M7 processor). However, the additional capabilities also increase power consumption.

Table 22.11: High-level architecture comparison of the Cortex®-M processors

Cortex-M0 Cortex-M0+ Cortex-M1 Cortex-M3 Cortex-M4 Cortex-M7

Architecture ARMv6-M ARMv6-M ARMv6-M ARMv7-M ARMv7E-M ARMv7E-M
Pipeline stage 3 2 3 3 3 6
Bus architecture Von

Neumann
Von
Neumann

Harvard
(using TCM)

Harvard Harvard Harvard

Performance
(DMIPS/MHz)

0.9 0.95 0.8 1.25 1.25 2.14

Floating point e e e e Single
precision

Single
precision þ
double
precision

Floating point
architecture

e e e e FPv4 FPv5

648 Chapter 22

So it is important to understand the requirements of the targeted applications (e.g., battery

life vs performance) and the characteristics of the microcontroller products when selecting

the processor for your projects.

22.5.2 Programmer’s Model

The ARMv7-M architecture (including ARMv7E-M) is a superset of the ARMv6-M

architecture. So processors based on ARMv7-M architecture provide all the architectural

features available in the ARMv6-M. In addition to that, the Cortex-M3, Cortex-M4, and

Cortex-M7 processors provide various additional features.

For the programmer’s model, unprivileged mode (Unprivileged Threaddwhen not

executing exception handlers) is optional in ARMv6-M and is not available in the Cortex-

M0 processor at all. This is always available in ARMv7-M architecture. The unprivileged

thread mode has limited access to the processor configuration registers (e.g., NVIC,

SysTick), and an optional memory Protection Unit (MPU) can be used to block programs

running in user threads from accessing certain memory regions (Figure 22.3).

Apart from the operation modes being different, the ARMv7-M architecture also has

additional interrupt masking registers. The BASEPRI register allows interrupts of certain

priority level or lower to be blocked, and the FAULTMASK provides additional fault

management features.

32-bit Thumb
instructions

Bit-band feature
(except Cortex-M7)

Bit field
processing

Cortex-M3 Cortex-M4

Multi-processor
support

More debug and
trace features

SIMD instructions

Saturated maths

Single cycle MAC

Hardware divide

Up to 240
interrupts

MPU

0.9

1.25

0.8

Low cost microcontrollers, 8-bit / 16-
bit processor replacement, ultra low
power or mixed signal applications

High performance microcontrollers,
low power / low cost microcontrollers,

embedded systems with high
reliability requirements

Digital Signal Controllers,
high quality audio
processing, highly

precise industrial / motor
controls

FPGA
applications,

emerging
applications

DMIPS/MHz

Floating Point
Unit (FPU)

Thumb
instruction set

NVIC

Low power

Cortex-M0

DebugLow gate count

Deterministic
interrupt latency

Cortex-M0+

Single
Cycle I/O

Instruction
trace (MTB)

MPU

Cortex-M7Caches TCM
interfaces

Double precision
floating point

Superscalar high
performance

Full data
trace option

Cortex-M1
FPGA

optimizations

TCM

2.14

Figure 22.2
The Cortex�-M processor family.

Software Porting 649

The control register in the Cortex-M4 and Cortex-M7 processors also has an additional bit

(bit[2]dFloating Point Context Active, FPCA) to indicate if current executing context has

been using floating point operations.

The xPSR in the ARMv7-M architecture also has a number of additional bits to allow an

interrupted multiple load/store instruction to be resumed from the interrupted transfer, and

to allow an instruction sequence (up to four instructions) to be conditionally executed.

And when DSP extension is present (i.e., Cortex-M4 and Cortex-M7 processors), there are

also additional bit field (GE[3:0]dGreat Than or Equal flags) for some of the SIMD

(Single Instruction Multiple Data) operations.

Finally, the ARMv7-M architecture supports unaligned data transfers for a limited range of

load and store instructions, while ARMv6-M architecture does not.

22.5.3 NVIC and Exceptions

The NVIC in the Cortex-M3, Cortex-M4, and Cortex-M7 processors supports up to 240

interrupts. The number of priority levels is also configurable by the chip designers, from 8

levels to 256 levels (in most cases 8 levels to 32 levels). The priority level settings can

Privileged
Handler

Unprivileged
Thread

Privileged
Thread

Start
(reset)

Exception
Exception

exit

Exception

Exception
exit

Program of
CONTROL

register

Available in
ARMv7-M

Registers
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14 (LR)

R15 (PC)

R13 (PSP)

Special
Registers

xPSR

PRIMASK

FAULTMASK

BASEPRI

Program Status Registers

Interrupt Mask
Registers

Control RegisterCONTROL
Additional bit fields

in ARMv7-M

Optional in ARMv6-M
(not available in Cortex-M0)

Figure 22.3
Programmer’s model differences between ARMv6-M and ARMv7-M architectures.

650 Chapter 22

also be optionally configured into preemption priority (for nested interrupt) and subpriority

(use when multiple interrupts of same preempt priority happening at the same time) by

software.

The differences of the NVIC features in the Cortex-M processors are shown in

Table 22.12.

There are a number of differences, but in terms of software porting across different

Cortex-M processors it is often quite straightforward, as shown in Table 22.13. One of the

major differences is that some of the NVIC registers in ARMv7-M can be accessed using

byte or half-word accesses, whereas in ARMv6-M it is limited to 32-bit accesses. For

example, if an interrupt priority register needs to be updated, you need to read the whole

word (which consists of priority level settings for four interrupts), modify 1 byte, and then

write it back. In ARMv7-M architecture, this can be carried out using just a single-byte

size write to the priority level register. For users of the CMSIS device driver library, this

difference in the programmer’s model does not cause any software porting issue because

NVIC access functions in CMSIS-CORE have the same name and the function

implementations for each processor use the correct access method for ARMv6-M or

ARMv7-M accordingly.

Table 22.12: NVIC features comparison

Cortex®-M0/

M1

Cortex-

M0+

Cortex-M3/

M4 Cortex-M7

Maximum number of
interrupts

32 32 240 240

Non-Maskable Interrupt
(NMI)

Y Y Y Y

Number of programmable
priority levels

4 4 8 to 256 8 to 256

Priority grouping e e Y Y
Vector Table Offset Register e Optional Y Y (VTOR reset value can be

nonzero)
SysTick timer Optional Optional Y Y
Software Trigger Interrupt
Register

e e Y Y

Interrupt Active Status
Registers

e e Y Y

Register R/W 32-bit only 32-bit only 8/16/32-bit 8/16/32-bit
Dynamics Priority Level
change

e e Y Y

Fault Exceptions 1 1 4 4
Debug Monitor exception e e Y Y

Software Porting 651

Cortex-M processors with ARMv7-M architecture have additional fault handlers with

programmable priority level. It allows the embedded systems to be protected by two levels

of fault exception handlers (Figure 22.4).

These additional fault handlers are programmable. By default they are disabled (and the

fault exception would trigger HardFault exception instead). If enabled, these additional

fault handlers can be used to handle specific range of fault events as shown in Table 22.14.

There is also a Debug Monitor exception in ARMv7-M architecture. This is for software-

based debug solution and is not needed for application code.

Table 22.13: Handling of NVIC feature differences

Key Differences Software changes

Software Trigger Interrupt Register
not available in ARMv6-M

In Cortex�-M0/Cortex-M0þ processors, use Interrupt
Set Pending Register (ISPR) instead (supported by
CMSIS-CORE NVIC_SetPending(IRQn_t IRQn))

Different register access size
requirements

Use CMSIS-CORE NVIC control functions instead

Dynamic priority level change Disable IRQ temporarily when changing priority level

Fault

Bus Fault
exception

MemManage
Fault exception

Usage Fault
exception

Hard Fault
exception

First level of fault handling

Further fault
during handler

Second level of fault handling

Further fault
during handler

Lock up

Figure 22.4
Multiple levels of fault handling in ARMv7-M architecture.

Table 22.14: Additional fault exceptions in the ARMv7-M architecture

Exception types Usage

Bus Fault Handling of bus error responses
Usage Fault Handling of undefined instructions or illegal operations (e.g., attempt to

switch to ARM� state which is not supported on Cortex�-M processors)
MemManage (Memory
Management)

Typically for use together with the memory protection unit, robust systems
can be built for embedded systems that required high reliability

652 Chapter 22

22.5.4 Instruction Set

In addition to the Thumb instructions supported in the Cortex-M0 and Cortex-M0þ
processors, the Cortex-M3, Cortex-M4, and Cortex-M7 processors also support a number

of additional 16-bit and 32-bit Thumb� instructions. These included the following:

• Signed and unsigned divide instructions (SDIV and UDIV)

• Compare and branch if zero (CBZ), compare and branch if not zero (CBNZ)

• IF-THEN (IT) instructiondallows up to four subsequence instructions to be condition-

ally executed based on the status in APSR

• Multiply and accumulate instructions for 32-bit and 64-bit results

• Count leading zero (CLZ)

• Bit field processing instructions for bit order reversing, bit field insert, bit field clear, bit

field extract

• Table branch instructions (commonly used for switch statement in C)

• Saturation operation instructions

• Exclusive accesses for multiprocessor environments

• Additional instructions that allow high registers (R8 and above) to be used in data

processing, memory accesses, and branches.

These additional instructions allow faster processing of complex data like floating point

values. They also allow the Cortex-M3, Cortex-M4, and Cortex-M7 processors to be used

in audio signal processing applications, real-time control systems.

The Cortex-M4 and Cortex-M7 processors support a superset of the instructions in the

Cortex-M3. The additional instructions include the following:

• A range of SIMD instructions

• Saturation arithmetic operations

• Additional DSP support instructions (various types of MAC operations)

• Optional single precision floating point unit for Cortex-M4 and Cortex-M7 processors

• Optional double precision floating point unit for Cortex-M7 processor.

When porting applications from ARMv7-M to ARMv6-M:

• C/Cþþ programs only need to be recompiled to ensure that instructions that are not

available are not used

• The CMSIS-DSP libraries are available for all Cortex-M processors. So you can reuse

the function calls to the CMSIS-DSP library. However, the processing time and memory

size requirements would change.

22.5.5 System Level Features

There is a range of system level features differences among the various Cortex-M

processors, as shown in Table 22.15.

Software Porting 653

There are a number of features available on the ARMv7-M architecture that are not

available on ARMv6-M architecture.

Unaligned memory accessesdIn the ARMv6-M architecture, all the data transfer

operations must be aligned. This means a word-size data transfer must have address a

value divisible by 4, and half-word data transfer must occur at even addresses. The

ARMv7-M architecture allows many memory access instructions to generate unaligned

transfers. On the ARMv6-M (e.g., Cortex-M0 and Cortex-M0þ processors), access of an

unaligned data has to be carried out by multiple instructions.

Exclusive accessesdThe ARMv7-M architecture supports instructions for exclusive

accesses, which is used for handling of shared data in multiprocessor systems such as

semaphore operations. The processor bus interface supports additional signals for

connecting to a system level exclusive access monitor unit on the bus system.

The Cortex-M3 and the Cortex-M4 processors have an optional system feature call bit

band. This feature creates 2-bit addressable memory regions called the bit-band regions.

The first bit-band region is in the first 1 MB of the SRAM region (from 0x20000000),

and the second one is the first 1 MB of the peripheral region (0x40000000). Using two

other memory address range called bit-band alias regions, each data bit in the bit-band

region can be individually accessed and modified. With the Cortex-M0 and Cortex-M0þ
processors, although the processors themselves do not have the bit-band feature, equivalent

functionality can be added to the system using bus level mapping components. So it is

possible for a Cortex-M0 or Cortex-M0þ microcontroller to provide bit-band feature as in

Cortex-M3 and Cortex-M4-based designs.

Table 22.15: System level features comparison

Cortex®-M0 Cortex-M1 Cortex-M0+ Cortex-M3/M4 Cortex-M7

SysTick Timer Optional Optional Optional Y Y
OS support Y Optional Y Y Y
Exclusive access interface e e e Y Y
Unaligned data support e e e Y Y
Big Endian Optional Optional Optional Optional Optional
MPU e e Optional

(8 regions)
Optional
(8 regions)

Optional
(8 or 16 regions)

Bit band e e e Optional e
Sleep interface Y e Y Y Y
Wakeup Interrupt Controller Optional e Optional Optional Optional
Event interface Y e Y Y Y
Single cycle I/O e e Optional e e
TCM e Optional e e Optional

654 Chapter 22

22.5.6 Debug and Trace Features

Compared to ARMv6-M architecture, the ARMv7-M architecture provides additional

debug and trace capabilities. In addition, the design of the Cortex-M3 and Cortex-M4

processors allows higher number of hardware breakpoint and data watchpoint comparators,

but of course the increase in debug functionalities means there is a trade off of larger

silicon size and power.

A comparison of the debug and trace features is show in Table 22.16.

The Cortex-M3, Cortex-M4, and Cortex-M7 processors support trace connection, which

allows a range of addition information to be sent to the debugger in real time to provide

more information about the program execution:

• The optional ETM (Embedded Trace Macrocell) allows information about instruction

execution to be captured so that the instruction execution sequence can be reconstructed

on debugging hosts.

• The optional DWT (Data Watchpoint and Trace) unit can be used to generate trace for

watched data variables or access to memory ranges. The DWT can also be used to

generate event trace, which shows information of exception entrance and exit, and

profiling trace that provides statistical information about the program execution.

• The optional ITM (Instrumentation Trace Macrocell) can be used by software to

generate debug messages (e.g., printf) so that you do not need to use a device-specific

UART for debug messages. This enables easier debug message generation: no need to

set up the UART and I/O pins, which requires device-specific setup code, and do not

require a separate connection as the trace interface supports multiple trace sources.

The trace data can be captured using a trace capturing device such as the Keil�

ULINKPro�.

Table 22.16: Debug and trace features comparison

Cortex®-M0/M1 Cortex-M0+ Cortex-M3/M4 Cortex-M7

Halt, resume, single stepping Y Y Y Y
On the fly memory accesses Y Y Y Y
Breakpoint comparators Up to 4 Up to 4 Up to 8 Up to 8
Software breakpoint Y Y Y Y
Watchpoint comparators Up to 2 Up to 2 Up to 4 Up to 4
Instruction trace e Optional (MTB) Optional (ETM) Optional (ETM)
Data trace e e Optional Optional
Event trace e e Optional Optional
Instrumentation (software)
trace

e e Optional Optional

Profiling trace e e Optional Optional

Software Porting 655

In addition to debug and trace, the breakpoint unit in the Cortex-M3 and Cortex-M4

processors can also be used for patching code in ROM (e.g., mask ROM). This feature is

called flash patch. For microcontroller devices based on flash memories this feature is not

required as the program code can be updated by reprogramming the flash.

22.6 General Software Modifications when Porting between
Cortex®-M Processors

Typically porting an application from one Cortex-M microcontroller to another involves

quite a few modifications:

• Replacing of device driver libraries and device-specific header files

• Replace device-specific start-up code

• Interrupt priority level changes (for example, when moving from a Cortex-M3 micro-

controller device to a Cortex-M0 device, some of the priority levels are not available)

• Peripheral driver code changesdunless CMSIS-Driver was used and is available for

both devices

• Program code changes due to differences in device’s system features (e.g., PLL, clock

management, memory map)

• Compilation option changes (e.g., processor type options, floating-point options)

• Replace the embedded OS to a suitable version. Embedded OS typically contains small

parts of codes that are written in assembly (e.g., context switching) and therefore needs

different versions when switching between ARMv6-M and ARMv7-M.

22.7 Porting Software between Cortex®-M0/M0+ and Cortex-M1

In general, software porting between Cortex-M0 and Cortex-M1 processors is extremely

easy. Apart from peripheral programming model differences, there are very few required

changes.

Since both processors are based on the same instruction set, and the architecture version is

the same, the same software code can often be used directly when porting from one

processor to another. The only exception is when the software code uses sleep features.

Since the Cortex-M1 processor does not support sleep modes, application codes using WFI

and WFE would need to be updated.

There is also a small chance that the software needs minor adjustment due to execution

timing differences.

At the time of writing, there is no CMSIS software package available for the Cortex-M1

processor. However, you can use the same CMSIS-CORE header files for Cortex-M0 on

Cortex-M1 devices because they have almost the same architectural features.

656 Chapter 22

22.8 Porting Software between Cortex®-M0/M0+ and Cortex-M3

Although there are a number of differences between Cortex-M0/M0þ processor

(ARMv6-M) and the Cortex-M3 processor (ARMv7-M), porting software between the two

processors is usually very easy. Since the ARMv7-M supports all features in the

ARMv6-M, applications developed for Cortex-M0/Cortex-M0þ can work on a Cortex-M3

microcontroller directly, apart from changes due to memory map, execution timing, and

peripheral differences (Figure 22.5).

Normally, when porting an application from Cortex-M0 to Cortex-M3 processor, you only

need to change the device driver library, change the peripheral access code, and update the

software for system features like clock speed, sleep modes, etc. For best performance, the

code should be recompiled to make the most of the richer instruction set.

Porting software from Cortex-M3 to Cortex-M0 or Cortex-M0þ processor might require a

bit more effort. Apart from switching the device driver library and recompiling the code,

you also need to consider the following areas:

• NVIC and SCB (System Control Block) registers in the ARMv6-M can only be

accessed in word-size transfers. If any program code accesses these registers in byte-

size transfers or half-word transfers, they need to be modified. If the NVIC and SCB are

accessed by using CMSIS functions, switching the CMSIS compliant device driver to

use Cortex-M0 or Cortex-M0þ processor should automatically handle these differences.

• Some exception priority levels in an application for Cortex-M3 processor are not

available on the Cortex-M0/Cortex-M0þ processors. So the priority level configuration

might need to be changed.

• Exception priority grouping feature is not available in ARMv6-M. In ARMv7-M

architecture, exception priority level registers can be partitioned into group priority and

subpriority parts, with preemption based on group priority.

ARM
Cortex-M0

or
Cortex-M0+

ARM
Cortex-M3

Upward compatible

Simple porting,
recompile

0.9 DMIPS/MHz

Von Neumann
architecture

1.25 DMIPS/MHz

Harvard bus
architecture

Figure 22.5
Compatibility between the Cortex�-M0/M0þ processor and the Cortex-M3 processor.

Software Porting 657

• Some registers in the NVIC and the SCB in the Cortex-M3 processor are not available

in the Cortex-M0 or Cortex-M0þ processor. These included Interrupt Active Status

Register, Software Trigger Interrupt Register, and some of the fault status registers. The

Vector Table Offset Register (VTOR) is optional on the Cortex-M0þ processor, but is

not available on the Cortex-M0 processor.

• The CMSIS-CORE functions listed in Table 22.17 are available for ARMv7-M pro-

cessors (including Cortex-M3, Cortex-M4, and Cortex-M7) and are not available for

Cortex-M0 and Cortex-M0þ processors.

• The bit-band feature in the Cortex-M3 and Cortex-M4 processors is not available in

Cortex-M0 and Cortex-M0þ processors. If the bit-band alias accesses are used in the

application, and if the system design of the microcontroller does not offer any system

level bit band wrapper, the code needs to be converted to use normal memory accesses

and handle bit extract or bit modification by software.

• If the application contains assembly code or embedded assembly code, the assembly

code would likely to require modifications because many of the instructions on the

Cortex-M3 processor are not available on ARMv6-M.

• For C application code, some instructions such as hardware divide are not available in

the Cortex-M0 and Cortex-M0þ processors. In this case the compiler will automatically

call the C library to handle the divide operation.

• Unaligned data transfer is not available in the ARMv6-M architecture.

• Some instructions available in Cortex-M3 (e.g., exclusive accesses, bit field processing)

are not available in the ARMv6-M architecture.

Some Cortex-M0 and Cortex-M0þ processor microcontrollers support a memory

remapping feature in order to allow the system to boot up with a boot loader with a

different vector table, or allow part of the SRAM to be used as vector table so that

exception vectors can be modified at runtime. This is a device-specific feature, and is more

likely to be found in the Cortex-M0-based microcontroller products because the

Cortex-M0 processor does not have VTOR. When migrating applications that use vector

table relocation feature on Cortex-M3 processor, it might be possible to use the

device-specific memory remapping feature for the same purpose.

Table 22.17: CMSIS-CORE interrupt functions in ARMv7-M that are not available in ARMv6-M

CMSIS-CORE interrupt functions for Cortex®-M3/M4/M7 not available for Cortex-M0/M0+

void NVIC_SetPriorityGrouping(uint32_t PriorityGroup)
uint32_t NVIC_GetPriorityGrouping(void)
uint32_t NVIC_GetActive(IRQn_Type IRQn)
uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* pPreemptPriority,
uint32_t* pSubPriority)

658 Chapter 22

Applications that require the unprivileged thread mode or the MPU feature cannot be ported

to the Cortex-M0 processor because these features are not supported in the Cortex-M0

processor. However, you could use a Cortex-M0þ microcontroller device for such scenario.

Please note that some of the MPU control code might also need to be changed when

moving from ARMv7-M to ARMv6-M because of some small differences in the

programmer’s model. Please refer to Section 12.9 in Chapter 12 for more information.

22.9 Porting Software between Cortex®-M0/M0+ and
the Cortex-M4/M7 Processor

Similar to Cortex-M3, the Cortex-M4 and Cortex-M7 processors are also based on the

ARMv7-M architecture. The Cortex-M4 processor is very similar to the Cortex-M3 in many

aspects: it has the same Harvard bus architecture, same system level features, same exception

types, and has approximately the same performance in term of Dhrystone DMIPS/MHz, etc.

The Cortex-M7 processor is a much more complex design with a longer 6-stage processor

pipeline, superscalar processing capability, and more memory system features.

In terms of the instruction set, the Cortex-M4 and Cortex-M7 processors have additional

instructions compared to the Cortex-M3 such as:

• SIMD instructions,

• saturation arithmetic instructions,

• data packing and extraction instructions, and

• optional floating-point instructions.

The floating-point support in the Cortex-M4 and Cortex-M7 processors is optional;

therefore not all Cortex-M4/M7 microcontrollers will support this feature. If the floating-

point unit is included, it includes an additional floating-point register bank and additional

registers, as well as extra bit fields in the control special register (Figure 22.6). The

floating-point unit can be turned on/off by software to reduce power consumption. The

xPSR special register in Cortex-M4 and Cortex-M7 processors also has additional bit

fields (GE flags) for the SIMD instructions.

Since there is no floating-point unit in Cortex-M0 and Cortex-M0þ processors, if the

application code contains floating-point calculation, the calculation needs to be handled by

runtime software libraries and therefore can take a lot longer and require additional code

space. However, apart from that the code can just be recompiled and executed on the

Cortex-M0 and Cortex-M0þ processors without any issue.

Some of the application codes designed for Cortex-M4 and Cortex-M7 processors make

use of the SIMD instructions and high DSP performance of these processors. Typically

Software Porting 659

the DSP functions could have been implemented with precompiled DSP library code, or

handcrafted assembly code for best optimization. These codes cannot be used on the

Cortex-M0 or Cortex-M0þ processor, and the operations have to be rewritten in C/Cþþ
and recompiled. Although it is possible to get it to work, the performance of running these

applications on Cortex-M0 or Cortex-M0þ processor would be much slower and therefore

some of the more demanding applications (e.g., real-time audio processing, or control

applications that require floating-point operations) are unsuitable for the Cortex-M0 and

Cortex-M0þ processors.

Registers
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14 (LR)

R15 (PC)

R13 (PSP)

Special registers
xPSR

PRIMASK

FAULTMASK

BASEPRI

Program Status Registers

Interrupt Mask
Registers

Control RegisterCONTROL

Special
Registers

D0

FPU register bank (Only for floating point option)

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

S0

S2

S4

S6

S8

S10

S12

S14

S16

S18

S20

S22

S24

S26

S28

S30

S1

S3

S5

S7

S9

S11

S13

S15

S17

S19

S21

S23

S25

S27

S29

S31

FPSCR FP Status and Control Register

Not available in
ARMv6-MNot available in

ARMv6-M

Some differences
between ARMv6-M and

ARMv7-M

Some differences
between ARMv6-M and

ARMv7-M

Figure 22.6
Programmer’s model of Cortex�-M4/Cortex-M7 processors with floating-point unit.

660 Chapter 22

CHAPTER 23

Advanced Topics

23.1 Bit Data Handling in C Programming

While this is not really an advanced topic for experienced embedded software

developers, many beginners do not know that in C/Cþþ you can define bit fields to

make coding easier. Examples of bit field can be found in CMSIS-CORE header

files. Useful application of bit fields could be definition of Program Status Register

(xPSR), Application Program Status Register (APSR), and Internal Program Status

Register.

/** \brief Union type to access the Application Program Status Register (APSR).*/
typedef union
{

Struct
{

#if (__CORTEX_M != 0x04)
uint32_t _reserved0:27; /*!< bit: 0..26 Reserved */

#else
uint32_t _reserved0:16; /*!< bit: 0..15 Reserved */
uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */
uint32_t _reserved1:7; /*!< bit: 20..26 Reserved */

#endif
uint32_t _reserved2:1; /*!< bit: 27 Reserved (Q flag for ARMv7-M) */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */

} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */

} APSR_Type;

You can utilize such bit field definition in application codes, for example:

int x, y, z;
APSR_Type foo;
.

z = x + y;

Continued

The Definitive Guide to ARM� Cortex�-M0 and Cortex-M0+ Processors. http://dx.doi.org/10.1016/B978-0-12-803277-0.00023-0

Copyright © 2015 Elsevier Inc. All rights reserved. 661

http://dx.doi.org/10.1016/B978-0-12-803277-0.00023-0

foo.w = __get_APSR(); // .w used for word accesses
if (foo.b.V) { // .b used for bit accesses

printf ("Overflowed\n");
} else {

printf ("No overflow\n");
}

You can also create helper structure and typedef to help extracting bits in peripheral

registers:

Helper C Structure and Union Definition in Bit Data Handling

typedef struct /* structure to define 32-bits */
{

uint32_t bit0:1;
uint32_t bit1:1;
uint32_t bit2:1;
uint32_t bit3:1;
uint32_t bit4:1;
uint32_t bit5:1;
uint32_t bit6:1;
uint32_t bit7:1;
uint32_t bit8:1;
uint32_t bit9:1;
uint32_t bit10:1;
uint32_t bit11:1;
uint32_t bit12:1;
uint32_t bit13:1;
uint32_t bit14:1;
uint32_t bit15:1;
uint32_t bit16:1;
uint32_t bit17:1;
uint32_t bit18:1;
uint32_t bit19:1;
uint32_t bit20:1;
uint32_t bit21:1;
uint32_t bit22:1;
uint32_t bit23:1;
uint32_t bit24:1;
uint32_t bit25:1;
uint32_t bit26:1;
uint32_t bit27:1;
uint32_t bit28:1;
uint32_t bit29:1;
uint32_t bit30:1;
uint32_t bit31:1;

662 Chapter 23

} ubit32_t; /*!< Structure used for bit access */
typedef union
{

ubit32_t ub; /*!< Type used for unsigned bit access */
uint32_t uw; /*!< Type used for unsigned word access */

} bit32_Type;

You can then declare variables using the newly created data type. For example:

bit32_Type foo;
foo.uw = GPIOD->IDR; // .uw access using word size
if (foo.ub.bit14) { // .ub access using bit size

GPIOD->BSRRH = (1<<14); // Clear bit 14
} else {

GPIOD->BSRRL = (1<<14); // Set bit 14
}

You can also declare a point to the register:

volatile bit32_Type * LED;

LED = (bit32_Type *) (&GPIOD->IDR);
if (LED->ub.bit12) {

GPIOD->BSRRH = (1<<12); // Clear bit 12
} else {

GPIOD->BSRRL = (1<<12); // Set bit 12
}

Please note that using bit field in programming does not give you atomic bit accesses.

When writing to a bit or bit field, the compiler can generate a software read-modify-write

sequence, and interrupts could take place in between and the Interrupt Service Routine

(ISR) can modify other bits of the same register, and result in conflicts when the ISR

return and resume the write operation.

23.2 Startup Code in C

Most of the examples in this book use startup codes (or boot codes) that are written in

assembly language. It is possible to have the startup codes written in C. However, this

requires importing compiler-specific symbols and in some case compiler-specific

directives. So the C startup codes are tool chain dependent, just like assembly.

Advanced Topics 663

For example, with Keil� MDK-ARM� environment, you can also define the startup code

and the vector table written in C, as follows:

An example C startup code for Keil MDK-ARM (for STM32L053C8T6 device)

#include <rt_misc.h>
// Define where the top of memory is.
#define TOP_OF_RAM 0x20002000U

extern void __main(void); // Use C-library initialization function.
extern void NMI_Handler(void);
extern void HardFault_Handler(void);
extern void Reset_Handler(void);
extern void SVC_Handler(void);
extern void PendSV_Handler(void);
extern void SysTick_Handler(void);
extern void WWDG_IRQHandler(void);
extern void PVD_IRQHandler(void);
extern void RTC_IRQHandler(void);
extern void FLASH_IRQHandler(void);
extern void RCC_CRS_IRQHandler(void);
extern void EXTI0_1_IRQHandler(void);
extern void EXTI2_3_IRQHandler(void);
extern void EXTI4_15_IRQHandler(void);
extern void TSC_IRQHandler(void);
extern void DMA1_Channel1_IRQHandler(void);
extern void DMA1_Channel2_3_IRQHandler(void);
extern void DMA1_Channel4_5_6_7_IRQHandler(void);
extern void ADC1_COMP_IRQHandler(void);
extern void LPTIM1_IRQHandler(void);
extern void TIM2_IRQHandler(void);
extern void TIM6_DAC_IRQHandler(void);
extern void TIM21_IRQHandler(void);
extern void TIM22_IRQHandler(void);
extern void I2C1_IRQHandler(void);
extern void I2C2_IRQHandler(void);
extern void SPI1_IRQHandler(void);
extern void SPI2_IRQHandler(void);
extern void USART1_IRQHandler(void);
extern void USART2_IRQHandler(void);
extern void RNG_LPUART1_IRQHandler(void);
extern void LCD_IRQHandler(void);
extern void USB_IRQHandler(void);

extern void SystemInit(void);
//--
// Define location of C stack and heap
//--

// Initialize stack and heap to span from the end of the zero-initialized
// region to the value defined by TOP_OF_RAM; see the "ARM Compiler toolchain

664 Chapter 23

// Linker Reference" (ARM DUI 0493) and the "ARM Compiler toolchain Using ARM
// C and C++ Libraries and Floating-Point Support" (ARM DUI 0475) for further
// details.

extern unsigned int Image$$ZI$$Limit;

struct __initial_stackheap
__user_initial_stackheap
(unsigned int r0, // heap_base
unsigned int r1, // stack_base
unsigned int r2, // heap limit
unsigned int r3)__value_in_regs //stacklimit

{
struct __initial_stackheap sh;

sh.heap_base = Image$$ZI$$Limit;
sh.stack_base = TOP_OF_RAM; // Place Stack at top of SRAM
sh.heap_limit = sh.stack_base; // Or if Heap size is known

// sh.heap_limit = Image$$ZI$$Limit + HEAP_SIZE
sh.stack_limit = sh.heap_base; // Or if Stack size is known

// sh.stack_limit = TOP_OF_RAM - STACK_SIZE
return sh;

}
//--
// Implement the vector table in its own area to facilitate linking first
//--
typedef void(* const ExecFuncPtr)(void) __irq;

/* Place table in separate section */
#pragma arm section rodata="Vectors"
__attribute__ ((section("Vectors")))
ExecFuncPtr __Vectors[] = {

(ExecFuncPtr) TOP_OF_RAM, // Initial value for stack pointer.
(ExecFuncPtr) __main, // Reset handler is C initialization.
(ExecFuncPtr) NMI_Handler, // NMI handler
(ExecFuncPtr) HardFault_Handler, // HardFault
0,
0,
0,
0,
0,
0,
0,
(ExecFuncPtr) SVC_Handler,
0,
0,
(ExecFuncPtr) PendSV_Handler,
(ExecFuncPtr) SysTick_Handler,
(ExecFuncPtr) WWDG_IRQHandler, // Window Watchdog
(ExecFuncPtr) PVD_IRQHandler, // PVD through EXTI Line detect

Continued

Advanced Topics 665

(ExecFuncPtr) RTC_IRQHandler, // RTC through EXTI Line
(ExecFuncPtr) FLASH_IRQHandler, // FLASH
(ExecFuncPtr) RCC_CRS_IRQHandler, // RCC and CRS
(ExecFuncPtr) EXTI0_1_IRQHandler, // EXTI Line 0 and 1
(ExecFuncPtr) EXTI2_3_IRQHandler, // EXTI Line 2 and 3
(ExecFuncPtr) EXTI4_15_IRQHandler, // EXTI Line 4 to 15
(ExecFuncPtr) TSC_IRQHandler, // TSC
(ExecFuncPtr) DMA1_Channel1_IRQHandler, // DMA1 Channel 1
(ExecFuncPtr) DMA1_Channel2_3_IRQHandler, // DMA1 Channel 2 and Channel 3
(ExecFuncPtr) DMA1_Channel4_5_6_7_IRQHandler, // DMA1 Channel 4 to 7
(ExecFuncPtr) ADC1_COMP_IRQHandler, // ADC1, COMP1 and COMP2
(ExecFuncPtr) LPTIM1_IRQHandler, // LPTIM1
0, // Reserved
(ExecFuncPtr) TIM2_IRQHandler, // TIM2
(ExecFuncPtr) 0, // Reserved
(ExecFuncPtr) TIM6_DAC_IRQHandler, // TIM6 and DAC
0, // Reserved
0, // Reserved
(ExecFuncPtr) TIM21_IRQHandler, // TIM21
0, // Reserved
(ExecFuncPtr) TIM22_IRQHandler, // TIM22
(ExecFuncPtr) I2C1_IRQHandler, // I2C1
(ExecFuncPtr) I2C2_IRQHandler, // I2C2
(ExecFuncPtr) SPI1_IRQHandler, // SPI1
(ExecFuncPtr) SPI2_IRQHandler, // SPI2
(ExecFuncPtr) USART1_IRQHandler, // USART1
(ExecFuncPtr) USART2_IRQHandler, // USART2
(ExecFuncPtr) RNG_LPUART1_IRQHandler, // RNG and LPUART1
(ExecFuncPtr) LCD_IRQHandler, // LCD
(ExecFuncPtr) USB_IRQHandler, // USB

};
#pragma arm section

void Reset_Handler(void)
{

SystemInit();
__main();

}

__attribute__ ((weak)) void NMI_Handler(void)
{ while(1); }
__attribute__ ((weak)) void HardFault_Handler(void)
{ while(1); }
__attribute__ ((weak)) void SVC_Handler(void)
{ while(1); }
__attribute__ ((weak)) void PendSV_Handler(void)
{ while(1); }

666 Chapter 23

__attribute__ ((weak)) void SysTick_Handler(void)
{ while(1); }
__attribute__ ((weak)) void WWDG_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void PVD_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void RTC_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void FLASH_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void RCC_CRS_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void EXTI0_1_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void EXTI2_3_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void EXTI4_15_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void TSC_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void DMA1_Channel1_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void DMA1_Channel2_3_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void DMA1_Channel4_5_6_7_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void ADC1_COMP_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void LPTIM1_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void TIM2_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void TIM6_DAC_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void TIM21_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void TIM22_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void I2C1_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void I2C2_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void SPI1_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void SPI2_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void USART1_IRQHandler(void)

Continued

Advanced Topics 667

{ while(1); }
__attribute__ ((weak)) void USART2_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void RNG_LPUART1_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void LCD_IRQHandler(void)
{ while(1); }
__attribute__ ((weak)) void USB_IRQHandler(void)
{ while(1); }

In typical software development environment, the example software package provided by

the microcontroller vendor would have the startup code and header files for various tool

chains. So you do not have to worry about creating your own startup code and header files

for the microcontroller devices.

You might have noticed that the reset handler called the SystemInit() function before

calling the C startup code (“__main()”). Starting from CMSIS-CORE v1.3, the System

Initialization function SystemInit() is called from the reset handler. This change allows the
SystemInit() function to initialize external memory interface controller(s) before starting
the C runtime startup code. In this way, you can place the stack and heap memories used
by the C program at external memory locations.

The initial value for the Main Stack Pointer (MSP), however, still needs to point to a

RAM region that does not require initialization because some of the exceptions (e.g.,

NMI, HardFault) could happen at the beginning of the boot process.

23.3 Stack Overflow Detection
23.3.1 What is Stack Overflow?

In the simplest scenario, a stack overflow means that the application code consumed more

stack space than the memory space allocated by the software developer. In some cases,

depending on how the project sets up the memory layout, a stack overflow could corrupt

the data in the heap memory space or even other global and static variables, leading to

various types of program failures such as incorrect calculation results or program crashes

(which might result in a HardFault exception).

In order to ensure correct operation of a program, we must ensure that there is sufficient

memory space allocated for the stack and heap (e.g., space for dynamic memory allocation

functions such as malloc()). The stack space required included the following:

• Stack space needed for the program operations

• Stack space needed for exception handlers and stack frames

668 Chapter 23

• Additional stack space might also be needed by some of the C runtime library func-

tions, CMSIS-DSP or CMSIS-Driver library functions, etc.

Beware that if your application allows nesting of multiple interrupts, the worst case stack

usage could include the maximum stack size used by a handler in each priority levels, plus

the stack space required for each level of stack frames.

For system with embedded OS, you might also need to determine the stack space required

for each application thread/task, and might need to reserve additional stack space for the

OS context switching operations when creating a new thread/task.

23.3.2 Stack Analysis by Tool Chain

Many software development tool chains support generation of stack usage report:

• In Keil� MDK-ARM�, stack usage summary is included in an HTML file generated

after the compilation (Section 14.6.4)

• In IAR Embedded Workbench for ARM, stack analysis is a linker option (see Section 15.6)

• In GNU Compiler Collection, a command line option “-fstack-usage” is available for

stack usage report generation1.

After determining the maximum stack usage, you should include additional stack size that

might be required for interrupt handlers and stack frames.

For system with an OS, it is likely that each thread stack (which uses the Process Stack

Pointer) only needs to support one level of exception stack frame space. Stack space for

nested exceptions is located on the main stack.

In some cases it is not always possible to determine the maximum stack size required for

certain functions. In such cases you might need to handle part of the stack analysis by

trial.

23.3.3 Stack Analysis by Trial

Traditionally, in a debug environment, you can fill the stack space with a certain pattern

(e.g., 0xDEADBEEF is a commonly used one), run the program for a period of time, and

see how much of the stack memory has been changed, and from there you can estimate

the stack size needed. This method, however, might not be able to reach the worst case

scenarios, and therefore a significant memory size margin might need to be added to avoid

stack overflow. This method is suitable at software development stage only as it requires a

software developer to investigate the stack usage with a debugger.

1 More details in https://gcc.gnu.org/onlinedocs/gnat_ugn/Static-Stack-Usage-Analysis.html.

Advanced Topics 669

http://https://gcc.gnu.org/onlinedocs/gnat_ugn/Static-Stack-Usage-Analysis.html

Another way to detect stack overflow in trials is to place the stack at the bottom of the

SRAM (Figure 23.1). If the application resulted in a stack overflow, the memory access

would go beyond the valid SRAM memory space, and the bus system should response

with an errordthat should trigger the HardFault exception. You can insert a breakpoint in

the HardFault handler to halt the processor when the stack overflow occurred.

For this arrangement, if the process stack is used for thread (main program) and the main

stack is used for handlers, the HardFault handler can still execute to handle the error.

23.3.4 Stack Limit Using Memory Protection Unit

In some cases it is difficult to predict the exact stack usage, for example, you might have

recursive function calls in your application. In such case, we might want to add additional

measures in the application code to detect stack overflow at soon as possible by triggering

an exception if the stack operation goes beyond a certain address range. This could be

done with the Memory Protection Unit (MPU) feature.

By placing a no-access region in the SRAM (Figure 23.2), if the stack or heap access goes

beyond the allowed range, the HardFault exception would be triggered. Since the HardFault

exception can bypass the MPU restriction, the HardFault exception can still execute and can

carry out some remedy or error reporting actions before performing a self-reset operation.

23.3.5 Stack Checking in OS Context Switching

Many embedded OS, such as Keil RTX, support stack checking feature. At each context

switch, the stack usage is checked against allowed stack size, and an error handling

function is triggered if the stack size used by the thread exceeds the allowed value.

Static,
global data

Heap

Stack

Address

SRAM

Figure 23.1
Stack layout for stack overflow detection.

670 Chapter 23

23.4 Reentrant Interrupt Service Routine

In general, the ARMv6-M and ARMv7-M architecture does not allow nesting of the same

interrupt service. When an interrupt service is running, all the other interrupts of the lower

or same priority levels (including the current servicing interrupt) are blocked, and can only

get into pending state if they are triggered again during this period. If an interrupt gets

pended as the same interrupt service is running, it can be serviced again once the current

running interrupt service is ended.

In general, this behavior is good, because a system could run out of stack space if it

allows reentrant interrupt or recursive function calls. However, in some cases when porting

applications from legacy systems (e.g., classic ARM processor like ARM7TDMI� allows

reentrant interrupt if the I-bit/F-bit is cleared inside an ISR), it is useful to enable such

behavior to make software porting easier.

There is a software workaround, but requires a bit of software overhead. A wrapper

function is needed to manipulate the stack at the beginning of the interrupt service to

create an interrupt return, with the interrupt return address pointing to a function that

executes the real ISR, and then calls an SVCall exception service function to restore the

stack to the original status.

Use This Workaround with Caution

In general applications, use of reentrant interrupts should be avoided. This allows a very high
number of nested interrupt levels and can therefore cause stack overflow. The reentrant inter-
rupt mechanism demonstrated here also requires the priority to be the lowest exception in
the system. Otherwise the processor can trigger a fault when the reentrant interrupt is
invoked during a lower priority ISR.

Sta�c,
global data

Heap

Stack

Address

SRAM
No-Access

Declare as non-accessible region
by the MPU. An a�empt to access

this region can result in HardFault

Figure 23.2
Stack layout for stack overflow detection with Memory Protection Unit.

Advanced Topics 671

The code for the wrapper function implemented as a System Tick (SysTick) handler, is

shown below:

__asm void SysTick_Handler(void)
{

; Now we are in Handler mode, using Main Stack, and
; SP should be Double word aligned
PUSH {R4, LR} ; Need to save LR in stack, keep double word alignment
SUB SP, SP , #0x20 ; Reserve 8 words for dummy stack frame for return
MOV R1, SP
LDR R0,=SysTick_Handler_thread_pt
STR R0,[R1, #24] ; Set return address as SysTick_Handler_thread_pt
LDR R0,=0x01000000 ; Initial xPSR when running Reentrant_SysTick_Handler
STR R0,[R1, #28] ; Put in new created stack frame
LDR R0,=0xFFFFFFF9 ; Return to Thread with Main Stack
BX R0 ; Exception return with new created stack frame

SysTick_Handler_thread_pt
BL __cpp(Reentrant_SysTick_Handler) ; Call real ISR in thread mode
SVC 0 ; Use SVC to return to original Thread
B . ; Should not return here
ALIGN 4

}

The operation of the reentrant interrupt code is shown in Figure 23.3.

At the end of the real ISR, we use an SVCall exception service to handle the switching

back to the original thread. Since we move the Stack Pointer (SP) by 8 words, we need

Thread

Handler

Main SP

Interrupt
Entry

Interrupt
Return

SP adjusted

Create stack
frame to

“Return” to ISR

ISR
Wrapper
Func on

ISR
Running in Thread,
using Main Stack

IRQ handler
(Thread)

SVC
Entry

Same Interrupt can
be triggered again

SP adjusted

Abandon last
stack frame

Return to Thread
using original Stack
Frame, LR and xPSR

SVC
Handler

Back to original
program

SVC
Return

Figure 23.3
Using additional wrapper code to run an ISR in Thread� to allow reentrant interrupt.

672 Chapter 23

to move the SP back after executing the real ISR. The SVCall handler code is

implemented as follows:

// SVC handler - restore stack
__asm void SVC_Handler(void)
{

MOVS r0, #4
MOV r1, LR
TST r0, r1
BEQ stacking_used_MSP
MRS R0, PSP ; first parameter - stacking was using PSP
B get_SVC_num

stacking_used_MSP
MRS R0, MSP ; first parameter - stacking was using MSP

get_SVC_num
LDR R1, [R0, #24] ; Get stacked PC
SUBS R1, R1, #2
LDRB R0, [R1, #0] ; Get SVC parameter at stacked PC minus 2
CMP R0, #0
BEQ svc_service_0
BL __cpp(Unknown_SVC_Request)
BX LR ; return

svc_service_0
; SVC service 0
; Reentrant code finished, we can discard the current stack frame
; and restore the original stack frame.
ADD SP, SP, #0x20
POP {R4, PC} ; Return
ALIGN 4

}
/*---------------------------------------*/
void Unknown_SVC_Request(unsigned int svc_num)
{ /* Display Error Message when SVC service is not known */

printf("Error: Unknown SVC service request %d\n", svc_num);
while(1);

}

Since we set the EXC_RETURN to 0xFFFFFFF9 inside the wrapper handler, the

processor returns to thread mode. In order to allow this code work correctly, we should

make sure that the reentrant exception is at the lowest exception priority so that it cannot

preempt other exceptions.

23.5 Semaphore Implementation

Semaphore operations are essential for many OS designs, for example, for resource

management as illustrated in examples in Chapter 20. In order to prevent two application

Advanced Topics 673

threads from getting assigned to the same resource, the semaphore handling code typically

requires atomic operations like SWP (swap) instruction as in ARM7TDMI�, or exclusive

accesses in Cortex�-M3/M4/M7 processors.

The ARMv6-M architecture does not support exclusive accesses as in ARMv7-M

architecture, and does not have atomic memory access instruction like SWP. However, you

can still implement semaphore using the SVCall exception.

Due to the exception priority structure in the Cortex-M processors, you can only have one

instance of SVCall exception happening at a time. So if the semaphore operation is

implemented as an SVCall service, it is guaranteed that only one thread/task can access to

the semaphore data each time.

Another solution is to implement the semaphore operations with the interrupt disabled for

a short period of time using the PRIMASK register when the semaphore data access.

However, it means that the worst case interrupt latency will increase slightly.

23.6 Memory Ordering and Memory Barriers

The ARMv6-M architecture and ARMv7-M architecture does not restrict how chip designers

implement the processors. In theory, a processor confront to the ARMv6-M architecture

could be a superscalar design with out-of-order execution capability, and therefore could

reorder memory accesses in a number of ways provided that it can still get the same data

processing results. In some cases, even without out-of-order execution, memory access

sequences could still have some forms of reordering because of the following:

• Some processors can have multiple bus interfaces that have different wait states.

• Some processor buses can have write buffers, and the write buffer implementation could

merge several transfers into one to enhance system performance and reduce power.

• Some of the memory accesses could be speculative (e.g., instruction prefetching).

• In complex bus system designs, a processor could potentially provide access to a certain

memory location via multiple bus paths (depending on the on-chip bus protocol).

• Some instructions can be abandoned due to interrupts and then restarted later.

Obviously, if accesses to all memory locations (including peripheral registers) can be

reordered, this is going to cause big problems to software developers. For example,

peripheral configurations often need to be set up in a particular programming sequence. As

a result, the ARM� architecture defined three mutually exclusive memory types, and a

number of rules for each memory types are defined as follows:

NormaldTypically, program memory and RAM are normal memory. Accesses to these

memories can be reordered or speculative, provided that the reordering of accesses does

not change the behavior of the processing. Write operations can be buffered (or store in

674 Chapter 23

write back cache), and therefore the actual memory read/write transfer observed on the

buses can be quite different from the operations outlined in the program code.

DevicedPeripherals are classified as device type. Device can be shareable or nonshare-

able, and accesses to the same type of devices must not be reordered. In addition, the

transfer characteristics like the access size must not be changed and must not be specu-

lative or repeated (unless the program code specified the access to be repeated).

Strongly ordereddMemory locations that are defined as strongly ordered are typically

registers related to system control functions such as all registers in the processor’s System

Control Space (SCS), including the Nested Vectored Interrupt Controller (NVIC), MPU,

SysTick and, debug components. Accesses to these registers often can cause system side

effects. Similar to device, strongly order accesses must not be reordered, speculated, or

repeated. All strongly order memory spaces are treated as shareable.

Device and strongly order data must not be held in a cache. In some implementations like

Cortex�-M3 and Cortex-M4 processors, the device accesses can be buffered (but no write

merging and the transfer sizes at the peripheral must remain the same as the transfer size

issued by the processor core), but the strongly ordered transfers are not buffered.

Architecturally two memory accesses may or may not be reordered based on the rule,

rules as illustrated in Figure 23.4.

The combinations that are listed as “Maybe” in Figure 23.4 depend on further conditions

such as dependency of the operations (e.g., data/ address dependency).

In the cases that the application relies on the ordering of certain memory accesses, and if

the architecture does allow the reordering of these accesses based on the memory ordering

restrictions, then we should add memory barrier instructions in the application code to

impose additional ordering requirements.

There are three memory barrier instructions in the ARMv6-M and ARMv7-M architecture

(Table 23.1).

Normal
access

Device access
(Non-shareable)

Device access
(Shareable)

Strongly-ordered
access

Normal
access

Device access
(Non-shareable)

Device access
(Shareable)

Strongly-ordered
access

Transfer #1

Transfer
#2

Maybe

Re-ordering allowed?

No

No

No

No No

No

No

Maybe

Maybe

Maybe

Maybe

Maybe

Maybe

Maybe Maybe

Figure 23.4
Memory ordering restrictions.

Advanced Topics 675

Table 23.1: Memory barrier intrinsic

Instruction CMSIS function Descriptions

ISB __ISB() Ensures that the effects of all context altering operations prior to the
ISB are recognized by subsequent instructions. This results in a
flushing of the instruction pipeline, with the instruction following the
ISB being refetched.

DMB __DMB() Ensures that all explicit data memory transfers before the DMB are
completed before any subsequent data memory transfers after the DMB
starts.

DSB __DSB Ensures that all explicit data memory transfer before the DSB are
completed before any instruction after the DSB is executed.

Table 23.2: Situations where memory barrier instructions should be used

Area Memory barrier usages

CONTROL update After writing to the CONTROL register, an ISB instruction should be used to
ensure that the side effect of the CONTROL update is enforced.

CPSIE I After enabling interrupts (clearing of PRIMASK), an ISB instruction is needed
if there is a need to recognize a pending interrupt request immediately. The
same requirement applies to using MSR to clear PRIMASK. However,
disabling of interrupts by setting PRIMASK (e.g., “CPSID I”) does not require
ISB.

SCS update Architecturally a System Control Space (SCS) access implies DMB before and
after the access. If it is necessary to recognize the side effect of the access
immediately, use a “DSB” followed by an “ISB.”

Sleep Architecturally a DSB instruction should be used before executing WFI/WFE.
This ensures any outstanding memory operations are completed before
entering sleep. If the System Control Register (SCB->SCR) is updated just
before, a DSB and then an ISB should be used before executing WFE/WFI.

Update to VTOR Architecturally a DSB instruction should be used after updating to VTOR if
the new VTOR must be used immediately (e.g., next instruction is an SVC).

Multiprocessor/multibus
master system

If the data transfers need to be observable by a different processor in the
system and if the transfer sequence is critical, architecturally DMB
instruction is needed to ensure that the memory order is enforced.

Memory map update Some Cortex�-M0 microcontrollers have memory remapping feature to
enable the processor to boot up from a boot loader at address 0 and then
switch the memory map to execute program in flash also from address 0.
The memory remapping function might also be able to remap some of the
SRAM to address 0. When switching memory maps, a DSB and then an ISB
should be used after the switch to ensure that the processor fetches
instructions with the new memory map.

Self-modifying code In the case of self-modifying code, a DSB and then an ISB should be used
after the code space is modified to ensure that the processor fetches the new
instructions.

676 Chapter 23

In the ARMv6-M and ARMv7-M architecture, the usages of the memory barrier

instructions goes beyond enforcement of memory ordering. It can also be used to ensure

subsequence instructions see the side effects of the previous operations such as writes to

the CONTROL register, NVIC registers, MPU register, etc.

In the Cortex-M0 and Cortex-M0þ processor, the processor designs are relatively simple

and do not reorder memory accesses. As a result, omission of the memory barrier

instructions rarely causes any issue. However, in order to ensure the application code is

portable, use of the memory barrier instructions is recommended. Some of the usage

scenarios are listed in Table 23.2.

Detail descriptions of the uses of memory barrier instructions on the Cortex-M processors

are documented in ARM Application Note AN321dARM Cortex-M Programming Guide

to Memory Barrier Instructions (reference 8).

Advanced Topics 677

APPENDIX A

Instruction Set Quick Reference

A.1 List of Instructions

The instructions supported on the ARM� Cortex�-M0 and Cortex-M0+ processors are

listed in Table A.1.

Table A.1: Instruction set summary

Syntax (Unified Assembly Language) Description

ADCS <Rd>, <Rm> ADD with Carry and update APSR
ADDS <Rd>, <Rn>, <Rm> ADD registers and update APSR
ADDS <Rd>, <Rn>, #immed3 ADD register and a 3-bit immediate value
ADDS <Rd>, #immed8 ADD register and an 8-bit immediate value
ADD <Rd>, <Rm> ADD two registers without update APSR
ADD <Rd>, SP, <Rd> ADD the stack pointer to a register
ADD SP, <Rm> ADD a register to the stack pointer
ADD <Rd>, SP, #immed8 ADD stack pointer with an immediate value.

Rd ¼ SP + ZeroExtend(#immed8 <<2).
ADD SP, SP, #immed7 ADD an immediate value to the stack pointer.

SP ¼ SP + ZeroExtend(#immed7 <<2).
ADR <Rd>, <label> Put an address to a register. Alternative syntax:

ADD <Rd>, PC, #immed8
ANDS <Rd>, <Rd>, <Rm> Logical AND between two registers
ASRS <Rd>, <Rd>, <Rm> Arithmetic Shift Right
ASRS <Rd>, <Rd>, #immed5 Arithmetic Shift Right
BICS <Rd>, <Rd>, <Rm> Logical Bitwise Clear
B <label> Branch to an address (unconditional)
B<cond> <label> Conditional branch
BL <label> Branch and Link (return address store in LR)
BX <Rm> Branch to address in register with Exchange (LSB of target

register should be set to 1 to indicate Thumb state).
BLX <Rm> Branch to address in register and link (return address store

in LR) with Exchange (LSB of target register should be set
to 1 to indicate Thumb state).

BKPT #immed8 Software breakpoint. Immediate value of 0xAB is reserved
for semi hosting.

CMP <Rn>, <Rm> Compare two registers and update APSR
CMP <Rn>, #immed8 Compare a register and an 8-bit immediate value and

update APSR
CMN <Rn>, <Rm> Compare negative (effectively an ADD operation)

Continued

679

Table A.1: Instruction set summarydcont’d

Syntax (Unified Assembly Language) Description

CPSIE I Clear PRIMASK (enable interrupt). In CMSIS compliant
device driver you can use “__enable_irq()” CMSIS function
for “CPSIE I”.

CPSID I Set PRIMASK (disable interrupt). In CMSIS compliant
device driver you can use “__disable_irq()” CMSIS function
for “CPSID I”.

DMB Data Memory Barrier. Ensures that all memory accesses are
completed before new memory access is committed. In
CMSIS compliant device driver you can use “__DMB()”
CMSIS function for DMB.

DSB Data Synchronization Barrier. Ensures that all memory
accesses are completed before next instruction is executed.
In CMSIS compliant device driver you can use “__DSB()”
CMSIS function for DSB.

EORS <Rd>, <Rd>, <Rm> Logical Exclusive OR between two registers
ISB Instruction Synchronization Barrier. Flushes the pipeline

and ensures that all previous instructions are completed
before executing new instructions. In CMSIS compliant
device driver you can use “__ISB()” CMSIS function
for ISB.

LDM <Rn>, {<Ra>, <Rb>,.} Load multiple registers from memory. <Rn> is in
destination register list and gets updated by load.

LDMIA <Rn>, {<Ra>, <Rb>,.} Load multiple registers from memory. <Rn> is not in
destination register list and gets updated by address
increment. Alternative syntax:
LDMFD <Rn>, {<Ra>, <Rb>,.}

LDR <Rt>, [<Rn>, <Rm>] Load word from memory. <Rt> ¼ memory
[<Rn>+<Rm>]

LDR <Rt>, [<Rn>, #immed5] Load word from memory.
<Rt> ¼ memory[<Rn> + #immed5<<2]

LDR <Rt>, [PC, #immed8] Load word (literal data) from memory.
<Rt> ¼ memory[PC+ #immed8<<2]

LDR <Rt>, [SP, #immed8] Load word from memory.
<Rt> ¼ memory[SP+ #immed8<<2]

LDRH <Rt>, [<Rn>, <Rm>] Load half word from memory. <Rt> ¼ memory
[<Rn>+<Rm>]

LDRH <Rt>, [<Rn>, #immed5] Load half word from memory.
<Rt> ¼ memory[<Rn> + #immed5<<1]

LDRB <Rt>, [<Rn>, <Rm>] Load byte from memory. <Rt> ¼ memory[<Rn>+<Rm>]
LDRB <Rt>, [<Rn>, #immed5] Load byte from memory.

<Rt> ¼ memory[<Rn> + #immed5]
LDRSH <Rt>, [<Rn>, <Rm>] Load signed half word from memory.

<Rt> ¼ signed_extend(memory[<Rn>+<Rm>])
LDRSB <Rt>, [<Rn>, <Rm>] Load signed byte from memory.

<Rt> ¼ signed_extend(memory[<Rn>+<Rm>])
LSLS <Rd>, <Rd>, <Rm> Logical Shift Left

680 Appendix A

Table A.1: Instruction set summarydcont’d

Syntax (Unified Assembly Language) Description

LSLS <Rd>, <Rm>, #immed5 Logical Shift Left
LSRS <Rd>, <Rd>, <Rm> Logical Shift Right
LSRS <Rd>, <Rm>, #immed5 Logical Shift Right
MOV <Rd>, <Rm> Move register into register
MOVS <Rd>, <Rm> Move register into register and update APSR
MOVS <Rd>, #immed8 Move immediate data (sign extended) into register
MRS <Rd>, <SpecialReg> Move Special Register into register. In CMSIS compliant

device driver library a number of functions are available for
special register accesses (see Appendix C).

MSR <SpecialReg>, <Rd> Move register into Special Register. In CMSIS compliant
device driver library a number of functions are available for
special register accesses (see Appendix C).

MVNS <Rd>, <Rm> Logical Bitwise NOT. Rd ¼ NOT(Rm)
MULS <Rd>, <Rm>, <Rd> Multiply
NOP No Operation. In CMSIS compliant device driver you can

use “__NOP()” CMSIS function for NOP.
ORRS <Rd>, <Rd>, <Rm> Logical OR
POP {<Ra>, <Rb>,.}
POP {<Ra>, <Rb>,., PC}

Read single or multiple registers from stack memory and
update the stack pointer.

PUSH {<Ra>, <Rb>,.}
PUSH {<Ra>, <Rb>,., LR}

Store single or multiple register to stack memory and
update the stack pointer.

REV <Rd>, <Rm> Byte Order Reverse
REV16 <Rd>, <Rm> Byte Order Reverse within half word
REVSH <Rd>, <Rm> Byte Order Reverse within lower half word, then signed

extend result
RORS <Rd>, <Rd>, <Rm> Rotate Right
RSBS <Rd>, <Rn>, #0 Reverse Subtract (negative).
SBCS <Rd>, <Rd>, <Rm> Subtract with carry (borrow)
SEV Send event to all processors in multiprocessing

environment (including itself). In CMSIS compliant device
driver you can use “__SEV()”CMSIS function for SEV.

STMIA STMIA <Rn>!, {<Ra>, <Rb>,.}
STR <Rt>, [<Rn>, <Rm>] Write word to memory. Memory[<Rn>+<Rm>] ¼ <Rt>
STR <Rt>, [<Rn>, #immed5] Write word to memory.

Memory[<Rn> + #immed5<<2] ¼ <Rt>
STR <Rt>, [SP, #immed8] Write word to memory.

memory[SP+ #immed8<<2] ¼ <Rt>
STRH <Rt>, [<Rn>, <Rm>] Write half word to memory. Memory[<Rn>+<Rm>] ¼

<Rt>
STRH <Rt>, [<Rn>, #immed5] Write half word to memory.

Memory[<Rn> + #immed5<<1] ¼ <Rt>
STRB <Rt>, [<Rn>, <Rm>] Write byte to memory. Memory[<Rn>+<Rm>] ¼ <Rt>
STRB <Rt>, [<Rn>, #immed5] Write half word to memory.

Memory[<Rn> + #immed5] ¼ <Rt>
SUBS <Rd>, <Rn>, <Rm> Subtract two registers
SUBS <Rd>, <Rn>, #immed3 Subtract a register with a 3-bit immediate data

Continued

Instruction Set Quick Reference 681

Table A.1: Instruction set summarydcont’d

Syntax (Unified Assembly Language) Description

SUBS <Rd>, #immed8 Subtract a register with an 8-bit immediate data
SUB SP, SP, #immed7 Subtract SP by an immediate data.

SP ¼ SP�ZeroExtend(#immed7 <<2).
SVC #<immed8> Supervisor call. Alternative syntax: SVC <immed8>
SXTB <Rd>, <Rm> Signed Extend lowest byte in a word data
SXTH <Rd>, <Rm> Signed Extend lower half word in a word data
TST <Rn>, <Rm> Test (bitwise AND)
UXTB <Rd>, <Rm> Extend lowest byte in a word data
UXTH <Rd>, <Rm> Extend lower half word in a word data
WFE Wait-for-Event. If no record of previous event, enter sleep

mode. If there is previous event, clear event latch register
and continue. In CMSIS compliant device driver you can
use “__WFE()” CMSIS function for WFE, but you might get
better power optimization using vendor specific sleep
functions.

WFI Wait-for-Interrupt. Enter sleep mode. In CMSIS compliant
device driver you can use “__WFI()” CMSIS function for
WFI, but you might get better power optimization using
vendor specific sleep functions.

YIELD A hint instruction for multithread systems. Indicate task is
stalled. Execute as NOP on the Cortex-M0 and Cortex-M0+
processor

682 Appendix A

APPENDIX B

Exception Type Quick Reference

B.1 Exception Types

The exception types and corresponding control registers are listed in Table B.1:

B.2 Stack Frame Layout (Stack Contents After Exception Stacking)

Table B.2 describes the layout of a stack frame in the stack memory after an exception

stacking sequence is carried out. This information is useful for extracting stacked data

within the exception handler.

Table B.1: Exception types and associated enable control registers

Exception

type Name Priority (word address) Enable

1 Reset �3 Always
2 NMI �2 Always
3 HardFault �1 Always
11 SVCall Programmable (0xE000ED1C, byte 3) Always
14 PendSV Programmable (0xE000ED20, byte 2) Always
15 SYSTICK Programmable (0xE000ED20, byte 3) SYSTICK Control and Status

Register (SysTick->CTRL)
16 Interrupt #0 Programmable (0xE000E400, byte 0) NVIC SETENA0

(0xE000E100, bit 0)
17 Interrupt #1 Programmable (0xE000E400, byte 1) NVIC SETENA0

(0xE000E100, bit 1)
18 Interrupt #2 Programmable (0xE000E400, byte 2) NVIC SETENA0

(0xE000E100, bit 2)
19 Interrupt #3 Programmable (0xE000E400, byte 3) NVIC SETENA0

(0xE000E100, bit 3)
20 Interrupt #4 Programmable (0xE000E404, byte 0) NVIC SETENA0

(0xE000E100, bit 4)
21 Interrupt #5 Programmable (0xE000E404, byte 1) NVIC SETENA0

(0xE000E100, bit 5)
22e31 Interrupt

#6e#31
Programmable (0xE000E404e
0xE000E41C)

NVIC SETENA0
(0xE000E100, bit 6ebit 31)

683

Depending on the Stack Pointer (SP) value before the exception has taken place, the previous

SP can be either the new SP value plus 32 or the new SP value plus 36: If the previous SP was

aligned to a double-word aligned address boundary, then the previous SP is new SP + 32.

Otherwise, a padding word would be allocated before stacking and therefore the previous SP

is new SP + 36.

Table B.2: Stack frame layout after exception stacking

Address Data

(N+36) (Previous stacked data)
(N+32) (Previous stacked data/padding)
(N+28) Stacked xPSR
(N+24) Stacked PC (return address)
(N+20) Stacked LR
(N+16) Stacked R12
(N+12) Stacked R3
(N+8) Stacked R2
(N+4) Stacked R1
New SP (N) -> Stacked R0

684 Appendix B

APPENDIX C

CMSIS-CORE Quick Reference

C.1 Overview

The Cortex� Microcontroller Software Interface Standard (CMSIS) contains a number of

standardized functions:

• Core peripheral access functions
• Core register access functions
• Special instruction access functions.

This appendix covers the basic information about these functions, and other information

related to using CMSIS.

C.2 Data Type

Some of the functions in the CMSIS-CORE API use standard data types defined in

“stdint.h” (part of the C99 specification), as listed in Table C.1.

C.3 Exception Enumeration

Instead of using integer values for exception types, CMSIS-CORE uses the IRQn

enumeration to identify exceptions. The CMSIS-CORE defines the following enumeration

and handler names for system exceptions in the Cortex�-M0 and Cortex-M0+ processor

(Table C.2).

Please note some of the header files for STM32 devices define the SVCall exception type

with SVC_IRQn instead of SVCall_IRQn.

The exception-types 16 and above are device specific.

Table C.1: C99 standard data type

used in CMSIS-CORE

Type Data

uint32_t Unsigned 32-bit integer
uint16_t Unsigned 16-bit integer
uint8_t Unsigned 8-bit integer

685

C.4 Nested Vectored Interrupt Controller Access Functions

The following functions are available for interrupt control:

Function name void NVIC_EnableIRQ(IRQn_Type IRQn)

Description Enable Interrupt in NVIC Interrupt Controller
Parameter IRQn_Type IRQn specifies the interrupt number (IRQn

enum). This function does not support system exceptions.
Return None

Function name void NVIC_DisableIRQ(IRQn_Type IRQn)

Description Disable Interrupt in NVIC Interrupt Controller
Parameter IRQn_Type IRQn is the positive number of the external

interrupt. This function does not support system
exceptions.

Return None

Function name uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)

Description Read the interrupt pending bit for a device-specific
interrupt source

Parameter IRQn_Type IRQn is the number of the device-specific
interrupt. This function does not support system
exceptions.

Return 1 if pending interrupt else 0

Function name void NVIC_SetPendingIRQ(IRQn_Type IRQn)

Description Set the pending bit for an external interrupt
Parameter IRQn_Type IRQn is the number of the interrupt. This

function does not support system exceptions.
Return None

Table C.2: Exception types

Exception

type Exception CMSIS Handler name

CMSIS IRQn enumeration

(value)

1 Reset Reset_Handler -
2 NMI NMI_Handler NonMaskableInt_IRQn

(-14)
3 HardFault HardFault_Handler HardFault_IRQn (-13)
11 SVC SVC_Handler SVCall_IRQn (-5)
14 PendSV PendSV_Handler PendSV_IRQn (-2)
15 SysTick SysTick_Handler SysTick_IRQn (-1)

686 Appendix C

Function name void NVIC_ClearPendingIRQ(IRQn_Type IRQn)

Description Clear the pending bit for an external interrupt
Parameter IRQn_Type IRQn is the number of the interrupt. This

function does not support system exceptions.
Return none

Function name void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)

Description Set the priority for an interrupt or system exceptions with
programmable priority level.

Parameter IRQn_Type IRQn is the number of the interrupt.
unint32_t priority is the priority for the interrupt. This
function automatically shifts the input priority value left by 6
bits to put priority value in implemented bits.

Return None

Function name uint32_t NVIC_GetPriority(IRQn_Type IRQn)

Description Read the priority for an interrupt or system exceptions
with programmable priority level.

Parameter IRQn_Type IRQn is the number of the interrupt
Return uint32_t priority is the priority for the interrupt. This

function automatically shifts the input priority value right
by 6 bits to remove unimplemented bits in the priority
value register.

C.5 System and SysTick Access Functions

The following functions are available for system control and SysTick setup:

Function name void NVIC_SystemReset(void)

Description Initiate a system reset request.
Parameter None
Return None

Function name uint32_t SysTick_Config(uint32_t ticks)

Description Initialize and start the SysTick counter and its interrupt.
This function programs the SysTick to generate SysTick
exception for every “ticks” number of core-clock cycles.

Parameter ticks is the number of clock ticks between two interrupts.
Return Return 0 if reload value range is valid. Return 1 if reload

value is more than 24-bit wide.

CMSIS-CORE Quick Reference 687

Function name void SystemInit (void)

Description Initialize the system. Device specificdthis function is
implemented in system_<device>.c (e.g., system_LPC11xx.c)

Parameter None
Return None

Function name void SystemCoreClockUpdate (void)

Description Update the SystemCoreClock variable. This function is
available from CMSIS version 1.3 and device specificdthis
function is implemented in system_<device>.c (e.g.,
system_LPC11xx.c). It should be used every time after the
clock settings have been changed.

Parameter None
Return None

C.6 Core Registers Access Functions

The following functions (Table C.3) are available for accessing core registers.

C.7 Special Instructions Access Functions
C.7.1 System Feature Accesses

The following special instructions access functions are available in CMSIS-CORE for

accessing system features (Table C.4).

Table C.3: Functions for accessing special registers in the processor core

Function name Descriptions

uint32_t __get_MSP(void) Get MSP value
void __set_MSP(uint32_t topOfMainStack) Change MSP value
uint32_t __get_PSP(void) Get PSP value
void __set_PSP(uint32_t topOfProcStack) Change PSP value
uint32_t __get_CONTROL(void) Get CONTROL value
void __set_CONTROL(uint32_t control) Change CONTROL value

688 Appendix C

C.7.2 Functions for Data Processing

The following special instructions access functions are available in CMSIS-CORE for

special data operations (Table C.5).

Table C.4: CMSIS-CORE intrinsic functions for accessing system

features in Cortex®-M0 and Cortex-M0+ processors

Function name Instruction Descriptions

void __WFI(void) WFI Wait-for-Interrupt (sleep)
void __WFE(void) WFE Wait-for-Event (conditional sleep)
void __SEV(void) SEV Send event
void __enable_irq(void) CPSIE i Enable interrupt (clear PRIMASK)
void __disable_irq(void) CPSID i Disable interrupt (set PRIMASK)
void __NOP(void) NOP No operation
void __ISB(void) ISB Instruction synchronization barrier
void __DSB(void) DSB Data synchronization barrier
void __DMB(void) DMB Data memory barrier

Table C.5: CMSIS-CORE intrinsic functions for data operations

in Cortex-M0 and Cortex-M0+ processors

Function name Instruction Descriptions

uint32_t __REV(uint32_t value) REV Reverse byte order inside a word
uint32_t __REV16(uint32_t value) REV16 Reverse byte order inside each of the

two half word.
Note: early versions of CMSIS define
input value as uint16_t.

uint32_t __REVSH(uint32_t value) REVSH Reverse byte order in the lower half
word and then signed extend the result
to 32 bit
Note: early versions of CMSIS define
input value as uint16_t

CMSIS-CORE Quick Reference 689

APPENDIX D

NVIC, SCB, and SysTick Registers
Quick Reference

D.1 NVIC Register Summary

Table D.1 listed the NVIC registers for interrupt control functions.

D.1.1 Interrupt Set Enable Register (NVIC-> ISER)

In general, for enabling an interrupt with a CMSIS compliant device driver library, please

use the NVIC_EnableIRQ function for best software portability. If needed, you can directly

access to the NVIC Interrupt Set Enable Register listed in Table D.2.

D.1.2 Interrupt Clear Enable Register (NVIC-> ICER)

In general, for disabling an interrupt with a CMSIS compliant device driver library, please

use the NVIC_DisableIRQ function for best software portability. If needed, you can directly

access to the NVIC Interrupt Clear Enable Register listed in Table D.3.

Table D.1: Summary of NVIC registers for interrupt control

Address Name CMSIS symbol Full name

0xE000E100 ISER NVIC-> ISER Interrupt Set Enable Register
0xE000E180 ICER NVIC-> ICER Interrupt Clear Enable Register
0xE000E200 ISPR NVIC-> ISPR Interrupt Set Pending Register
0xE000E280 ISCPR NVIC-> ISPR Interrupt Clear Pending Register
0xE000E400 IPR0-7 NVIC-> IPR[0] to

NVIC-> IPR[7]
Interrupt Priority Register

Table D.2: Interrupt set enable register

Address Name Type Reset value Descriptions

0xE000E100 SETENA R/W 0x00000000 Set enable for interrupt 0 to 31. Write 1 to
set bit to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception#16)
Bit[1] for Interrupt #1 (exception#17)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable status

691

D.1.3 Interrupt Set Pending Register (NVIC-> ISPR)

In general, for setting pending status with a CMSIS compliant device driver library, please

use the NVIC_SetPendingIRQ function for best software portability. If needed, you can

directly access to the NVIC Interrupt Set Pending Register listed in Table D.4.

D.1.4 Interrupt Clear Pending Register (NVIC-> ICPR)

In general, for clearing pending status with CMSIS compliant device driver library, please

use the NVIC_ClearPendingIRQ function for best software portability. If needed, you can

directly access to the NVIC Interrupt Clear Pending Register listed in Table D.5.

D.1.5 Interrupt Priority Registers (NVIC-> IRQ[0] to NVIC-> IRQ[7])

In general, for programming of Interrupt Priority with CMSIS compliant device driver

library, please use the NVIC_SetPriority function for best software portability. If needed,

you can directly access to the NVIC Interrupt Priority Registers listed in Table D.6.

Table D.3: Interrupt clear enable register

Address Name Type Reset value Descriptions

0xE000E180 CLRENA R/W 0x00000000 Clear enable for interrupt 0 to 31. Write 1 to
clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception#16)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current enable status

Table D.4: Interrupt set pending register

Address Name Type Reset value Descriptions

0xE000E200 SETPEND R/W 0x00000000 Set pending for interrupt 0 to 31. Write 1 to
set bit to 1, write 0 has no effect.
Bit[0] for Interrupt #0 (exception #16)
Bit[1] for Interrupt #1 (exception #17)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending status

Table D.5: Interrupt clear pending register

Address Name Type Reset value Descriptions

0xE000E280 CLRPEND R/W 0x00000000 Clear pending for interrupt 0 to 31. Write 1 to
clear bit to 0, write 0 has no effect.
Bit[0] for Interrupt #0 (exception#16)
.
Bit[31] for Interrupt #31 (exception #47)
Read value indicates the current pending status

692 Appendix D

D.2 SCB Register Summary

Table D.7 listed the System Control Block registers for system control functions.

D.2.1 CPU ID Base Register (SCB->CPUID)

This register’s value can be used to determine CPU type and revision.

Bits Field Type Reset value Descriptions

31:0 CPU ID RO 0x410CC200
(Cortex�-M0 r0p0)
0x410CC600
(Cortex-M0þ r0p0)
0x410CC601
(Cortex-M0þ r0p1)

CPU ID value. Used by debugger as well
as application code to determine
processor type and revision.
[31:24] Implementer
[23:20] Variant (0x0)
[19:16] Constant (0xC)
[15:4] Part number (0xC20)
[3:0] Revision (0x0)

Table D.6: Interrupt priority registers

Address Name Type Reset value Descriptions

0xE000E400 PRIORITY0 R/W 0x00000000 Priority level for interrupt 0 to 3.
[31:30] Interrupt priority 3
[23:22] Interrupt priority 2
[15:14] Interrupt priority 1
[7:6] Interrupt priority 0

0xE000E404 PRIORITY1 R/W 0x00000000 Priority level for interrupt 4 to 7.
0xE000E408 PRIORITY2 R/W 0x00000000 Priority level for interrupt 8 to 11.
0xE000E40C PRIORITY3 R/W 0x00000000 Priority level for interrupt 12 to 15.
0xE000E410 PRIORITY4 R/W 0x00000000 Priority level for interrupt 16 to 19.
0xE000E414 PRIORITY5 R/W 0x00000000 Priority level for interrupt 20 to 23.
0xE000E418 PRIORITY6 R/W 0x00000000 Priority level for interrupt 24 to 27.
0xE000E41C PRIORITY7 R/W 0x00000000 Priority level for interrupt 28 to 31.

Table D.7: Summary of SCB registers

Address Name CMSIS symbol Full name

0xE000ED00 CPUID SCB->CPUID CPU ID (Identity) Base register
0xE000ED04 ICSR SCB->ICSR Interrupt Control State Register
0xE000ED08 VTOR SCB->VTOR Vector Table Offset Register
0xE000ED0C AIRCR SCB->AIRCR Application Interrupt and Reset

Control Register
0xE000ED10 SCR SCB->SCR System Control Register
0xE000ED14 CCR SCB->CCR Configuration and Control Register
0xE000ED1C SHPR2 SCB->SHP[0] System Handler Priority Register 2
0xE000ED20 SHPR3 SCB->SHP[1] System Handler Priority Register 3
0xE000ED24 SHCSR SCB->SHCSR System Handler Control and State Register

(accessible from debugger only)

NVIC, SCB, and SysTick Registers Quick Reference 693

D.2.2 Interrupt Control State Register (SCB->ICSR)

Bits Field Type Reset value Descriptions

31 NMIPENDSET R/W 0 Write 1 to pend NMI, write 0 has no effect.
On reads return pending state of NMI.

30:29 Reserved e e Reserved
28 PENDSVSET R/W 0 Write 1 to set PendSV pending status, write 0 has

no effect.
On reads return the pending state of PendSV.

27 PENDSVCLR R/W 0 Write 1 to clear PendSV pending, write 0 has no
effect. On reads return the pending state of PendSV.

26 PENDSTSET R/W 0 Write 1 to pend SysTick, write 0 has no effect.
On reads return the pending state of SysTick.

25 PENDSTCLR R/W 0 Write 1 to clear SysTick pending, write 0 has no
effect. On reads return the pending state of SysTick.

24 Reserved e e Reserved
23 ISRPREEMPT RO e [for debug only] During debugging, this bit indicates

that an exception will be served in the next running
cycle, unless it is suppressed by debugger by
C_MASKINTS in Debug Control and Status Register.

22 ISRPENDING RO e [for debug only] During debugging, this bit indicates
that an exception is pended.

21:18 Reserved e e Reserved
17:12 VECTPENDING RO e Indicates the exception number of the highest

priority pending exception. If it is read as 0, it
means no exception is currently pended.

11:6 Reserved e e Reserved
5:0 VECTACTIVE RO e Current active exception number, same as IPSR. If

the processor is not serving an exception (Thread
mode), this field read as 0.

D.2.3 Vector Table Offset Register (SCB->VTOR, 0xE000ED08)

Bits Field Type Reset value Descriptions

31:7 TBLOFF R/W 0 Vector Table Offset Address bit[31:7].
Note: Cortex�-M0þ processor only
implemented bit[31:8] and bit[7] is tied to 0.

6:0 Reserved e e Reserved.

694 Appendix D

D.2.4 Application Interrupt and Reset Control State Register (SCB->AIRCR)

Bits Field Type Reset value Descriptions

31:16 VECTKEY (during
write operation)

WO e Register access key. When writing to this
register, the VECTKEY field needs to be set
to 0x05FA, otherwise the write operation
would be ignored.

31:16 VECTKEYSTAT
(during read operation)

RO 0xFA05 Read as 0xFA05

15 ENDIANESS RO 0 or 1 1 indicates the system is big endian.
0 indicates the system is little endian.

14:3 Reserved e e Reserved
2 SYSRESETREQ WO e Write 1 to this bit causes the external

signal SYSRESETREQ to be asserted.
1 VECTCLRACTIVE WO e Write 1 to this bit causes:

• Exception active status to be cleared
• Processor returns to Thread mode
• IPSR to be cleared
This bit can be only be used by debugger.

0 Reserved e e Reserved

D.2.5 System Control Register (SCB->SCR)

Bits Field Type Reset value Descriptions

31:5 Reserved e e Reserved
4 SEVONPEND R/W 0 When set to 1, an event is generated for each new

pending of an interrupt. This can be used to wake up
the processor if wait-for-event sleep is used.

3 Reserved e e Reserved
2 SLEEPDEEP R/W 0 When set to 1, deep sleep mode is selected

when sleep mode is entered. When this bit is
zero, normal sleep mode is selected when sleep
mode is entered.

1 SLEEPONEXIT R/W 0 When set to 1, enter sleep mode (wait-for-
interrupt) automatically when exiting an
exception handler and returning to thread level.
When set to 0 this feature is disabled.

0 Reserved e e Reserved

NVIC, SCB, and SysTick Registers Quick Reference 695

D.2.6 Configuration and Control Register (SCB->CCR)

This register is read only and has fixed value. It is implemented to maintain compatibility

between ARMv6-M and ARMv7-M architectures.

Bits Field Type Reset value Descriptions

31:10 Reserved e e Reserved
9 STKALIGN RO 1 Double word exception stacking alignment

behavior is always used.
8:4 Reserved e e Reserved
3 UNALIGN_TRP RO 1 Instruction trying to carry out an unaligned

access always causes a fault exception.
2:0 Reserved e e Reserved

D.2.7 System Handler Priority Register 2 (SCB->SHR[0])

In general, for programming the Interrupt Priority with CMSIS compliant device driver

library, please use the NVIC_SetPriority function rather than directly accessing the

CMSIS register symbol. This ensures software compatibility between various Cortex�-M

processors.

Address Name Type Reset value Descriptions

0xE000ED1C SHPR2 R/W 0x00000000 System Handler Priority Register 2
[31:30] SVC priority

D.2.8 System Handler Priority Register 3 (SCB->SHR[1])

In general, for programming the Interrupt Priority with CMSIS compliant device driver

library, please use the NVIC_SetPriority function rather than directly accessing the

CMSIS register symbol. This ensures software compatibility between various Cortex-M

processors.

Address Name Type Reset value Descriptions

0xE000ED20 SHPR3 R/W 0x00000000 System Handler Priority Register 3
[31:30] SysTick priority
[23:22] PendSV priority

D.2.9 System Handler Control and State Register

This register is only accessible from a debugger. Application software cannot access this

register.

696 Appendix D

Bits Field Type Reset value Descriptions

31:16 Reserved e e Reserved
15 SVCALLPENDED RO 0 1 indicates SVC execution is pended.

Accessible from debugger only.
14:0 Reserved e e Reserved

D.3 SysTick Register Summary

Table D.8 listed the SysTick registers.

D.3.1 SysTick Control and Status Register (SysTick->CTRL)

Bits Field Type Reset value Descriptions

31:17 Reserved e e Reserved
16 COUNTFLAG RO 0 Set to 1 when the SysTick timer reaches zero.

Clear to 0 by reading of this register.
15:3 Reserved e e Reserved
2 CLKSOURCE R/W 0 Value of 1 indicates that the core clock is

used for the SysTick timer. Otherwise a
reference clock frequency (depending on
MCU design) is used.

1 TICKINT R/W 0 SysTick interrupt enable. When this bit is set,
the SysTick exception is generated when the
SysTick timer count down to 0.

0 ENABLE R/W 0 When set to 1 the SysTick timer is enabled.
Otherwise the counting is disabled.

D.3.2 SysTick Reload Value Register (SysTick->LOAD)

Bits Field Type Reset value Descriptions

31:24 Reserved e e Reserved
23:0 RELOAD R/W Undefined Specify the reload value of the SysTick Timer

Table D.8: SysTick registers summary

Address Name CMSIS symbol Full name

0xE000E010 SYST_CSR SysTick->CTRL SysTick Control and Status
Register

0xE000E014 SYST_RVR SysTick->LOAD SysTick Reload Value Register
0xE000E018 SYST_CVR SysTick->VAL SysTick Current Value Register
0xE000E01C SYST_CALIB SysTick->CALIB SysTick Calibration Register

NVIC, SCB, and SysTick Registers Quick Reference 697

D.3.3 SysTick Current Value Register (SysTick->VAL)

Bits Field Type Reset value Descriptions

31:24 Reserved e e Reserved
23:0 CURRENT R/W Undefined On read returns the current value of the

SysTick timer. Write to this register with any
value to clear the register and the
COUNTFLAG to 0. (This does not cause
SysTick exception.)

D.3.4 SysTick Calibration Value Register (SysTick->CALIB)

Bits Field Type Reset value Descriptions

31 NOREF RO e If it is read as 1, it indicates that SysTick always
use core clock for counting as no external
reference clock is available. If it is 0, then an
external reference clock is available and can be
used. The value is MCU design dependent.

30 SKEW RO e If set to 1, the TENMS bit field is not accurate.
The value is MCU design dependent.

29:24 Reserved e e Reserved
23:0 TENMS RO e Ten millisecond calibration value. The value is

MCU design dependent. If read as 0, calibration
value is not available.

698 Appendix D

APPENDIX E

Debug Registers Quick Reference

E.1 Overview

The debug systems in the Cortex�-M0 and Cortex-M0+ processors contain a number of

programmable registers. These registers can be accessed by in-circuit debuggers only and

cannot be accessed by the application software. This quick reference is intended for tools

developers, or if you are using a debugger that supports debug scripts (e.g., ARM� DS-5),

where you can use debug scripts to access these registers to carry out testing operations

automatically.

The debug system in the Cortex-M0 and the Cortex-M0+ processors is partitioned into as

follows:

• Debug support in the processor core,
• Breakpoint unit,
• Data watchpoint unit,
• ROM table,
• and optionally, a Micro Trace Buffer (MTB) for Cortex-M0+ processor.

System-on-Chip developers can add additional debug support components if required. If

additional debug components are added, an additional ROM table unit could also be added

to the system so that a debugger can identify available debug components included in the

system.

The debug support is configurable; for example, some Cortex-M0/M0+ devices might not

have any debug support, and some Cortex-M0+ devices might not have MTB support.

E.2 Core Debug Registers

The processor core contains a number of registers for debug purpose (Table E.1).

Table E.1: Summary of core debug registers

Address Name Descriptions

0xE000ED24 SHCSR System Handler Control and State Registerdindicate system
exception status.

0xE000ED30 DFSR Debug Fault Status RegisterdAllow debugger to determine the
cause of halting.

Continued

699

System Handler Control and State Register (0xE000ED24)

Bits Field Type Reset value Descriptions

31:16 Reserved e e Reserved
15 SVCALLPENDED RO 0 1 indicates SVC execution is pended.

Accessible from debugger only.
14:0 Reserved e e Reserved

Debug Fault Status Register (0xE000ED30)

Bits Field Type Reset value Descriptions

31:5 Reserved e e Reserved
4 EXTERNAL RWc 0 EDBGRQ was asserted
3 VCATCH RWc 0 Vector catch occurred
2 DWTTRAP RWc 0 Data watchpoint occurred
1 BKPT RWc 0 Breakpoint occurred
0 HALTED RWc 0 Halted by debugger or single stepping

Debug Halting Control and Status Register (0xE000EDF0)

Bits Field Type Reset value Descriptions

31:16 DBGKEY (during write) WO e Debug Key. During write, the value of
0xA05F must be used on the top 16 bit.
Otherwise the write is ignored.

25 S_RESET_ST (during read) RO e Reset status flag (sticky). Core has been
reset or being reset; this bit is clear on
read.

24 S_RETIRE_ST (during read) RO e Instruction is completed since last read;
this bit is clear on reset.

Table E.1: Summary of core debug registersdcont’d

Address Name Descriptions

0xE000EDF0 DHCSR Debug Halting Control and Status RegisterdControl processor
debug activities like halting, single stepping

0xE000EDF4 DCRSR Debug Core Register Selector Registerdcontrol read and write of
core registers during halt

0xE000EDF8 DCRDR Debug Core Register Data Registerddata transfer register for
reading or writing core registers during halt

0xE000EDFC DEMCR Debug Exception Monitor Control Registerdfor enabling of data
watchpoint unit and vector catch feature. Vector catch allows the
debugger to halt the processor if the processor is reset, or if a
HardFault exception is triggered.

0xE000EFD0 to
0xE000EFFC

PIDs, CIDs ID registers

700 Appendix E

dcont’d

Bits Field Type Reset value Descriptions

19 S_LOCKUP RO e When this bit is 1, the core is in lock up
state

18 S_SLEEP RO e When this bit is 1, the core is sleeping
17 S_HALT (during read) RO e When this bit is 1, the core is halted.
16 S_REGRDY_ST (during read) RO e When this bit is 1, the core is ready for a

register read or register write operation.
15:4 Reserved e e Reserved
3 C_MASKINTS R/W 0 Mask exceptions while stepping (does

not affect NMI and hard fault); valid
only if C_DEBUGEN is set.

2 C_STEP R/W 0 Single step control. Set this to 1 to carry
out single step operation; valid only if
C_DEBUGEN is set.

1 C_HALT R/W 0 Halt control. This bit is only valid when
C_DEBUGEN is set.

0 C_DEBUGEN R/W 0 Debug enable. Set this bit to 1 to enable
debug.

Debug Core Register Selector Register (0xE000EDF4)

Bits Field Type Reset value Descriptions

31:17 Reserved e e Reserved
16 REGWnR WO e Set to 1 to write value to register

Set to 0 to read value from register
15:5 Reserved e e Reserved
4:0 REGSEL WO 0 Register select

Debug Core Register Data Register (0xE000EDF8)

Bits Field Type Reset value Descriptions

31:0 DBGTMP RW 0 Data value for the core register transfer

Debug Exception and Monitor Control Register (0xE000EDFC)

Bits Field Type Reset value Descriptions

31:25 Reserved e e Reserved
24 DWTENA RW 0 Data Watchpoint unit enable.
23:11 Reserved e e Reserved
10 VC_HARDERR RW 0 Debug trap at hard fault exception
9:1 Reserved e e Reserved
0 VC_CORERESET RW 0 Halt processor after system reset and

before the first instruction executed.

Debug Registers Quick Reference 701

E.3 Breakpoint Unit

The breakpoint unit contains up to four comparators for instruction breakpoints. Each

comparator can produce a breakpoint for up to two instructions (if the two instructions are

located in the same word address). Additional breakpoints can be implemented by

inserting breakpoint instructions in the program image if the program memory can be

modified (Table E.2).

The breakpoint unit design is configurable. Some microcontrollers might contain no

breakpoint unit, or a breakpoint unit with less than four comparators.

Breakpoint Control Register (0xE0002000)

Bits Field Type Reset value Descriptions

31:17 Reserved e e Reserved
7:4 NUM_CODE RO 0 to 4 Number of comparators
3:2 Reserved e e Reserved
1 KEY WO e Write Key. When write to this register, this bit should

be set to 1, otherwise the write operation is ignored.
0 ENABLE RW 0 Enable control

Breakpoint Comparator Registers (0xE0002008e0xE0002014)

Bits Field Type Reset value Descriptions

31:30 BP_MATCH RW e Breakpoint setting:
00: No breakpoint
01: Breakpoint at lower half word address
10: Breakpoint at upper half word address
11: Breakpoint at both lower and upper half word

29 Reserved e e Reserved
28:2 COMP RW e Compare instruction address
1 Reserved e e Reserved
0 ENABLE RW 0 Enable control for this comparator

Table E.2: Summary of registers in the breakpoint unit

Address Name Descriptions

0xE0002000 BP_CTRL Breakpoint Control Registerdfor enabling the breakpoint
unit and provide information about the breakpoint unit.

0xE0002008 BP_COMP0 Breakpoint Comparator Register 0
0xE000200C BP_COMP1 Breakpoint Comparator Register 1
0xE0002010 BP_COMP2 Breakpoint Comparator Register 2
0xE0002014 BP_COMP3 Breakpoint Comparator Register 3
0xE0002FD0 to
0xE0002FFC

PIDs, CIDs ID registers

702 Appendix E

E.4 Data Watchpoint Unit

The data watchpoint unit (DWT) has two main functions:

• Setting data watchpoints
• Providing a Program Counter (PC) sampling register for basic profiling.

Before accessing the DWT, the DWTENA bit in Debug Exception and Monitor Control

Register (DEMCR, address 0xE000EDFC) must be set to 1 to enable the DWT. Unlike the

Data Watchpoint and Trace unit in Cortex�-M3/M4, the DWT in the Cortex-M0 and

Cortex-M0+ processors does not support trace. But the programming models of its

registers are mostly compatible to the DWT in ARM�v7-M (Table E.3).

The DWT design is configurable. Some microcontrollers might contain no DWT, or a

DWT with just one comparator.

DWT Control Register (0xE0001000)

Bits Field Type Reset value Descriptions

31:28 NUMCOMP RO 0 to 2 Number of comparator implemented
27:0 Reserved e e Reserved

Table E.3: DWT register summary

Address Name Descriptions

0xE0001000 DWT_CTRL DWT Control Registerdprovide information
about the data watchpoint unit.

0xE000101C DWT_PCSR Program Counter Sample Registerdprovide
current program address

0xE0001020 DWT_COMP0 Comparator Register 0
0xE0001024 DWT_MASK0 Mask Register 0
0xE0001028 DWT_FUNCTION0 Function Register 0
0xE0001030 DWT_COMP1 Comparator Register 1
0xE0001034 DWT_MASK1 Mask Register 1
0xE0001038 DWT_FUNCTION1 Function Register 1
0xE0001FD0 to
0xE0001FFC

PIDs, CIDs ID registers

Debug Registers Quick Reference 703

Program Counter Sample Register (0xE000101C)

Bits Field Type Reset value Descriptions

31:0 EIASAMPLE RO e Execution instruction address sample. Read as
0xFFFFFFFF is core is halted or if DWTENA is 0.

DWT COMP0 Register and DWT COMP1 Registers (0xE0001020, 0xE0001030)

Bits Field Type Reset value Descriptions

31:0 COMP RW e Address value to compare to. The value must be
aligned to the compare address range defined by
the compare mask register.

DWT MASK0 Register and DWT MASK1 Registers (0xE0001024, 0xE0001034)

Bits Field Type Reset value Descriptions

31:4 Reserved e e Reserved
3:0 MASK RW e Mask pattern:

0000: compare mask ¼ 0xFFFFFFFF
0001: compare mask ¼ 0xFFFFFFFE
.
1110: compare mask ¼ 0xFFFFC000
1111: compare mask ¼ 0xFFFF8000

DWT FUNC0 Register and DWT FUNC1 Registers (0xE0001028, 0xE0001038)

Bits Field Type Reset value Descriptions

31:4 Reserved e e Reserved
3:0 FUNC RW 0 Function:

0000: Disabled
0100: Watchpoint on PC match
0101: Watchpoint on read address
0110: Watchpoint on write address
0111: Watchpoint on read or write address
Other values: Reserved

704 Appendix E

E.5 ROM Table Registers

The ROM table is used to allow a debugger to identify available components in the

system. The lowest two bits of each entry are used to indicate if the debug component is

present, and if there is another valid entry following in the next address in the ROM table.

The rest of the bits in the ROM table contain the address offset of the debug unit from the

ROM table base address.

Address Value Name Descriptions

0xE00FF000 0xFFF0F003 SCS Points to System Control Space base address 0xE000E000
0xE00FF004 0xFFF02003 DWT Points to DW base address 0xE0001000
0xE00FF008 0xFFF03003 BPU Points to BPU base address 0xE0002000
0xE00FF00C 0x00000000 end End of table marker
0xE00FFFCC 0x00000001 MEMTYPE Indicates that system memory is accessible on this memory

map.
0xE00FFFD0 to
0xE00FFFFC

0x000000-- IDs Peripheral ID and component ID values (values dependent
on the design versions).

Using the ROM table, the debugger can identify the debug components available as shown

in Figure E.1.

The ROM table look-up can be divided into multiple stages if a System-on-Chip design

contains additional debug components and an extra ROM table. In such cases the ROM

table look-up can be cascaded, as shown in Figure E.2, so that the debugger can identify

all the debug components available.

Debugger
connection

(JTAG /
Serial Wire)

Debug interface

base address

Debugger detects
connection of debug

interface and obtains the
ROM table address

ROM table

Debugger goes through
each entry in the ROM

table

SCS / NVIC

DWT unit

BP unit

The debug components are
identified by their ID values

SCS / NVIC

ID registers

DWT

ID registers

FPB

ID registers

Debugger can then
determine available

debug features by other
registers in the debug

compoents

Number of
WatchPoints

Number of
BreakPoints

ID registers

Figure E.1
Debuggers can use the ROM table to detect available debug components automatically.

Debug Registers Quick Reference 705

E.6 Micro Trace Buffer
E.6.1 Overview

The MTB component provides instruction trace feature for the Cortex�-M0+ processor

(Table E.4). It is an optional component and the base address of the MTB is device

dependent. The full details of the MTB are covered in the CoreSight� MTB-M0+ Technical

Reference Manual (TRM, reference 15), which can be downloaded from ARM� Web site.

Table E.4: Summary of the MTB registers

Address Name Descriptions

Base address + 0x0 POSITION Position of the trace pointer
Base address + 0x4 MASTER Various control information, including memory size allocated for

trace buffer.
Base address + 0x8 FLOW Control watermark level, and what actions to take when the trace

pointer reached water mark level.
Base address + 0xC BASE The base address of the SRAM
Base address + 0xF00
to 0xFFC

CoreSight
registers

Registers for CoreSight device management and identifications

Debugger
connection

(JTAG /
Serial Wire)

Debug interface

base address

Debugger detects
connection of debug

interface and obtains the
ROM table address

Cortex-M0
ROM table

Debugger goes through
each entry in the ROM

table

SCS / NVIC

DWT unit

BP unit

The debug components are
identified by their ID values

SCS / NVIC

ID registers

DWT

ID registers

FPB

ID registers

Debugger can then
determine available

debug features by other
registers in the debug

compoents

Number of
WatchPoints

Number of
BreakPoints

ID registers

Primary
ROM table

Debug unit X

Debug unit Y

Cortex-M0
ROM table

Debug unit X

ID registers

Debug unit Y

ID registers

Figure E.2
Multistage ROM table look-up when additional debug components are present.

706 Appendix E

E.6.2 POSITION Register

Bits Field Type Reset value Descriptions

31:N e e 0 Unimplemented bits of POINTER.
Read as zero, write ignored.

N:3 POINTER RW e Relative address for the next trace packet (the address must
be multiple of 8 because each packet contains two words).
Width of POINTER depends on the SRAM size connected to
the MTB.
Physical address of pointer is POINTER + BASE.

2 WRAP RW e This bit is set to 1 automatically when the POINTER value
wraps when reaching to the end of the allocated space.

1:0 Reserved e e

E.6.3 MASTER Register

Bits Field Type

Reset

value Descriptions

31 EN RW 0 Trace Enable
30:10 Reserved e e
9 HALTREQ RW 0 Halt request bit. This bit is automatically set to 1 when the

watermark level is reached and AUTOHALT bit is set. When this bit
is set, the MTB assert an External Debug Request (EDBGRQ) to
the processor top stop put the processor into halt debug mode.

8 RAMPRIV RW 0 When set to 1, only privileged access is allowed to the SRAM.
Otherwise both privileged and unprivileged code can access to the
SRAM connected to the MTB.

7 SFRWRPRIV RW 1 When set to 1, only privileged access is allowed to the MTB
registers. Otherwise both privileged and unprivileged code can
access to the MTB registers.

6 TSTOPEN RW 0 When set to 1, enable the use of external signal to control stopping
of trace.

5 TSTARTEN RW 0 When set to 1, enable the use of external signal to control starting
of trace.

4:0 MASK RW e Determine the SRAM size allocated for instruction trace (define the
MSB of the POSITION.POINTER field that can be increment).
0e16 bytes
1e32 bytes
.
6e1 KB
7e2 KB
8e4 KB
.

Debug Registers Quick Reference 707

E.6.4 FLOW Register

Bits Field Type Reset value Descriptions

31:3 POINTER RW e Address for the next trace packet (the address must be
multiple of 8 because each packet contains two words).

2 Reserved e e
1 AUTOHALT e e When set to 1, automatically halt processor (via EDBGRQ

signal) when watermark level is reached.
0 AUTOSTOP RW 0 When set to 1, automatically stop tracing when watermark

level is reached

E.6.5 BASE Register

Bits Field Type Reset value Descriptions

31:0 SRAMBASE RO e Indicate the base address of the SRAM
connected to the MTB

E.6.6 Packet Format

Each of the MTB packets is two words in size (Figure E.3). The packet address must be

aligned to multiple of 8 bytes.

Since an instruction address must be aligned to half-word aligned address, the bit 0 of

each word in an MTB packet can be used for other information, the S bit and A bit

(Table E.5):

Source Address

Des�na�on Address

A

S

0113

Even word address

Odd word address

Figure E.3
An MTB packet.

Table E.5: Definition of the S bit and A bit in an MTB packet

Bit Descriptions

S bit Start bit. If this bit is 1, it indicates that the trace was previously has been stopped and this
packet is the start of a new sequence. During a trace session, the trace could be stopped
and started again using external controlled signal (when MASTER.TSTARTED and
MASTER.TSTOPED bits are set)

A bit Atomic bit. Indicates the type of branch.
If this bit is 0, it indicates a normal branch operation. The source address field indicates
the address of the instruction that trigger the branch.
If this bit is 1, it indicates exception entry or a PC update in a debug state. The source
address field indicates the return address for the exception, or the address of the instruction
that was to be executed before entering debug state.

708 Appendix E

In exception returns, two MTB packets are generated (Figure E.4).

E.6.7 Examples

Take an example that a microcontroller has an SRAM connected to the MTB which is

32 KB in size, and the address of the SRAM is at 0x20000000 (Figure E.5). The BASE

register should read as 0x20000000.

Since the size of the SRAM is 32 KB, only bit[14:2] of the POSITION register is

implemented. A debugger can detect the maximum size of the SRAM by writing

0xFFFFFFF8 to the POSITION register, and get 0x00007FF8 back.

For instruction trace, we would like to allocate only the last 4 KB of the SRAM. The first

28 KB of the SRAM is still used by the application code.

SRAM

0x20000000

0x20007FFF

0x20008000
RAM space for trace

(0x20007000 to 0x20007FFF)

RAM space for applica on
(0x20000000 to 0x20006FFF)

Figure E.5
Layout of SRAM usage in example.

Source Address (e.g. address of BX or POP)

Des�na�on Address (EXC_RETURN[31:1]

A=0

S

0113

Even word address

Odd word address

Source Address (EXC_RETURN[31:1])
Des�na�on Address (Return address)

Even word address

Odd word address

A=1
S=0

First
packet

Second
packet

Figure E.4
Two packets are generated for an exception return.

Debug Registers Quick Reference 709

To enable such arrangement, we can program the MTB as:

• POSITION ¼ 0x00007000 (Trace buffer starting address ¼ BASE + 0x00007000)
• FLOW ¼ 0 (watermark)
• MASTER ¼ 0x80000008 (FIELD ¼ 0x8, the highest bit that can be toggled by pointer

increment is bit 8 (512 � 8 bytes ¼ 4 KB). EN bit set to 1 to enable trace)

To disable trace, we can just clear the EN bit in MASTER:

• MASTER ¼ 0x00000008

After the trace is done, the debugger can read the POSITION register to deter the ending

location of the trace, read the trace buffer backward and identify the start of the trace by

checking the S-bit. If the TSTARTEN and TSTOPEN bits are used in the trace setup, there

can be multiple trace sessions and the debugger should read through the whole 4 KB

allocated buffer to see if there are multiple sessions of instruction trace.

710 Appendix E

APPENDIX F

Debug Connector Arrangements
A number of standard debug connector configurations are defined to allow in-circuit

debuggers to connect to target boards easily. Most of the Cortex�-M microcontroller

development boards use these standard pinouts. If you are designing your own Cortex-M

microcontroller board, you should use one of these connector arrangements to make

connection to the in-circuit debugger easier.

F.1 The 10-Pin Cortex® Debug Connector

For PCB design with small size, the 0.0500-pitch Cortex debug connector is ideal. The

board space required is approximately 10 � 3 mm (the PCB header size is smaller, only

5 � 6 mm) and is based on the Samtec micro header (Figure F.1).

The 10-pin Cortex debug connector (Figure F.2) supports both Joint Test Action Group

(JTAG) and Serial Wire protocols. The VTref is normally connected to VCC (e.g., 3.3 V)

and the nRESET signal can usually be ignored (the debugger normally resets the

microcontroller using the System Reset Request feature in the AIRCR of System Control

Block). The GNDDetect signal allows the in-circuit debugger to detect that it is connected

to a target board. This connector arrangement is also called the CoreSight� debug

connector in some ARM� documentation.

Figure F.1
The 10-pin Cortex debug connector.

711

F.2 The 20-Pin Cortex® Debug + ETM Connector

In some cases you might also find a 20-pin 0.0500-pitch pin debug connector (Figure F.3).

It is used in some Cortex-M3/M4 board where instruction trace is required. The header

(Samtec FTSH-110) included addition signals for trace information transfer (Figure F.4).

Although the Cortex-M0 and Cortex-M0+ processors do not support trace connections,

some in-circuit debuggers might use this connector arrangement.

When using a Cortex-M0 or Cortex-M0+-based microcontroller with this debug

connection arrangement, you can ignore the trace signals. Both JTAG and Serial Wire

debug protocol can be used with this debug connection arrangement.

VTref

GND

GND

KEY

GNDDetect

1

9

2

10

TMS/SWIO

TCK/SWCLK

TDO / SWO

TDI

nRESET

Figure F.2
The pinout in the 10-pin Cortex debug connector.

Figure F.3
The 20-pin Cortex debug + ETM connector.

712 Appendix F

F.3 The Legacy 20-Pin IDC Connector Arrangement

Many existing in-circuit debuggers and development boards still use the larger 20-pin IDC

connector arrangement. Using a 0.100 pitch, it is easy for hobbyists to use (easy for

soldering) and provide stronger mechanical support (Figures F.5 and F.6).

VTref

GND

GND

KEY

GNDDetect

GND/TgtPwr+Cap

GND

GND

GND

GND/TgtPwr+Cap

1

19

2

20

TMS/SWIO

TCK/SWCLK

TDO / SWO / TRACECTL / EXTa

TDI / EXTb / NC

nRESET

TRACECLK

TRACEDATA0
TRACEDATA1

TRACEDATA2

TRACEDATA3

Figure F.4
Pinout assignment for the 20-pin Cortex debug + ETM connector.

Figure F.5
20-pin IDC connector.

Debug Connector Arrangements 713

3V3

nTRST

TDI

TMS/SWIO

TCK/SWCLK

RTCK

TDO/SWV
NC / nSRST

NC

NC

1

19

2

20

GND

GND

nICEDETECT

3V3

GND

GND

GND

GND
GND

GND

Figure F.6
Pinout assignments of 20-pin IDC debug connector.

714 Appendix F

APPENDIX G

Trouble Shooting
Chapter 11 of this book covered various techniques in locating problems in program code.

In this section, we will summarize the most common mistakes and problems that software

developers might encounter when developing software for the Cortex�-M0 and Cortex-M0+

microcontrollers.

G.1 Program Does Not Run/Start

There can be many different possible reasons including dysfunctional hardware. A number

of possibly software caused are listed here.

G.1.1 Vector Table Missing or Vector Table in Wrong Place

Depending on the tool chain, you might need to create a vector table. If you do have a

vector table in the project, make sure it is a vector table which is suitable for Cortex�-M0

or Cortex-M0+ processors (e.g., vector table code for ARM7TDMI� cannot be used). It is

also possible for the vector table to be removed accidentally during the link stage, or being

placed into the wrong address location.

For example, some of the Cortex-M0+ microcontroller has boot ROM at address 0x0, and

user flash in a different address. It means that the linker settings might need to be adjusted

to ensure that the vector table is located at the start of the user flash location rather than

address 0x0.

To help debugging problems related to vector table, an easy way is to generate a

disassembled listing of the compiled image or a linker report to see if the vector table is

present, and if it is correctly placed at the start of the memory.

G.1.2 Incorrect C Startup Code Being Used

Besides from compiler options, make sure that the linker options are correctly specified as

well. For example, if you are creating your own linker scripts for gcc tool chains.

Otherwise a linker might pull in incorrect C startup code. For example, it might end up

using startup code for another ARM� processor, which contains instructions not supported

by the Cortex-M0/Cortex-M0+ processor, or unintentionally used startup code for a debug

environment with semihosting, which might contain breakpoint instruction (BKPT). This

can cause an unexpected HardFault or other software exceptions.

715

G.1.3 Incorrect Values in Reset Vector

Make sure the reset vector is really pointing to the intended reset handler. For example,

some code examples on the internet might not be based on CMSIS and use _start()/

__main() instead of Reset_Handler() as reset vector in the vector table, hence skipping the

SystemInit function. Also, you should check the initial stack point value in the vector table

is pointing to a valid memory location, and all the exception vectors in the vector table

have the LSB set to 1 to indicate Thumb code.

G.1.4 Program Image Not Programmed in Flash Correctly

Most flash programming tools automatically verify the flash memory after programming.

If not, after the program image is programmed into the flash, you might need to double

check if the flash memory has been updated correctly. In some cases, you might need to

erase the flash first and then program the program image.

G.1.5 Incorrect Tool Chain Configurations

Some other tool chain configurations can also cause problems with the startup sequence.

For example, memory map settings, CPU options, endianness settings, etc.

G.1.6 Incorrect Stack Pointer Initialization Value

This involves two parts. Firstly, the initial Stack Pointer (SP) value (the first word on the

vector table) needs to point to a valid memory address. Secondly, the C startup code might

have a separate stack setup step. Try getting the processor to halt at the startup sequence,

and single step through it to make sure the SP is not changed to point to an invalid address

value.

G.1.7 Incorrect Endian Setting

Most ARM microcontrollers are using little endian, but there is a chance that someday you

switch to use an ARM Cortex-M0 or Cortex-M0+ microcontroller in big endian

configuration. If this is the case, make sure the C compiler options, assembler options, and

linker options are set up correctly to support big endian mode.

The CMSIS package contains a range of precompiled libraries, including some libraries

compiled for big endian systems. Therefore it is possible to pick up incorrect library in a

project and it is important to check if the right library is used.

716 Appendix G

G.2 Program Started, but Enter HardFault
G.2.1 Overview

In summary, when debugging HardFaults on Cortex�-M0/Cortex-M0+ processors, several

pieces of information are very useful:

• Extract the stacked Program Counter (PC) (see Chapter 11, Section 11.3, Analyze a
fault)

• Check the T bit in the stacked Program Status Register (xPSR)
• Check the Internal Program Status Register (IPSR) in the stacked xPSR
• Generate a disassembled listing of the complete program image

If the SP is pointing to an invalid memory location, then you would not be able to extract

the stack frame. In these occasions, you can:

• Check if you have allocated enough stack space. Various tool chains have different
way to provide the stack usage of the application code. In any case, stack usage
analysis is something you should do anyway, even the program did not crash. Do not
forget that exception handlers also need stack spaces, and for each extra level of nested
ISR (interrupt service routine), you need an additional level of stack space for the
stack frame as well as the ISR code.

• If MTB trace is available, use instruction trace to identify potential problems that can
corrupt stack pointers between last know correct state and point of failure.

• Add a few function calls in various places in your program to check for stack leaks.
CMSIS-CORE provides some functions to help accessing SP value (e.g., __get_MSP()),
and you can use those functions to add stack checking code (e.g., in some part of the
program, the value of Main Stack Pointer (MSP) should be the same everything when a
function is called unless the function is used in more than one placesde.g. appears on
multiple paths of the application’s call tree).

• If you are not using an RTOS, you can use the banked SP feature to separate the stack
used by threads and handlers. In this way you can also add stack checking in the ISR
with lowest priority level. Higher-priority level ISRs cannot use this trick because the
SP value can be different if there was a lower-priority ISR running.

• If you are using an RTOS, some of the RTOS (including Keil� RTX) has optional
stack checking feature.

If the SP is pointing to a valid location, then you should be able to extract some useful

information from the stack frame.

• With the stacked PC and the disassembled program image, you can often locate the in-
struction that triggered the HardFault.

• If the T bit in the stacked xPSR is 0, something is trying to switch the processor into
ARM� state.

• If the T bit in the stacked xPSR is 0 and the stacked PC is pointing to the beginning
of an ISR, check the vector table (all LSB of exception vectors should be set to 1).

• If the stacked IPSR (inside xPSR) is indicating an ISR is running, and the stacked PC
is not inside the address range of the ISR code, then you likely to have a stack
corruption in that ISR. Look out for data array accesses with unbounded index.

Trouble Shooting 717

If the stacked PC is pointing to a memory access instruction, usually you can debug the

load/store issue based on the register contents (see Sections G.2.2eG.2.5).

Other potential causes for HardFault are listed in Sections G.2.6eG.2.9.

G.2.2 Invalid Memory Access

One of the most common problems is accidentally accessing to invalid memory region.

Usually you can trace the faulting memory access instruction following the instructions in

Chapter 11. Using the method described there you can locate the program code which

caused the fault.

G.2.3 Unaligned Data Access

If you directly manipulate a pointer, or if you have assembly code, you could generate

code that attempts to carry out an unaligned access. If the faulting instruction is a

memory access instruction, check if the address value used for the transfer is aligned

or not.

G.2.4 Memory Access Permission (Cortex-M0+ Processor Only)

The Cortex-M0+ processor has privileged and unprivileged execution states. Some of the

components like Nested Vectored Interrupt Controller (NVIC) can only be accessed in

privileged state (see Chapter 7, Section 7.8). Also, if the Memory Protection Unit is

available, additional memory access permission rules can be set up. If there is a violation

of the access permission, then the HardFault exception would be triggered.

G.2.5 Bus Slave Return Error

Some peripherals might return an error response if it has not been initialized or if the

clock to the peripheral is disabled. In some less common cases a peripheral might only

be able to accept 32-bit transfers and return error responses for byte or half-word

transfers.

G.2.6 Stack Corruption in Exception Handler

If the program crashes after an interrupt handler execution, it might be a stack frame

corruption problem. Since local variables can be stored on the stack memory, if a data

array is defined inside an exception handler and the array index being used exceeds the

array size, the stack frame of the exception could become corrupted. As a result the

program could crash when exiting the exception.

718 Appendix G

G.2.7 Program Crash at Some C Functions

Please check if you have reserved sufficient stack space and heap space. By default, the

heap space defined in some of the default startup code in Keil� MDK-ARM is 0 bytes.

You will need to modify this if you are using some of the C functions like malloc, etc.

Another possible reason for this problem is an incorrect C library function being pulled in

by the linker. The linker can normally output verbosely to show the user what library

functions were pulled in, which is something a user should check under such

circumstances.

G.2.8 Accidental Trying to Switch to ARM State

After a HardFault is entered, if the T bit in the stacked xPSR is 0, the fault was triggered

by switching to ARM state. This can be caused by reasons such as an invalid function

pointer value, LSB of vector in vector table not being set to 1, corruption of the stack

frame during exception, or even an incorrect linker setting which ends up causing an

incorrect C library being used.

G.2.9 SVC Executed at Incorrect Priority Level

If the SVC (SuperVisor Call) instruction is executed inside an SVCall exception handler, or

any other exception handlers that have same or higher priority than the SVCall exception,

it will trigger a fault. If an SVC instruction is used in a Non-Maskable Interrupt handler or

the HardFault handler, it will result in a lock up.

G.3 Sleep Problems
G.3.1 Execution of WFE Does Not Enter Sleep

Execution of a Wait-for-Event (WFE) instruction does not always result in entering of

sleep mode. If a past event has occurred, the internal event latch inside the Cortex�-M

processor will be set. In this situation, execution of a WFE instruction will clear the event

latch and continue to the next instruction. Therefore a WFE instruction is usually used in a

conditional idle loop so that it can be executed again if sleep did not occur in the first

WFE execution.

G.3.2 Sleep-on-Exit Triggers Sleep Too Early

If you enable the Sleep-on-Exit feature too early during the initialization stage of a

program, the processor will enter sleep mode as soon as the first exception handler is

completed.

Trouble Shooting 719

G.3.3 SEVONPEND Does Not Work for Interrupt Which Is Already
in Pending State

The SEVONPEND (Send Event on Pending) feature generates an event when an idle

interrupt changes into pending state if the feature is enabled. The event can be used to

wake up the Cortex-M processor if it has been entering sleep mode by a WFE instruction.

However, if the pending status of the interrupt was already set to 1 before entering sleep, a

new interrupt request arrive during sleep will not trigger an event. In this case the Cortex-

M processor will not be woken up.

G.3.4 Processor Cannot Wake Up because Sleep Mode Might Disable Some Clocks

Depending on the microcontroller you are using and the chosen sleep mode, the

peripherals or the processor clock might be stopped and you might not be able to wake up

the processor unless some special wake-up signal is used. Please refer to documentation

from microcontroller vendors for details.

G.3.5 Race Condition

Sometimes we need to pass software flags from interrupt handlers to thread level codes.

However, the following code has a race condition:

volatile int irq_flag=0;

while (1){
if (irq_flag==0) {

__WFI(); // enter sleep
}

else {
process_a(); // Execute if IRQ_Handler had executed
}

}

void IRQ_Handler(void){
irq_flag=1;
return;
}

If the IRQ takes place after the “irq_flag” checking and before the Wait-for-Interrupt

(WFI), the process will enter sleep and will not execute “process_a()”. To solve this

problem, the WFE instruction should be used. The execution of IRQ_Handler causes the

internal event latch to set. As a result, the next execution of WFE will only cause the

event latch to be cleared and will not enter sleep.

720 Appendix G

If a microcontroller with Cortex-M3 r2p0 or earlier versions is used for the same

operation, an __SEV() instruction needed to be included inside the “IRQ_Handler”. This is

due to errata in the processor design that the event latch is not set correctly in interrupt

event. Therefore the code should be changed as follows:

volatile int irq_flag=0;

while (1){
if (irq_flag==0) {

__WFE(); // enter sleep if event latch is 0
}

else {
process_a(); // Execute if IRQ_Handler had executed
}

}

void IRQ_Handler(void){
irq_flag=1;
__SEV(); // required for Cortex-M3 r2p0 or earlier versions
return;
}

G.4 Interrupt Problem
G.4.1 Extra Interrupt Handler Executed

In some microcontrollers, the peripherals are connected to a peripheral bus running at a

different speed from the processor system bus, and the data transfer through the bus bridge

might have a delay (depending on the design of the bus bridge). If the interrupt request of

the peripheral is cleared at the end of an ISR and the exception is exited immediately, the

interrupt signal connected to the processor might still be high when the exception exit takes

place. This results in another execution of the same exception handler. To solve the problem,

you can clear the interrupt request earlier in the ISR, or add an extra access to the peripheral

after clearing the interrupt request. In most cases these arrangements can solve this problem.

G.4.2 Additional SysTick Handler Execution

If you set up the SysTick timer for a single shot arrangement with a short delay, a second

SysTick interrupt event could be generated during the execution of the SysTick handler. In

such case, besides from disabling the SysTick interrupt generation, you should also clear

the SysTick interrupt pending status before exiting the SysTick handler. Otherwise the

SysTick handler will be entered again.

Trouble Shooting 721

G.4.3 Disabling of Interrupt within Interrupt Handler

If you are porting application code from an ARM7TDMI� microcontroller, you might

need to update some interrupt handlers if they disable the interrupts during interrupt

handling to ensure that the interrupts are re-enabled before exception exit. In ARM7TDMI

re-enabling of interrupts can be done at the same time as exception return because the I-bit

in CPSR is restored during the process. In the Cortex-M processors, re-enabling of

interrupt (clearing of PRIMASK) has to be done separately.

G.4.4 Incorrect Interrupt Return Instructions

If you are porting software from ARM7TDMI, make sure that all interrupt handlers are

updated to remove wrapper code (needed for nested interrupt support in ARM7), and make

sure the correct instruction is used for exception return. In the Cortex-M0 or Cortex-M0+

processor, exception return must be carried out using BX or POP instructions.

G.4.5 Exception Priority Setup Values

Although the Exception/Interrupt priority level registers contains 8 bit for the priority level

of each exception or interrupt, only the top 2 bits are implemented. As a result, the priority

level values can only be 0x00, 0x40, 0x80, and 0xC0. If you are using NVIC functions from

CMSIS compliant device driver libraries, the priority setup function “NVIC_SetPriority()”

automatically shift the values 0e3 to the implemented bits.

G.5 Other Issues
G.5.1 Incorrect SVC Parameter Passing Method

Unlike traditional ARM� processors, the parameters pass on to the SVC exception and

the return value from SVC handler must be transferred using exception stack frame.

Otherwise the parameter could get corrupted. Please refer to Chapter 10 (Section 10.7.1)

for details.

G.5.2 Debug Connection Affect by I/O Setting, or Low-Power Modes

If you change the I/O settings of pins that are used for a debug connection, you might be

unable to debug your application or update the flash because the debug connection is

affected by the I/O usage configuration changes. Similarly, low-power features might also

disable debugger connections. In some microcontroller products there is a special boot

mode that allows you to disable the execution of your program during boot up. Chapter 19

covered the recovery method you can use on NXP LPC111x.

722 Appendix G

G.5.3 Debug Protocol Selection/Configuration

Some Cortex�-M0/M0+ microcontrollers use serial-wire debug protocol and some others

use JTAG debug protocol. If incorrect debug protocol is selected in the configuration of a

debug environment, the debugger will not be able to connect to the microcontrollers.

In some combination of debug tools and development boards it is necessary to specify the

use of System Reset Request (SYSRESETREQ) as debugger reset control method.

G.5.4 Using Event Output as Pulse I/O

Some Cortex-M microcontrollers allow an I/O pin to be configured as event output. When

the SEV instruction is executed, a single cycle pulse is generated from the processor and

this can be useful for external latch control.

When a sequence of multiple pulses is required, additional instructions need to be placed

between the SEV instructions. Otherwise the pulses could be merged. For example, the

following sequence might result in one pulse (of two clock cycles) or two pulses (of one

cycle) depending on the memory wait state of the system:

__SEV(); // First pulse
__SEV(); // Second pulse, could be merged with first pulse

By changing the code to:

__SEV(); // First pulse
__NOP(); // Gap between the two pulses.
__SEV(); // Second pulse

If the C compiler you use can optimize away NOPs, __ISB() could be used instead.

G.5.5 Device Specific Requirements in Vector Table or Code Placement

In some cases (for example, the Freescale KL25Z128 device used in the Freescale

Freedom board FRDM-KL25Z), addition flash protection configuration data also need to

be placed in the memory right after the vector table. If you are creating your own vector

table/startup code, be very careful of such situations.

G.6 Other Possible Pitfalls in Programming
G.6.1 Interrupt Priority Levels

When migrating a software project from a Cortex�-M3/Cortex-M4 microcontroller

product to a Cortex-M0/Cortex-M0+ product, the use of different interrupt priority levels

Trouble Shooting 723

needs to be handled carefully. The ARMv6-M architecture only supports four

programmable priority levels and does not support subpriority, whereas ARMv7-M

architecture supports minimum eight priority levels and priority grouping. As a result, the

arrangement of the priority levels needs to be reviewed and modified if needed.

For example, a project for a Cortex-M3 microcontroller device using CMSIS-CORE

priority level control function might have the following:

NVIC_SetPriority(TIMER0_IRQn, 0x4); // lower priority

NVIC_SetPriority(UART0_IRQn, 0x3); // Higher priority

Assumed 3-bit of priority level register is implemented on the Cortex-M3 device, the

CMSIS function automatically shifts the value by 5 bits and the priority level at hardware

level becomes:

• Timer 0: Level 0x80
• UART 0: Level 0x60

If the C source code is ported to Cortex-M0 or Cortex-M0+ microcontroller without

adjustment, the shifting of priority level will result in the removal of the MSB of the timer

0 priority level because the function shifts the values left by 6 bits:

• Timer 0: Level 0x00 // Now timer 0 become highest priority
• UART 0: Level 0xC0

This ends up with the Timer interrupt having higher priority than the UART interrupt. So

it is important to review the priority level carefully.

G.6.2 Stack Overflow When Using Both Main and Process Stacks

A range of topics related to stack overflow and various techniques to detect stack errors

are covered in Chapter 23, Section 23.3. In some applications, two stack regions are

defined: one for the main stack and one for the process stack, and it is important to ensure

that these stack regions do not overlap by accident.

If it is possible for the two stack regions to overlap, such error can be quite hard to debug

because it depends on the timing of interrupt events:

• If the process stack is above (higher address than) the main stack, the stack corruption
occurs when interrupts/exception takes place when the thread code exceeds its
allocated stack usage. If there is no interrupt/exception event at the time, there might
not be any error.

• If the main stack is above (higher address than) the process stack, the stack corruption
occurs when there is a worst case stack usage in the nested exception/interrupt
combination, which could be very rare.

As a result, careful analysis of the stack requirements is essential for projects that require

high reliability.

724 Appendix G

G.6.3 Data Alignment

Unlike ARMv7-M architecture, the ARMv6-M does not support unaligned data transfers.

So some codes ported from Cortex-M3 or Cortex-M4 processors that utilized unaligned

transfers will need modifications when being used of the Cortex-M0 or Cortex-M0+

processors.

For example, a “packed” data structure could contain unaligned data.

__packed struct foo {
char a;
short b; // Unaligned
char c, d, e;
int f; // Unaligned
short g;

}foo_var;

When compiling a code like this, the compiler is aware of the unalignment of the data,

and can use multiple memory accesses to handle the unaligned data at a cost of slightly

more instructions and longer execution time.

However, if we assign a data pointer to an element inside the structure, effectively

casting away __packed attribute, the result is unpredictable (except for character type

which is always aligned) and can lead to a HardFault when the processor tries to access

the data.

int * x;
int y;
x = foo_var.f; // Pointer points to unaligned address
y = x; // HardFault trigger when data is read

Another common misunderstanding is the starting address of character or short int arrays.

For example,

char a[4]; // a 4 byte character array
short int b[2]; // a 4 byte short integer array

Although the sizes of these arrays are 4 bytes, the starting addresses of these data are not

necessary aligned to word boundary. So casting a 32-bit data point to these arrays could

also result in HardFault exceptions.

Trouble Shooting 725

G.6.4 Missing Volatile Keyword

In addition to peripheral registers, data variables that are shared by thread code and

exception handlers should be declared with volatile keywords.

G.6.5 Function Pointers

In some cases, function pointers could contain hard coded address (e.g., when accessing

features in firmware preloaded on the chip). In such cases, we need to ensure that the LSB

of the function pointer address is set to 1 to indicate thumb state. Otherwise it implies an

attempt to switch the Cortex-M processor into ARM� state, which is not supported.

G.6.6 Read-Modify-Write

Sometimes we need to perform Read-Modify-Write sequence. For example, setting a bit in

a GPIO output port could be written as follows:

GPIOA->OD j¼ (1<< 6); // Set bit 6 of Output Data (OD)

While it looks simple, we need to consider the corner case where an interrupt took place

between reading and writing of the GPIO register. If an ISR could change another bit in

the GPIO output, we could end up with a conflict and lost the data value change in the

ISR as we write the data back.

Most of the GPIO peripherals in microcontroller have additional features to allow

individual bits to be updated without affecting others. If such feature is not available,

we might need to disable all interrupts in the Read-Modify-Write sequence. But there is

another potential pitfall we need to be careful of (see Section G.6.7).

G.6.7 Interrupt Disable

The __enable_irq() and __disable_irq() functions allow us to enable and disable

interrupts easily. However, consider the following function:

void func_X(void)
{

.

__disable_irq();
GPIOA->OD j= (1<< 6); // Set bit 6 of Output Data (OD)
__enable_irq();
.

}

726 Appendix G

The function works fine on its own. However, if we use this function in another function

that also changes the PRIMASK register.

void func_Y(void)
{

.

__disable_irq();
. // time critical processing
func_X();
. // more time critical processing
__enable_irq();
.

}

After the func_X is executed, the PRIMASK register is cleared, and therefore the second

half of func_Y is running with interrupt enabled, which is unintentional.

As a result, we should declare an additional function to help managing the PRIMASK:

int enter_critical_region(void)
{

int old_primask;
old_primask = __get_PRIMASK();
__disable_irq();
return (old_primask);

}

With this additional helper function, we can rewrite the code as:

void func_X(void)
{

int old_primask;
.

old_primask = enter_critical_region();
GPIOA->OD j= (1<< 6); // Set bit 6 of Output Data (OD)
__set_PRIMASK(old_primask);
.

}

void func_Y(void)
{

int old_primask;
.

old_primask = enter_critical_region();
. // time critical processing

Continued

Trouble Shooting 727

func_X();
. // more time critical processing
__set_PRIMASK(old_primask);
.

}

G.6.8 SystemInit Function

The SystemInit function is typically executed before the execution of C startup code. As a

result, global and static variables are not initialized when SystemInit is executed. Also,

data variables assigned in the SystemInit function would be lost when the C startup code

initialize the memory.

G.6.9 Breakpoints and Inline

Not exactly a programming issue (more a debug issue), but worth pointing out that

compilers can inline a function in certain optimization level, and at the same time, leave a

copy of the same function in the code image (unless it is specified as static __inline/

static inline). As a result, when you set a breakpoint in the function X which is called by

a different function Y, the code in function Y could get executed without hitting the

breakpoint.

It is possible to disable inlining of functions using additional compilation options. For

example, in ARM Compiler (applicable to Keil� MDK-ARM� and ARM DS-5�),

--no_inline and --no_autoinline command line options are available for this purpose.

When a function is declared as static inline, the C compiler will not create a copy of the

function. However, static inline function cannot be used when the function is referenced

by another program file in the project.

728 Appendix G

APPENDIX H

A Breadboard Project with an ARM®

Cortex®-M0 Microcontroller

H.1 Background

Breadboard is a commonly used platform for electronics prototyping. The designs

of breadboards enable users to create electronics circuits without soldering, and the

circuit can be changed easily. As a result, they are very popular in colleges,

universities, and also very useful for hobbyists. There are some disadvantages of

coursedbreadboard is designed to work with through-hole components, e.g., IC with

DIP (dual-in-line) packages. Also, they are not very reliable, and the connections

between components can be affected by various sources of noises, and the speed can

be limiting.

H.2 Building the Hardware

There are various ways to do prototyping of Cortex�-M-based microcontrollers with

breadboard. For example, some development boards (e.g., the STM32F0 Discovery and

the STM32L0 Discovery boards) can plug into breadboard for prototyping. But these

boards are relatively big for some of the breadboard products. Here the use of a

microcontroller in DIP package (which is much smaller) is covered in details.

A breadboard prototyping system with a microcontroller (NXP LPC1114FN28) based on

Cortex-M0 processor is shown in Figure H.1. This microcontroller is used because it is

one of the few Cortex-M-based microcontrollers available in DIP packages.

The LPC1114FN28/102 microcontroller needs a supply voltage of 1.8e3.6 V, typically

3.3 V. Here I used a simple power supply module to obtain the 3.3 V required (you can

buy this type of power supply modules on Websites like Amazon).

The schematic diagram of the circuit shown in Figure H.1 is shown in Figure H.2

Please note that with some debug adaptors (e.g., IAR I-Jet), when using the 20 pin IDC

connection for debug, the pin 1 of the IDC debug connector needs to be connected to the

voltage supply of the board.

The pin layout of this microcontroller used is shown in Figure H.3.

729

LPC1114

12MHz
Crystal

20pF
capacitors
for crystal

Voltage
regulator
module

Debug
connec�ons

Reset switch

LEDResistor
for LED

Pull up resistor
for reset

Debug
adaptor

Figure H.1
A simple breadboard setup with LPC1114FN28/102, a microcontroller based

on the Cortex�-M0 processor.

3.3v

GND

LPC1114FN28/
102

V SS

VDDV DDA

V SSA

XTALIN

XTALOUT
12 MHz
crystalPush

Bu�on
(Reset)

RESET/PIO0_0

SWDIO

SWCLK

PIO1_5

330ohms20pF
0.1uF 0.1uF 20pF

1Mohms

Debug
connec�ons

Reset from
debug adaptor

(op�onal)

From power
supply

module

From power
supply

module

Decoupling
capacitors

Vref to debug
adaptor

Figure H.2
Schematic diagram of the simple blinky project using LPC1114FN28/102.

730 Appendix H

For flash programming and debug, a debug adaptor is needed. In the example of this

book I used the Keil� ULINK2�, and you can choose other debug adaptor based on the

tool chain you are going to use. The pin out for the debug connector can be found in

Appendix FdDebug Connector Arrangements. Inside the Keil MDK-ARM� project, the

debug adaptor settings should be set to use SYSRESETREQ (System Reset Request) for

reset, and the clock speed for the Serial Wire debug communication needs to be reduced

to around 250 KHz or lower.

Alternatively, if you do not have access to any debug adaptor, you can use third-party

software such as FlashMagic (www.flashmagictool.com) to download the program image

with the In-System Programmable (ISP) feature of LPC1114, using a serial port

connection. To enable the ISP feature, the pin PIO0_1 needs to pull LOW at reset. After

coming out from reset with PIO0_1 pulled low, the microcontroller executes the ISP

firmware and will wait for ISP commands via the serial port.

In order to handle the serial communication (for ISP programming as well as for printf

messages), the UART interface of the LPC1114 microcontroller can be connected to

UART to USB adaptor (Figure 18.3) shown in Chapter 18. (Note: There is no need to

connect the VCC of the UART to USB adaptor to the breadboard power supply

module.)

PIO0_8/MISO0/CT16B0_MAT0

PIO0_9/MOSI0/CT16B0_MAT1

SWCLK/PIO0_10/SCK0/CT16B0_MAT2

R/PIO0_11/ADC0/CT32B0_MAT3

PIO0_5/SDA

PIO0_6/SCK0

V DDA

V SSA

R/PIO1_0/ADC1/CT32B1_CAP0

R/PIO1_1/ADC2/CT32B1_MAT0

R/PIO1_2/ADC3/CT32B1_MAT1

SWDIO/PIO1_3/ADC4/CT32B1_MAT2

PIO1_4/ADC5/CT32B1_MAT3/WAKEUP

PIO1_5/RTS/CT32B0_CAP0

V SS

VDD

PIO0_7/CTS

PIO0_4/SCL

PIO0_3

PIO0_2/SSEL0/CT16B0_CAP0

PIO0_1/CLKOUT/CT32B0_MAT2

RESET/PIO0_0

XTALIN

XTALOUT

PIO1_9/CT16B1_MAT0

PIO1_8/CT16B1_CAP0

PIO1_7/TXD/CT32B0_MAT1

PIO1_6/RXD/CT32B0_MAT0

LPC1114FN28/
102

1

14 15

28

27

26

25

24

23

22

21

20

19

18

17

16

2

3

4

5

6

7

8

9

10

11

12

13

Figure H.3
Pin layout of the NXP LPC1114FN28/102.

A Breadboard Project with an ARM® Cortex®-M0 Microcontroller 731

http://www.flashmagictool.com

Before building the circuit, take a moment to test out the power supply connection, and

making sure that the voltage is expected. Care should be taken to wire the circuit correctly,

and make sure that you do not have the IC placed wrong way round.

To reduce power noise, a couple of 0.1 mF capacitors are placed at the power connection

of the microcontroller.

732 Appendix H

Index

Note: Page numbers followed by “f” and “t” indicate figures and tables respectively.

A

AAPCS. See ARM Architecture
Procedure Call Standard

Access Permission field
(AP field), 299, 299t

Accidental switching to ARM�

state, 282
Advanced High-performance Bus

Lite (AHB� Lite), 13, 166
Advanced Microcontroller Bus

Architecture (AMBA�),
23, 32

Advanced Peripheral Bus protocol
(APB protocol), 166

AHB� Lite. See Advanced
High-performance Bus
Lite

AIRCR. See Application
Interrupt and Reset
Control Register

Aligned transfers, 180, 180f
ALU status flags, 96, 96t
AMBA�. See Advanced

Microcontroller Bus
Architecture

AP field. See Access Permission
field

APB protocol. See Advanced
Peripheral Bus protocol

API. See Application
Programming Interface

Application Interrupt and Reset
Control Register (AIRCR),
93e94, 224, 224t

register, 227e228

Application Program Status
Register (APSR), 93, 117,
661

behaviors, 96e97
Application Programming

Interface (API), 42, 80,
141, 244

Application Specific Standard
Products (ASSPs), 2, 47

Application-Specific Integrated
Circuits (ASICs), 1e2, 47

APSR. See Application Program
Status Register

Architecture Reference Manual
(ARM), 23e24

accidental switching to ARM�

state, 282
Connected Community Web

page, 25, 27f
ecosystem, 24, 25f
processor families, 5e8, 6f
resources on, 28

Arithmetic operations, 127e131
ARM Architecture Procedure

Call Standard (AAPCS),
608e610

ARM� Cortex�-M processors,
315

porting software from 8-bit/16-
bit microcontrollers to

memory requirements,
637e638

migration from 8051 to ARM
Cortex-M0/Cortex-M0+,
639e641

ARM� Cortex�-M programming,
64e74

accessing peripherals in C,
65e69

C programming, 64e65
data in SRAM, 71e73
inside program image,

69e71
microcontroller starts,

73e74
ARM� Keil� Microcontroller

Development Kit, 329
ARM7TDMI� processor, 5, 642
differences with Cortex�-M0/

M0+ processor
classic ARM� processors,
641, 642t

instruction set, 644
interrupts, 644
operation mode, 642e643
register bank differences,
643f

ARM926EJ-S processors, 8
ARMv6-M architecture,

87e89
debug system, 105e106
evolution, 88f
exceptions, 102e103
interrupts, 102e103
memory system, 97e100
NVIC, 104e105
program image and start-up

sequence, 106e108
programmer’s model
APSR behaviors, 96e97

733

ARMv6-M architecture
(Continued)

operation modes and states,
89e90, 89f

registers and special registers,
90e96

SCB, 105
stack memory operations,

100e102
ARMv6-M Architecture

Reference Manual
(ARMv6-M ARM), 38

ASICs. See Application-Specific
Integrated Circuits

Assembly code, 647
assembler directives, 116, 116t
assembly function, 612e613
assembly syntax, 113e117
calling assembly functions from

C codes, 618e619
calling C functions from

assembly, 617e618
Assembly language,

programming techniques
for

allocating data space for
variables, 628e630

complex branch handling,
630e631

Assembly programming,
608e610

Assembly projects in Keil�

MDK-ARM
hello world, 620e621
small project, 619e620
text output functions, 621e624

Assembly wrapper
assembly language wrapper

code, 283e284
using embedded assembler

in Keil� MDK,
284e285

for HardFault handler, 284f
ASSPs. See Application Specific

Standard Products
Atomic access, 647

B

B field. See Bufferable field
BASE register, 127e131

“BE8” big endian mode. See
Byte-Invariant big endian
mode

Big Endian support, 174e175
Bit and bit field computations,

162e164
Bit data handling in C, 661e663
Bit field clear operation, 164f
Bit field extract operation, 163f
BKPT instruction. See

Breakpoint instruction
Blinky Project creation, 187f,

412e420, 416f, 431e433
BOD. See Brown Out Detector
Boot codes. See Startup
Boot loader, 34, 170e173,

228, 229f
Boot ROM. See Boot loader
BPU. See Breakpoint Unit
Branch instructions, 149te150t
Branch shadow, 15e16, 16f
Branch table, 151e153
Breadboard Project, 185
Breakpoint instruction (BKPT

instruction), 30, 143,
165e166

Breakpoint Unit (BPU), 105,
113e119

Brown Out Detector (BOD),
186, 522

Bufferable attribute, 177
Bufferable field (B field),

299e300. See also
Bufferable attribute

Byte-Invariant big endian
mode, 174

C

C codes, calling assembly
functions from, 618e619

C compilers, 77
in Keil MDK, 330
optimization levels, 397t

C field. See Cacheable field
C programming, 64e65
accessing peripherals in,

65e69
bit data handling in, 661e663
startup code in, 663e668

C Startup Code, 70

C/C++ with assembly
accessing special instructions
CMSIS-CORE functions,

631
idiom recognitions, 632e633

assembly
code for interrupt control,

624e627
function, 610e613
programming and AAPCS,

608e610
in project developments,

607e608
Embedded Assembler feature,

616e617
inline assembly, 613e616

Cacheable attribute, 177
Cacheable field (C field),

299e300
CBNZ. See Compare and branch

if not zero
CBZ. See Compare and branch if

zero
CCR. See Configuration and

Control Register
Central Processing

Units (CPUs), 2
Circular buffer mode, 325
CLZ. See Count leading zero
CMOS. See Complementary

Metal Oxide
Semiconductor

CMP. See Compare
CMSIS. See Cortex

Microcontroller Software
Interface Standard

CMSIS-RTOS functions,
560e562. See also Real-
Time Operating System
(RTOS)

for OS kernel management,
572t

for thread management, 573t
Command line options, 433e434
Compare (CMP), 118
Compare and branch if not zero

(CBNZ), 653
Compare and branch if zero

(CBZ), 653
Compiler options, 396f

Index

734

Complementary Metal Oxide
Semiconductor
(CMOS), 22

Configuration and Control
Register (CCR), 94e95,
225e226, 226t

Context switching, 267f
in action, 267e277
without PendSV exception,

259f
with PendSV exception, 260f
in simple OS, 256f

CONTROL register, 90, 94e95,
254

CooCox, 330
CoIDE with GNU tools,

445e446
compile options, 451f
debug configurations, 453f
debug session screen, 456f
new project creation, 447e454
output configurations, 453f
project name and path, 449f

Core debug registers, 110e113
CoreMark�, 48
CoreSight Technical Introduction,

320
CoreSight� Debug Architecture,

30, 319e320
CoreSight� debug connector,

147
Cortex Microcontroller Software

Interface Standard
(CMSIS), 78, 79t, 502,
620, 685

APIs, 624
CMSIS-CORE, 78, 79f, 81e82,

84f, 84t
core registers access functions,

57e58
data type, 55e63
exception enumeration, 55e56
files, 391

Keil MDK project with, 333f
functions, 60, 631
header file, 294
nested vectored interrupt

controller access functions,
56e57

standardization, 80e81

system
feature accesses, 58e59
and SysTick access functions,
57

using, 81e82
organization, 81
standardizing in, 80e81

versions, 508e510
Cortex-A processors, 6, 559e560
Cortex-M processors, 7, 226e227,

319e320, 502, 559e560,
648, 649. See also
Operating system (OS)

debug and trace features,
655e656, 655t

family, 9t
instruction set, 10f
performance, 12t
system level and debug
features, 12t

high-level architecture
comparison, 648t

low-power features, 230
NVIC and exceptions,

650e652
programmer’s model, 649e650
sleep modes, 231
system level features, 653e654,

654t
Cortex-M1 processors, porting

software between
Cortex�-M0/M0+
processors, 656

Cortex-M3 processor, 9,
111e112, 657e659

porting software between
Cortex�-M0/M0+
processors, 657e659

Cortex-M4/M7 processor, porting
software between
Cortex�-M0/M0+
processors, 659e660

Cortex-M7 processor, 7
Cortex-R processors, 7
Cortex�-M0/M0+ processors, 2,

29e31, 635
advantages, 40e45
applications, 45e47
ARMv6-M architecture, 37e38
block diagrams, 31e34

bus systems, 166e167
CMSIS functions support for,

632t
porting software
ARM7TDMI�, 645
Cortex-M1 processor, 656
Cortex-M3 processor,
657e659

Cortex-M4/M7 processor,
659e660

software portability, 38e39
Count leading zero (CLZ), 653
CPUs. See Central Processing

Units
Cross Module Optimization

operation, 398

D

Data
accesses, 153
alignment, 180e181
memory, 173e174
processing, 158
64-bit/128-bit add, 158
64-bit/128-bit sub, 159
bit and bit field computations,
162e164

bit field clear operation, 164f
bit field extract operation,
163f

integer divide, 159e161
unsigned integer divide
function, 160f

unsigned integer square root,
161e162, 162f

space allocation for variables,
628e630

in SRAM, 71e73
types, 64e65, 175e177
conversion, 157
data size conversion, 157
endian conversion, 158

Data Memory Barrier instruction
(DMB instruction), 227,
308

Data Synchronization Barrier
instruction (DSB
instruction), 227, 308, 512

Data Watchpoint and Trace unit
(DWT unit), 655

Index

735

Data Watchpoint unit, 105,
113e117

Debug Access Port, 319
Debug connector arrangements,

147
legacy 20-pin IDC connector

arrangement, 147e148
10-pin Cortex� debug connector,

147, 151f
20-pin Cortex� debug + ETM

connector, 147e153, 152f
Debug events, 321e324, 323f
Debug Exception and Monitor

Control Register
(DEMCR), 111e112

Debug features, 21
debug components in

Cortex�-M0/Cortex-M0+
microcontrollers, 322f

halt mode, 321e324
instruction tracing support using

MTB, 324e327, 326f
overview, 316t

Debug interface, 527
connection inside processors,

319f
CoreSight� debug architecture,

319e320
design considerations with,

320
JTAG, 317e319
Serial Wire Debug

Communication Protocol,
317e319

Debug probe. See In-circuit
debugger

Debug registers
breakpoint unit, 113e119
core, 110e113
in Cortex�-M0 and Cortex-M0+

processors, 109
data watchpoint unit, 113e117
MTB, 118e119
ROM table registers,

117e118
Debug state, 90
Deep sleep modes, 30, 550e557
Development Studio 5 (DS-5),

70e71, 330, 459, 631
Device memory, 178

Device Under Test (DUT), 530
Direct Memory Access controller

(DMA controller), 18e20,
36

DMA controller. See Direct
Memory Access
controller

DMB instruction. See Data
Memory Barrier
instruction

Double fault, 286
DS-5. See Development Studio 5
DSB instruction. See Data

Synchronization Barrier
instruction

Dual-in-line (DIP), 185
DUT. See Device Under Test
DVFS. See Dynamic Voltage and

Frequency Scaling
DWT unit. See Data Watchpoint

and Trace unit
Dynamic Voltage and Frequency

Scaling (DVFS), 525

E

EABI. See Embedded
Application Binary
Interface

ECC. See Error Correction Code
EEMBC. See Embedded

Microprocessor
Benchmark Consortium

Embedded Application Binary
Interface (EABI), 86, 609

Embedded Assembler, 615.
See also Inline assembly

feature, 616e617
Embedded Microprocessor

Benchmark Consortium
(EEMBC), 48

Embedded OS, 244, 253, 559
CMSIS-RTOS, 560e562
hardware resources, 560
implementation, 255
Keil� RTX Kernel, 562e563
RTX configuration settings, 566f
RTX example with Keil MDK,

563e567
RTX_Config_CM.c

customization, 604

thread priority, 604
trouble shooting, 601e603

Embedded processors, 1e2
CPU, core, microprocessor, 2e3
learning microcontroller

programming, 4
programming on embedded

systems, 3e4
Embedded software program

flows, 58e63
combination of polling and

interrupt driven, 60e61
handling concurrent processes,

61e63
interrupt driven, 60
polling, 58e59

Embedded Trace Macrocell
(ETM), 655

Embedded-application binary
interface (EABI), 428

ENDIANESS bit, 224
EnergyMonitor, 529
EPSR. See Execution program

status register
Error Correction Code (ECC), 7
Error handling
during software development,

283e286
in real applications, 283

ETM. See Embedded Trace
Macrocell

Event communication interface,
517e519

Exception return instruction
(EXC_RETURN
instruction), 195e200

Exception(s), 102e103,
185e186

acceptance of exception request,
194

Cortex�-M0 and Cortex-M0+
processors, 187e189

entry sequence, 212e215
registers update, 214e215
stacking, 212e214
vector fetch and update

PC, 214
enumeration, 55e56
exception-related instructions,

141e142

Index

736

exit sequence, 215
fetch and execute from return
address, 215

unstacking of registers, 215
handler, 186
priority levels, 190e192
sequence

acceptance of exception
request, 194

exception return instruction,
195e196

late arrival, 196e197
stacking and unstacking,
194e195

tail chaining, 196
types, 29e31

Executable attribute, 177
Execution from SRAM,

229e230
eXecute Never field (XN field),

177, 299
Execution program status register

(EPSR), 93, 281
Extend ordering operations,

135e137

F

Fast Interrupt (FIQ), 644
response, 20

Fault exception, 279
Fault handling
accidental switching to ARM�

state, 282
causes of fault, 279e280
comparison

in ARMv7-M architecture,
289

in Cortex-M processors, 290
fault analysis, 280e282
faults triggering HardFault

exceptions, 280t
lockup, 286e288
program address identification,

281f
Ferroelectric Random Access

Memory (FRAM),
165e166

Finite State Machine (FSM), 506
FIQ. See Fast Interrupt
First-In-First-Out (FIFO), 182

Flash programming, 436, 444f
FLL. See Frequency Locked Loop
Floating Point Context Active

(FPCA), 650
FLOW register, 126e127
FPCA. See Floating Point

Context Active
FRAM. See Ferroelectric

Random Access Memory
FreeRTOS-MPU, 310e311
Freescale Freedom FRDM-

KL25Z board, 334e335,
334f, 463, 532

low-power features, 532
clocking arrangement,
533e535

low-power modes on KL25Z,
533

measurement results,
540e542

multipurpose clock generator
operating states, 536f

programming UART on,
482e484

Frequency Locked Loop (FLL),
534

FSM. See Finite State Machine

G

gcc. See GNU Compiler
Collection

General Purpose Input/Output
modules (GPIO modules),
35

Generic assembly code for
interrupt control, 624

enable and disable interrupts,
624e625

set and clear interrupt pending
status, 625e626

setting up interrupt priority
level, 626e627

Generic wait function, 590
GNU Compiler Collection (gcc),

45, 427, 493, 612
ARM� embedded processors

using CooCox CoIDE with
GNU tools for, 445e457

using Keil� MDK-ARM�
with GNU tools for,
438e445

command line options,
433e434

compilation switches, 435t
development flow, 428e431,

429f
examples in, 427e428
IDE and debugger, 454e457
inline assembly, 615e616
project with CMSIS-CORE,

430f
retargeting with, 493
tool chains, 611e612

GPIO modules. See General
Purpose Input/Output
modules

H

Halt mode, 321e324
Handlers, 186
mode, 90

HardFault exceptions, 188, 280t
HardFault handler, 279e280
assembly wrapper for, 284f
to report stacked register values,

285
Hardware behavior effect to

programming, 180e183
access to invalid addresses, 181
data alignment, 180e181
using multiple load and store

instructions, 181e182
wait states, 182e183

Heap memory, 71
HFNMIENA bit, 296
High code density, 20

I

I/Os. See Inputs and outputs
I2C interface. See Inter-

Integrated Circuit
interface

IAR Embedded Workbench for
ARM (IAR EWARM),
409e410, 410f, 612

Blinky Project creation,
412e420, 416f

hints and tips, 422e426
MTB instruction trace with, 421
program compilation flow,

410e412

Index

737

IAR Embedded Workbench for
ARM (IAR EWARM)
(Continued)

project options, 420e421
project with CMSIS-CORE,

411f
retargeting with, 492e493
semihosting with, 494e495

IAR EWARM. See IAR
Embedded Workbench for
ARM

ICSR. See Interrupt Control State
Register

ID registers. See Identification
registers

IDE. See Integrated Development
Environment

Identification registers (ID
registers), 87

Idiom recognitions, 632e633
IF-THEN instruction (IT

instruction), 653
“If-then-else” function, 147e148
In-circuit debugger, 75e76
In-Circuit Emulator (ICE). See

In-circuit debugger
In-System Programming (ISP),

186, 551
Inline assembly

ARM� tool chains, 613e615
gcc, 615e616

Inputs and outputs (I/Os),
57e58

functions development
interfaces, 500e501
reinventing wheel, 495e500
scanf function, 501

Instruction list, 119e144
arithmetic operations, 127e131
exception-related instructions,

141e142
extend and reverse ordering

operations, 135e137
logic operations, 131e132
memory accesses, 122e126
memory barrier instructions,

139e141
moving data within processor,

120e121
program flow control, 137e139

shift and rotate operations,
132e134

sleep mode feature-related
instructions, 142e143

stack memory accesses,
126e127

Instruction set, 1e4, 109e110
ARM� and Thumb�, 110e113
assembly basics, 113e119
assembly syntax, 113e117
suffix, 117e118
UAL, 118e119

instruction list, 119e144
pseudo instructions, 144e145

Instruction Set Architecture
(ISA), 29

Instruction Synchronization
Barrier instruction (ISB
instruction), 254, 308

Instruction usage, 147
data accesses, 153e157
data processing, 158e164
data type conversion, 157e158
program control, 147e153

Instrumentation Trace Macrocell
(ITM), 655

Integer divide, 159e161
Integrated Development

Environment (IDE), 56,
329, 387e390, 409

and debugger, 454e457
Intellectual Properties (IP), 22
Inter-Integrated Circuit interface

(I2C interface), 500
internal PPB. See Internal Private

Peripheral Bus
Internal Private Peripheral Bus

(internal PPB), 169
Internet of Things (IoT), 292,

460
Interrupt Clear Enable Register

(ICER), 87e89
Interrupt Clear Pending Register

(ICPR), 89e90,
202e204

Interrupt Control State Register
(ICSR), 222e223, 222t

Interrupt program status register
(IPSR), 93, 167, 212,
281

Interrupt request (IRQ), 20, 34,
185e186, 258e259

Interrupt service routine (ISR),
20, 42, 258, 502

Interrupt Set Enable Register
(ISER), 87

Interrupt Set Pending Register
(ISPR), 89e97,
202e204

Interrupts, 102e103, 185e186,
185f, 189. See also
Non-Maskable Interrupt

control functions, 502e504
driven applications, 60
handling, 502
inputs and pending behavior,

207e212
canceling of interrupt pending

status, 209
clearing of pending status,

209
IRQ assertion for disabled

interrupt, 211e212
IRQ pulse during ISR

execution, 210
IRQ remains high, 210
multiple IRQ pulses,

210
simple interrupt process,

207e208
simple pulse interrupt

handling, 208
latency, 20, 215e217, 251
masking, 105
priority
level, 204e206
registers, 90e96

Interthread communication,
573e574. See also Signal
event communication

Intrinsic functions, 631
IoT. See Internet of Things
IP. See Intellectual Properties
IRQ. See Interrupt request
IRQLATENCY signal, 217
ISA. See Instruction Set

Architecture
ISB instruction. See Instruction

Synchronization Barrier
instruction

Index

738

ISP. See In-System Programming
ISR. See Interrupt service routine
IT instruction. See IF-THEN

instruction
ITM. See Instrumentation Trace

Macrocell

J

Joint Test Action Group (JTAG),
147, 317e319

protocol, 33

K

Keil� Microcontroller
Development Kit
(Keil MDK), 75, 329

advantages, 330e331
assembly options, 442f
C compiler options, 441f
clock setup, 391
CMSIS files, 391
compilation, 392e393
Configuration Wizard, 392f
debug session screen, 445f
execution in SRAM, 401e404
with GNU tools for ARM�

embedded processors,
438e445

installation, 331
pack installer, 331fe332f
program compilation flow,

331e334, 332f
project environment

customizations, 393e399
project option tabs, 346f, 358f,

370f, 382f
stack and heap setup, 391e392
update gcc installation path, 440f
using IDE and debugger,

387e390
breakpoint insertion, 389f
debug session screen, 388f
debug session tool bar, 389f
memory window, 390f
peripheral register display
using CMSIS-SVD, 390f

using MTB for instruction trace,
404e407

using simulator, 400, 401f
Keil� RTX, 243e244

Keil� MDK-ARM. See ARM�

Keil� Microcontroller
Development Kit

KL25Z128VL microcontroller,
533

L

Late arrival mechanism,
196e197

Learning microcontroller
programming, 4

Legacy 20-pin IDC connector
arrangement, 147e148

Link Register (LR), 92, 126
Little Endian support,

174e175
Lockup, 286
causes, 286e287
condition during exception

sequences, 287f
prevention, 288e289
process during, 288

Logic operations, 131e132
Loop function, 148
Low power (LP), 20
device benchmarking
EEMBC Energy Monitor,
530f

ULPBench-CP, 528e531
ULPBench�, 528

process, 22
Low-power features, 230e231,

511. See also Ultralow-
power

approaches to reducing power,
524e525

consume power in
microcontroller, 522t

debug and, 527
event communication interface,

517e519
on Freescale KL25Z, 532
low-power design practices,

523e524
on LPC1114, 542e557
power going process, 521e523
PRIMASK use with sleep,

237f
Send-Event-on-Pend feature,

515e516

sleep modes, 231e232
with sleep entering methods,
232f

Sleep-On-Exit feature, 237e239,
238f, 514e515

wake-up conditions, 235e237
WFE instruction, 232e235,

233t, 513e514
WFI instruction, 232e235, 233t,

513e514
WIC, 239e241, 240f

Low-voltage pins, 527
LP. See Low power
LPC1114, low-power features on
power modes in, 543t
programming UART on,

487e489
LR. See Link Register

M

MAC instructions. See Multiply
accumulate instructions

Magnetoresistive Random Access
Memory (MRAM),
165e166

Mail queue, 585e588, 586f,
586t

Main Stack Pointer (MSP), 169,
193, 243, 252, 643, 668

activities with simple OS, 253f
CMSIS-CORE functions, 255t

mbed� system, 459, 459f
advantages, 462e463
Blinky program creation,

465e467
hints and tips, 478
interrupts, 476e478
mbed project, 459
peripheral objects support, 467
using printf, 468e471
railway controller modeling,

471e476
setting up FRDM-KL25Z board,

463e465
web pageelogin, 464f
web-based IDE, 460
working process, 460e462

MCU. See MicroController Unit
MemManage fault. See Memory

Management Fault

Index

739

Memory Access Permission,
177e180

Memory accesses, 122e126
Memory attributes, 177e180

management, 293
Memory barrier, 308e309,

674e677, 676t
instructions, 139e141

Memory Management Fault
(MemManage fault), 312

Memory Management Unit
(MMU), 6, 245, 559e560.
See also Memory
Protection Unit

Memory map, 167e168
code region, 168
device region, 169
internal PPB, 169
peripheral region, 169
RAM region, 169
reserved memory space, 170
SRAM region, 168e169
system level design, 170

Memory ordering, 674e677,
675f

Memory Pool Management,
588e590

Memory Protection Unit (MPU),
14, 30, 87, 99e100, 178,
219, 291e292, 559e560,
649, 670

aligning addresses, 302f
cache coherency in

multiprocessor systems,
301f

comparison in Cortex�-M3/M4/
M7 processors, 312e313,
312t

Control Register, 296, 296t
FreeRTOS-MPU, 310e311
memory attributes, 300f,

300te301t
memory barrier and

configuration, 308e309
Region Base Address Register,

297, 298t
Region Base Attribute and Size

Register, 298e301, 298t
Region Number Register, 297,

297t

setting up, 302e308, 305f
SRD feature, 309e310
stack limit using, 670
Type register, 295, 295t
use cases, 292e293

Memory remapping, 170e173
Memory system, 97e98
bus systems in Cortex�-M0 and

Cortex-M0+ processors,
166e167

hardware behavior effect to
programming, 180e183

Little Endian and Big Endian
support, 174e175

memory access permission,
177e180

memory attributes, 177e180
memory map, 167e170
in microcontrollers, 165e166
MPU, 99e100
program memory, boot loader,

and memory remapping,
170e173

Single Cycle I/O Interface, 99
Message queue, 583e585, 584f,

584t
mCLinux, 245
Micro Trace Buffer (MTB), 17,

31, 109, 118e119, 320
for instruction trace, 404e407
configuration via
Configuration Wizard, 405f

enabling MTB trace, 406f
support, 324e327, 326f

Microcontroller development
boards, 334

Freescale Freedom FRDM-
KL25Z board, 334e335,
334f

NXP LPC1114FN28
microcontroller, 336e338,
337f

STMicroelectronics
STM32F0 Discovery, 336,
337f

STM32L0 Discovery,
335e336, 335f

Microcontroller Development
Kit-ARM (MDK-ARM),
438

Microcontrollers, 1, 1f, 3, 19f,
45e46

memory systems in, 165e166
typical elements inside, 18e20,

19t
MicroController Unit (MCU),

165
MicroLIB, 70e71, 398
Microprocessor, 2e3
mVision� IDE, 338, 400

new project creation, 339f
project setup steps
for Freescale FRDM-KL25Z,

339e351
for NXP LPC1114FN28

microcontroller, 376e387
for STMicroelectronics

STM32F0 Discovery,
362e376

for STMicroelectronics
STM32L0 Discovery,
351e362

start screen, 338f
starting Keil MDK, 338e339

Mixed language projects, 617
calling assembly functions from

C codes, 618e619
calling C functions from

assembly codes,
617e618

Mixed signal microcontrollers,
46

MMU. See Memory Management
Unit

MPU. See Memory Protection
Unit

MRAM. See Magnetoresistive
Random Access Memory

MSP. See Main Stack Pointer
MTB. See Micro Trace Buffer
MTB instruction trace with IAR

EWARM, 421
Multiple load and store

instructions, 181e182
Multiply accumulate instructions

(MAC instructions), 9
Multipurpose Clock Generator

(MCG), 534
Mutual Exclusive (Mutex),

578e580

Index

740

N

Nested exception, 186
Nested function call, 152f
Nested interrupts, 186
support, 104

Nested Vectored Interrupt
Controller (NVIC), 7, 30,
170, 186, 189e190, 219,
482, 624, 636, 675

control registers for interrupt
control, 200

Interrupt CLRPEND,
202e204

interrupt enable and clear
enable, 200e202

interrupt priority level,
204e206

Interrupt SETPEND,
202e204

flexible interrupt management,
104

interrupt masking, 105
nested interrupt support, 104
register, 87

ICER, 87e89
ICPR, 89e90
interrupt priority registers,
90e96

ISER, 87
ISPR, 89e97

vectored exception entry, 104
Non-Maskable Interrupt (NMI),

30, 94, 186e188, 221,
279, 294, 502

Non-Volatile Memory (NVM),
165

Nonexecutable attribute, 177
Normal memory, 178
Normal sleep modes, 30
NVIC. See Nested Vectored

Interrupt Controller
NVM. See Non-Volatile Memory
NXP LPC1114FN28

microcontroller, 336e338,
337f

project setup steps, 376e387
Blinky. c for LPC1114FN28
on Breadboard, 379e381

CMSIS-CORE selection and
device-specific startup, 377f

compilation, 384e387
debugger settings, 382e384
flash programming algorithm
options, 384f

flash programming status
output, 386f

LPC1114FN28/102 selection
for DIP part, 376f

options for ULINK2/Cortex
debug, 383f

project settings, 381
project with start-up code,
377f

ULINK2/ME Cortex
Debugger selection, 383f

O

One shot mode, 327
Operating system (OS), 3, 13, 30,

173, 188, 243e244.
See also Cortex-M
processors

context switching, stack
checking in, 670

support features, 21, 243
context switching in action,
267e277

multitasking and context
switching, 244f

PendSV exception, 258e260,
265e266, 266f

process stack and PSP,
252e256

SVCall exception, 256e264
SysTick timer, 245e251

Operation modes and states,
89e90, 89f

Optimizations, 647e648
options, 396e398

OS. See Operating system

P

Pack installer, 331fe332f
Packet format, MTB, 131e132
PC. See Personal Computer;

Program Counter
Pendable Service Call (PendSV

Call), 188
PendSV exception, 30, 243,

258e266, 266f

Peripherals, 1
Personal Computer (PC), 3
Phase Locked Loop (PLL),

56, 522, 534
PLL. See Phase Locked Loop
PMC. See Power Management

Controller
PMIC. See Power Management

IC
PMU. See Power management

unit
Polling, 58e59
Popping, 100
POR. See Power on reset
Power Management Controller

(PMC), 534
Power Management IC (PMIC),

47
Power management unit (PMU),

239
Power on reset (POR), 534
PPB. See Private Peripheral Bus
Preemption, 104
PRIMASK register, 94, 502
masking register, 206e207

“printf” function handling, 490
mbed� system using, 468e471
retargeting
with gcc, 493
with IAR EWARM, 492e493
with Keil� MDK, 491

semihosting
with CoIDE, 495
with IAR EWARM, 494e495

Private Peripheral Bus (PPB), 303
PRIVDEFENA bit, 296, 297f
Privileged Thread Mode, 90
Process Stack Pointer (PSP), 197,

243, 252
activities with simple OS, 253f
CMSIS-CORE functions, 255t

Processor core/CPU core, 2
Processors
ARM cortex-M processor series,

8e11
ARM Cortex�-M0 and

Cortex-M0+ processors,
12e13

ARM processor families,
5e8, 6f

Index

741

Processors (Continued)
blurring boundaries, 8
Cortex�-M0 to Cortex-M0+

processors, 13e17, 15f
types, 4e5

Program compilation flow,
331e334, 332f

Program control, 137e139
branch instructions, 149te150t
branch table, 151e153
function calls, 150e151
function returns, 150e151, 152f
“if-then-else” function, 147e148
loop function, 148
nested function call, 152f
push and pop of multiple

registers in function, 152f
usage of branch conditions,

148e150
Program Counter (PC), 30, 92,

111, 151, 167, 185, 281
Program fetches, 16e17, 17f
Program Status Register (PSR),

93, 661
Programmer’s model, 649e650

ARMv6-M vs. ARMv7-M
architectures, 650f

Programming
CMSIS-CORE versions,

508e510
controller for train modeling,

504e508
input and output functions

development, 495e501
language choices, 63

Pseudo instructions, 144e145
PSP. See Process Stack Pointer
PSR. See Program Status

Register
Pulse width modulation (PWM),

467, 505e506
LED with PWM control, 467

Pushing, 100
PWM. See Pulse width

modulation

R

Read-Only-Memory (ROM), 34
Real Time Clock (RTC), 522,

534

Real-Time eXecutive (RTX),
559, 569e573

application, 597e600
CMSIS-RTOS RTX options,

570t
configurations, 569
debugging applications with,

600
generic wait function, 590
interthread communication,

573e574
mail queue, 585e588, 586f,

586t
Memory Pool Management,

588e590
message queue, 583e585, 584f,

584t
Mutex, 578e580
osSignalWait function, 577f
osStatus enumeration definition,

573t
RTX_Config_CM. c

customization, 604
semaphore, 580e583
signal event communication,

574e578, 575f, 575t
SVC services for unprivileged

threads, 593e597
thread, 567e569
time-out value, 590
timer feature, 590e593, 591t

Real-Time Operating System
(RTOS), 3, 61, 244,
559e560

Reduced Instruction Set
Computing processor
(RISC processor), 12

Reentrant interrupt service
routine, 671e673

REGION SIZE field, 298, 299t
Reset, 55e56
sequence, 107

Reset Handler/Startup Code,
69e70

Retargeting, 490
with gcc, 493
with IAR EWARM, 492e493
with Keil� MDK, 491

Reverse ordering operations,
135e137

RISC processor. See Reduced
Instruction Set Computing
processor

ROM. See Read-Only-Memory
ROM table registers, 117e118
Rotate operations, 132e134
RTC. See Real Time Clock
RTOS. See Real-Time Operating

System; Real-Time OS
RTX. See Real-Time eXecutive

S

S field. See Shareable field
Saved registers, 213
“scanf” function, 501
SCB. See System Control Block
SCB-Interrupt Control State

Register (SCB-ICSR),
92

SCP. See System Control
Processor

SCR. See System Control
Register

SCS. See System Control Space
SD card interface. See Secure

Digital card interface
SDIV. See Signed divide

instructions
SecurCore� series, 8
Secure Digital card interface

(SD card interface), 170
Self-reset, 226e228
Semaphore, 580e583
implementation, 673e674

Semihosting, 490
with CoIDE, 495
with IAR EWARM, 494e495

Send Event instruction (SEV
instruction), 143, 236, 519

Send-Event-On-Pend feature
(SEVONPEND feature),
236, 515e516

problems in, 181
Sensors, 46
hubs, 47

Serial Peripheral Interface (SPI),
500

Serial Wire Debug
Communication Protocol,
317e319

Index

742

Serial Wire Debug protocol
(SWD protocol), 105

Serial Wire protocol (SW
protocol), 33, 358

SEV instruction. See Send Event
instruction

SEVONPEND feature. See
Send-Event-On-Pend
feature

SFRs. See Special Function
Registers

Shareable attribute, 178
Shareable field (S field),

299e300
SHCSR. See System Handler

Control and State Register
Shift operations, 132e134
SHPR. See System Handler

Priority Registers
Signal event communication,

574e578, 575f, 575t
Signed divide instructions

(SDIV), 653
Silicon technologies, 22
Simple OS
context switching in,

256f
task initialization in,

255f
Simple pulse interrupt handling,

208
Simulator, 400, 401f
Single Cycle I/O interface,

14, 99
64-bit/128-bit add, 158
64-bit/128-bit sub, 159
Sleep modes, 30
feature-related instructions,

142e143
Sleep-On-Exit feature, 30, 235,

237e239, 238f, 514e515
triggering sleep too early,

180e181
SLEEPDEEP bit field, 225,

231e232
SO memory. See Strongly

Ordered memory
SoC. See System-on-a-Chip
Software development,

315e317

Software porting
from 8-bit/16-bit

microcontrollers to ARM�

Cortex�-M, 635
memory requirements,
637e638

migration from 8051 to ARM
Cortex-M0/Cortex-M0+,
639e641

modifications, 635e637
nonapplicable optimizations
for, 638e639

ARM7TDMI� processor vs.
Cortex�-M0/M0+
processor, 641e644

from ARM7TDMI� to
Cortex�-M0/Cortex-M0+
processors, 645

assembly code, 647
atomic access, 647
C program code, 646e647
interrupt, 645e646
optimizations, 647e648
start-up code, 645
vector table, 645

Cortex-M processors, 648e656
software modifications, 656

Cortex�-M0 processors, 635
between Cortex�-M0/M0+
and Cortex-M1 processors,
656

and Cortex-M3 processors,
657e659, 657f

and Cortex-M4/M7 processor,
659e660

SP. See Stack Pointer
Special Function Registers

(SFRs), 636
Special registers, 90e96
SPI. See Serial Peripheral

Interface
SRAM. See Static Random

Access Memory
SRD feature. See Sub-Region

Disable feature
SRPG. See State Retention

Power Gating
Stack analysis
by tool chain, 669
by trial, 669e670

Stack checking, 670
Stack Frame, 213
layout, 31e34

Stack limit, 670
Stack memory, 71
accesses, 126e127
operations, 100e102

Stack overflow, 668e669
stack layout for, 670fe671f

Stack Pointer (SP), 29e31, 100,
212, 252, 639, 672e673

CMSIS-CORE functions, 255t
selection switching, 254f
separate memory ranges, 252f
SP-related addressing mode, 71
task initialization in simple OS,

255f
Stacking, 194e195, 195f,

212e214
Start-up, 645
code in C, 663e668
sequence, 106e108

State Retention Power Gating
(SRPG), 239, 240f

Static Random Access Memory
(SRAM), 3, 34, 165

STM32F0 discovery,
programming UART on,
486e487

STM32L0 discovery,
programming UART on,
484e485

STMicroelectronics STM32F0
Discovery, 336, 337f

project setup steps, 362e376
Blinky. c for STM32F0
Discovery Board, 367e368

CMSIS-CORE selection and
device-specific startup, 365f

compilation, 372e376
compile result for the blinky
project, 374f

debugger session, 375f
debugger settings, 371e372
flash programming algorithm
options, 373f

flash programming status
output, 374f

frequently used buttons on
tool bar, 373f

Index

743

STMicroelectronics STM32F0
Discovery (Continued)

GPIO functions file, 368e369
options for ST-LINK, 372f
project settings, 370e371
project with start-up code,
365f

ST-LINK debug adaptor
selection, 371f

STM32F051R8 selection,
364f

STMicroelectronics STM32L0
Discovery, 335e336, 335f

Blinky. c for STM32L0
Discovery board, 354e355

GPIO functions file, 356e357
project setup steps for, 351e362
CMSIS-CORE selection and
device-specific startup,
352f

compilation, 360e362
compile result for blinky
project, 361f

debugger session, 363f
debugger settings, 358e360
flash programming algorithm
options, 360f

flash programming status
output, 362f

options for ST-LINK, 359f
project settings, 357
project with start-up code,
352f

ST-LINK debug adaptor
selection, 359f

STM32L053C8 selection,
351f

Strongly Ordered memory (SO
memory), 178

Sub-Region Disable feature
(SRD feature), 309

allowing efficient memory
separation, 309e310

to control access right to
separate peripherals, 311f

overlapped regions with, 310f
reducing total number of needed

regions, 310
wasting of memory space

without, 309f

Sub-Region Disable field,
298e299

Suffix, 117e118
SuperVisor Call (SVC), 141, 188,

259e261
exception, 243, 256, 259e266
instruction, 243, 256, 257f
services for unprivileged

threads, 593e597
system exception types, 30

SVC instruction. See SuperVisor
Call (SVC)

SVCall exception. See
SuperVisor Call (SVC)

SW protocol. See Serial Wire
protocol

SWD protocol. See Serial Wire
Debug protocol

SYSRESETREQ bit. See System
Reset Request bit

System Control Block (SCB), 80,
105, 200, 219, 258, 321,
657

AIRCR, 224, 224t
CCR, 225e226, 226t
CPU ID Base Register, 220,

221t
priority level registers for

programmable system
exceptions, 221f

register, 693t
ICSR, 92
SCR, 94
SHR[0], 96
SHR[1], 96e97

inside SCB data structure, 220t
SCR, 225, 225t
SHCSR, 226, 226t
VTOR, 223, 223t

System Control Processor (SCP),
18

System Control Register (SCR),
94, 219e220, 225, 225t,
511. See also Low-power
features

self-reset, 226e228
vector table relocation, 228e230

System Control Space (SCS),
104, 169, 200, 219, 219t,
246, 294, 569, 675

System Handler Control and
State Register (SHCSR),
226, 226t

System Handler Priority Register
2 (SHR[0]), 96

System Handler Priority Register
3 (SHR[1]), 96e97

System Handler Priority
Registers (SHPR), 221,
221t

System reliability, 293
System Reset Request bit

(SYSRESETREQ bit),
186, 224, 227, 283, 382

System Tick timer (SysTick timer),
13, 30, 80, 188e189, 219,
243, 245e251

access functions, 57
calibration value register, 248t,

249, 250t
with polling, 249f
setting up SysTick, 248e250
in single shot mode, 251
SysTick handler, 672
execution, 721

SysTick registers, 246, 246f,
247t, 697t

calibration value register,
102e103

control and status register,
99

current value register,
100e102

reload value register, 99e100
for timing measurement,

250e251
System-on-a-Chip (SoC), 2
“SystemCoreClock” standardized

software variable, 81, 250
SystemFrequency, 250
SysTick timer. See System Tick

timer
SysTick_Config(uint32_t ticks)

function, 248

T

Tail chaining, 196
Target options, 393e396
Technical Reference Manual

(TRM), 113e114

Index

744

10-pin Cortex� debug connector,
147, 151f

20-pin Cortex� debug + ETM
connector, 147e153, 152f

Test (TST), 118
TEX field. See Type Extension

field
Thread, 567e569
in CMSIS-RTOS, 568f
mode, 90
priority, 604

Thumb� state (T), 5, 90, 109
Tightly Coupled Memories, 7
Time-out value, 590
Timer feature, 590e593, 591t
Tool chain support, 21
Trouble shooting, 601
debug connection affect by I/O

setting, 722
debug protocol selection/

configuration, 723
device specific requirements,

723
using event output as pulse I/O,

723
incorrect SVC parameter passing

method, 722
interrupt problem, 721e722
miscellaneous, 603
OS error reporting support, 603
OS feature configurations, 603
pitfalls in programming

breakpoints and inline, 728
data alignment, 725
function pointers, 726
interrupt disable, 726e728
interrupt priority levels,
723e724

missing volatile keyword, 726
read-modify-write, 726
stack overflow, 724
SystemInit function, 728

privileged level, 602e603
problem in Run/Start program,

165e166
program started, but enter

HardFault, 169
sleep problems, 177e180
stack size requirements,

602

TrustZone�, 6
Type Extension field (TEX field),

299e300

U

UAL. See Unified Assembler
Language

UART. See Universal
Asynchronous Receiver/
Transmitter

UDIV. See Unsigned divide
instructions

ULL. See Ultra Low Leakage
ULP. See Ultralow-power
ULPBench-Core Profile

(ULPBench-CP),
528e531

Ultra Low Leakage (ULL), 41
Ultralow-power (ULP), 511.

See also Low-power
features

debug considerations, 527
low-power features, 511e519
microcontrollers, 45e46

Unaligned transfers, 180e181,
180f

Unified Assembler Language
(UAL), 118e119, 647

Universal Asynchronous
Receiver/Transmitter
(UART), 264, 479,
620e621

communication, 479e481, 479f
configurations on

microcontroller, 482
data transfer, 480f
programming
on FRDM-KL25Z, 482e484
on LPC1114FN28, 487e489
on STM32F0 discovery,
486e487

on STM32L0 discovery,
484e485

using RS-232 for, 481f
Universal Synchronous/

Asynchronous Receiver/
Transmitter (USART),
479

Unprivileged Thread Mode,
90

Unsigned divide instructions
(UDIV), 653

Unsigned integer divide function,
160f

Unsigned integer square root,
161e162, 162f

Unstacking, 194e195, 195f
Upgrade path, 21
USART. See Universal

Synchronous/
Asynchronous Receiver/
Transmitter

USB-JTAG adaptor. See
In-circuit debugger

V

VECTCLRACTIVE bit, 224
VECTKEY field, 224
Vector catch, 279, 324
Vector Table, 69, 192e194, 639,

640t, 645
relocation, 14, 228e230

Vector Table Offset Register
(VTOR), 92e93, 223,
223t, 228, 229f, 404, 658

Vectored exception entry, 104
VTOR. See Vector Table Offset

Register

W

Wait states, 182e183
Wait-for-Event instruction (WFE

instruction), 30, 142,
232e235, 234f, 512, 607

comparison with WFI
instruction, 237t

execution problem, 180e183
operation, 234f
sleep wake-up behavior, 236t
wake-up characteristics, 233t
WFI vs., 513e514

Wait-for-interrupt instruction
(WFI instruction), 30,
142, 232e235, 512, 607

comparison with WFE
instruction, 237t

operation, 235f
sleep wake-up behavior, 236t
wake-up characteristics, 233t
WFE vs., 513e514

Index

745

Wake-up Interrupt Controller
(WIC), 30, 230, 239e241,
240f, 516e517

WBWA behavior. See Write
Back Write Allocate
behavior

WFE instruction. See Wait-
for-Event instruction

WFI instruction. See Wait-
for-interrupt instruction

WIC. See Wake-up Interrupt
Controller

Wireless communication
microcontrollers, 46

Write Back Write Allocate
behavior (WBWA
behavior), 178

Write Through behavior
(WT behavior), 178

X

XN field. See eXecute Never
field

xPSR Combined Program Status
Register, 93e94

Y

YIELD instruction, 144

Index

746

	The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors
	Copyright
	Dedication
	Foreword
	Preface
	Acknowledgment
	Terms and Abbreviations
	Conventions
	References
	1. Introduction
	1.1 Welcome to the World of Embedded Processors
	1.1.1 Where Are the Processors Used?
	1.1.2 Processor, CPU, Core, Microprocessor, and All These Names
	1.1.3 Programming on Embedded Systems
	1.1.4 What Type of Skills Do I Need to Start Learning Microcontroller Programming?

	1.2 Understanding Different Types of Processors
	1.2.1 Why We Need Various Types of Processors
	1.2.2 Overview of the ARM Processor Families
	1.2.3 Blurring the Boundaries
	1.2.4 ARM Cortex-M Processor Series
	1.2.5 Quick Glance on the ARM Cortex-M0 and Cortex-M0+ Processor
	1.2.6 From Cortex-M0 Processor to Cortex-M0+ Processor
	1.2.7 Applications of the Cortex-M0 and Cortex-M0+ Processor
	Microcontrollers
	ASICs and ASSPs
	System on Chips

	1.3 What Is Inside a Microcontroller
	1.3.1 Typical Elements Inside a Microcontroller
	1.3.2 Characteristics of Processors for Microcontroller Applications
	1.3.3 Silicon Technologies

	1.4 There is Something About ARM®…
	1.4.1 Do ARM Make Chips?
	1.4.2 What Else Does ARM Make?
	1.4.3 Why Do Not Chip Vendors Do Their Own Processor Designs?
	1.4.4 What is Special About the ARM Ecosystem?

	1.5 Resources on Using ARM® Processors and ARM Microcontrollers
	1.5.1 On the ARM Web Pages
	1.5.2 Resources from Microcontroller Vendors
	1.5.3 Resources from Tool Vendors
	1.5.4 Other Resources

	2. Technical Overview
	2.1 What are the Cortex®-M0 and Cortex-M0+ Processors?
	2.2 Block Diagrams
	2.3 Typical Systems
	2.4 What Is ARMv6-M Architecture?
	2.5 Software Portability Between Cortex®-M Processors
	2.6 The Advantages of the ARM® Cortex®-M0 and Cortex-M0+ Processor
	2.6.1 Low Power and Energy Efficiency
	Small Gate Count
	High efficiency
	Sleep Modes and Low-Power Features
	Logic Cell Enhancements

	2.6.2 High Code Density
	2.6.3 Low Interrupt Latency and Deterministic Behavior
	2.6.4 Ease of Use
	2.6.5 System-Level Features and OS Support Features
	2.6.6 Comprehensive Debug Features
	2.6.7 Configurability, Flexibility, and Scalability
	2.6.8 Software Portability and Reusability
	2.6.9 Wide Range of Product Choices
	2.6.10 Wide Ecosystem Support

	2.7 Applications of the Cortex®-M0 and Cortex-M0+ Processors
	2.7.1 Microcontrollers
	2.7.2 Sensors
	2.7.3 Sensor Hubs
	2.7.4 Power Management IC
	2.7.5 ASSPs, ASICs
	2.7.6 Subsystems in System on Chips

	2.8 Why Using a 32-Bit Processor for Microcontroller Applications?
	2.8.1 Performance
	2.8.2 Code Density
	2.8.3 Other Benefits of ARM Architectures
	2.8.4 Software Reusability

	3. Introduction to Embedded Software Development
	3.1 Welcome to Embedded System Programming
	3.2 Some Basic Concepts
	3.2.1 Reset
	3.2.2 Clocks
	3.2.3 Voltage Level
	3.2.4 Inputs and Outputs
	3.2.5 Introduction to Embedded Software Program Flows
	Polling
	Interrupt Driven
	Combination of Polling and Interrupt Driven
	Handling Concurrent Processes

	3.2.6 Programming Language Choices

	3.3 Introduction to ARM® Cortex®-M Programming
	3.3.1 C Programming—Data Types
	3.3.2 Accessing Peripherals in C
	3.3.3 What Is Inside a Program Image?
	Vector Table
	Reset Handler/Startup Code
	C Startup Code
	Application Code
	C Library Code
	Other Data

	3.3.4 Data in SRAM
	3.3.5 What Happens When a Microcontroller Starts?

	3.4 Software Development Flow
	3.5 Cortex® Microcontroller Software Interface Standard
	3.5.1 Introduction of CMSIS
	3.5.2 What Are Standardized in CMSIS-CORE?
	3.5.3 Organization of the CMSIS-CORE
	3.5.4 Using CMSIS-CORE
	3.5.5 Benefits of CMSIS

	3.6 Other Information on Software Development

	4. Architecture
	4.1 Overview of ARMv6-M Architecture
	4.1.1 What Architecture Means
	4.1.2 Background of the ARMv6-M Architecture

	4.2 Programmer's Model
	4.2.1 Operation Modes and States
	4.2.2 Registers and Special Registers
	R0–R12
	R13, Stack Pointer
	R14, Link Register
	R15, Program Counter
	xPSR, Combined Program Status Register
	PRIMASK—Interrupt Mask Special Register
	CONTROL—Special Register
	Access of Registers and Special Registers

	4.2.3 Behaviors of the APSR

	4.3 Memory System
	4.3.1 Overview
	4.3.2 Single Cycle I/O Interface
	4.3.3 Memory Protection Unit

	4.4 Stack Memory Operations
	4.5 Exceptions and Interrupts
	4.6 Nested Vectored Interrupt Controller
	4.6.1 Flexible Interrupt Management
	4.6.2 Nested Interrupt Support
	4.6.3 Vectored Exception Entry
	4.6.4 Interrupt Masking

	4.7 System Control Block
	4.8 Debug System
	4.9 Program Image and Start-up Sequence

	5. Instruction Set
	5.1 What Is Instruction Set
	5.2 Background of ARM® and Thumb® Instruction Set
	5.3 Assembly Basics
	5.3.1 Quick Glance at Assembly Syntax
	5.3.2 Use of a Suffix
	5.3.3 Unified Assembler Language �唀䄀䰀

	5.4 Instruction List
	5.4.1 Moving Data within the Processor
	5.4.2 Memory Accesses
	5.4.3 Stack Memory Accesses
	5.4.4 Arithmetic Operations
	5.4.5 Logic Operations
	5.4.6 Shift and Rotate Operations
	5.4.7 Extend and Reverse Ordering Operations
	5.4.8 Program Flow Control
	5.4.9 Memory Barrier Instructions
	5.4.10 Exception-Related Instructions
	5.4.11 Sleep Mode Feature-Related Instructions
	5.4.12 Other Instructions

	5.5 Pseudo Instructions

	6. Instruction Usage Examples
	6.1 Overview
	6.2 Program Control
	6.2.1 If-then-else
	6.2.2 Loop
	6.2.3 More on the Branch Instructions
	6.2.4 Typical Usages of Branch Conditions
	6.2.5 Function Calls and Function Returns
	6.2.6 Branch Table

	6.3 Data Accesses
	6.3.1 Simple Data Accesses
	6.3.2 Example of Using Memory Access Instruction

	6.4 Data Type Conversion
	6.4.1 Conversion of Data Size
	6.4.2 Endian Conversion

	6.5 Data Processing
	6.5.1 64-Bit/128-Bit Add
	6.5.2 64-Bit/128-Bit Sub
	6.5.3 Integer Divide
	6.5.4 Unsigned Integer Square Root
	6.5.5 Bit and Bit Field Computations

	7. Memory System
	7.1 Memory Systems in Microcontrollers
	7.2 Bus Systems in the Cortex®-M0 and Cortex-M0+ Processors
	7.3 Memory Map
	7.3.1 Overview
	7.3.2 Code Region �　砀　　　　　　　〠ጀ　砀䘀䘀䘀䘀䘀䘀䘀
	7.3.3 SRAM Region �　砀㈀　　　　　　〠ጀ　砀㌀䘀䘀䘀䘀䘀䘀䘀
	7.3.4 Peripheral Region �　砀㐀　　　　　　〠ጀ　砀㔀䘀䘀䘀䘀䘀䘀䘀
	7.3.5 RAM Region �　砀㘀　　　　　　〠ጀ　砀㤀䘀䘀䘀䘀䘀䘀䘀
	7.3.6 Device Region �　砀䄀　　　　　　〠ጀ　砀䐀䘀䘀䘀䘀䘀䘀䘀
	7.3.7 Internal Private Peripheral Bus �　砀䔀　　　　　　〠ጀ　砀䔀　　䘀䘀䘀䘀䘀
	7.3.8 Reserved Memory Space �　砀䔀　　　　　〠ጀ　砀䘀䘀䘀䘀䘀䘀䘀䘀
	7.3.9 System Level Design

	7.4 Program Memory, Boot Loader, and Memory Remapping
	7.4.1 Program Memory and Boot Loader
	7.4.2 Memory Remap

	7.5 Data Memory
	7.6 Little Endian and Big Endian Support
	7.7 Data Type
	7.8 Memory Attributes and Memory Access Permission
	7.9 Effect of Hardware Behavior to Programming
	7.9.1 Data Alignment
	7.9.2 Access to Invalid Addresses
	7.9.3 Use of Multiple Load and Store Instructions
	7.9.4 Wait States

	8. Exceptions and Interrupts
	8.1 What are Exceptions and Interrupts?
	8.2 Exception Types on the Cortex®-M0 and Cortex-M0+ Processors
	8.2.1 Overview
	8.2.2 Non-Maskable Interrupt
	8.2.3 HardFault
	8.2.4 SVCall �匀甀瀀攀爀瘀椀猀漀爀 䌀愀氀氀
	8.2.5 Pendable Service Call
	8.2.6 System Tick Timer
	8.2.7 Interrupts

	8.3 Brief Overview of the NVIC
	8.4 Definition of Exception Priority Levels
	8.5 Vector Table
	8.6 Exception Sequence Overview
	8.6.1 Acceptance of Exception Request
	8.6.2 Stacking and Unstacking
	8.6.3 Exception Return Instruction
	8.6.4 Tail Chaining
	8.6.5 Late Arrival

	8.7 EXC_RETURN
	8.8 NVIC Control Registers for Interrupt Control
	8.8.1 Overview of NVIC Control Registers
	8.8.2 Interrupt Enable and Clear Enable
	8.8.3 Interrupt Pending Set and Clear Register
	8.8.4 Interrupt Priority Level

	8.9 Exception Masking Register �倀刀䤀䴀䄀匀䬀
	8.10 Interrupt Inputs and Pending Behavior
	8.10.1 Simple Interrupt Process
	8.10.2 Simple Pulse Interrupt Handling
	8.10.3 Canceling of Interrupt Pending Status Before the Interrupt Is Serviced
	8.10.4 Clearing of Pending Status While Peripheral Still Asserting IRQ
	8.10.5 IRQ Remains High When ISR Completed
	8.10.6 Multiple IRQ Pulses Before Entering ISR
	8.10.7 IRQ Pulse During ISR Execution
	8.10.8 IRQ Assertion for a Disabled Interrupt

	8.11 Details of Exception Entry Sequence
	8.11.1 Stacking
	8.11.2 Vector Fetch and Update PC
	8.11.3 Registers Update

	8.12 Details of Exception Exit Sequence
	8.12.1 Unstacking of Registers
	8.12.2 Fetch and Execute From Return Address

	8.13 Interrupt Latency

	9. System Control and Low-Power Features
	9.1 Brief Introduction of System Control Registers
	9.2 Registers in the SCBs
	9.2.1 List of Registers in the SCB
	9.2.2 CPU ID Base Register
	9.2.3 Control Registers for System Exceptions Management
	9.2.4 Vector Table Offset Register
	9.2.5 Application Interrupt and Reset Control Register
	9.2.6 System Control Register
	9.2.7 Configuration and Control Register
	9.2.8 System Handler Control and State Register

	9.3 Using the Self-Reset Feature
	9.4 Using the Vector Table Relocation Feature
	9.5 Low-Power Features
	9.5.1 Overview
	9.5.2 Sleep Modes
	9.5.3 Wait-for-Event and Wait-for-Interrupt
	Overview
	Wait-for-Event
	Wait-for-Interrupt

	9.5.4 Wake-up Conditions
	9.5.5 Sleep-On-Exit Feature
	9.5.6 Wake-up Interrupt Controller

	10. Operating System Support Features
	10.1 Overview of OS Support Features
	10.2 Introduction to Operating Systems in Embedded World
	10.3 The SysTick Timer
	10.3.1 SysTick Registers
	10.3.2 Setting up SysTick
	10.3.3 Using SysTick Timer for Timing Measurement
	10.3.4 Using SysTick Timer in Single Shot Mode

	10.4 Process Stack and PSP
	10.5 SVCall Exception
	10.6 PendSV
	10.7 Advanced Topics: Using SVC and PendSV in Programming
	10.7.1 Using the SVC Exception
	10.7.2 Using the PendSV Exception

	10.8 Advanced Topics: Context Switching in Action

	11. Fault Handling
	11.1 Fault Exception Overview
	11.2 What Can Cause a Fault?
	11.3 Analyze a Fault
	11.4 Accidental Switching to ARM® State
	11.5 Error Handling in Real Applications
	11.6 Error Handling During Software Development
	11.7 Lockup
	11.7.1 Causes of Lockup
	11.7.2 What Happens During a Lockup?

	11.8 Preventing Lockup
	11.9 Comparison with Fault Handling in ARMv7-M Architecture

	12. Memory Protection Unit
	12.1 What is MPU?
	12.2 MPU Use Cases
	12.3 Technical Introduction
	12.4 MPU Registers
	12.4.1 MPU Type Register
	12.4.2 MPU Control Register
	12.4.3 MPU Region Number Register
	12.4.4 MPU Region Base Address Register
	12.4.5 MPU Region Base Attribute and Size Register

	12.5 Setting Up the MPU
	12.6 Memory Barrier and MPU Configuration
	12.7 Using Sub-Region Disable
	12.7.1 Allow Efficient Memory Separation
	12.7.2 Reduce the Total Number of Regions Needed

	12.8 Considerations When Using MPU
	12.8.1 Program Code
	12.8.2 Data Memory

	12.9 Comparing with the MPU in the Cortex®-M3/M4/M7 Processors

	13. Debug Features
	13.1 Software Development and Debug Features
	13.2 Debug Interface
	13.2.1 JTAG and Serial Wire Debug Communication Protocol
	13.2.2 Cortex-M Processor and CoreSight™ Debug Architecture
	13.2.3 Design Considerations with Debug Interface

	13.3 Debug Features Overview
	13.4 Debug System
	13.5 Halt Mode and Debug Events
	13.6 Instruction Tracing Support Using the MTB

	14. Getting Started with the Keil Microcontroller Development Kit
	14.1 Introduction to Keil Microcontroller Development Kit
	14.1.1 Overview
	14.1.2 The Tools
	14.1.3 Advantages of Using Keil MDK
	14.1.4 Installation

	14.2 Typical Program Compilation Flow
	14.3 Introduction of the Hardware
	14.3.1 Freescale Freedom Board �䘀刀䐀䴀ⴀ䬀䰀㈀㔀娀
	14.3.2 STMicroelectronics STM32L0 Discovery
	14.3.3 STMicroelectronics STM32F0 Discovery
	14.3.4 NXP LPC1114FN28

	14.4 Getting Started with μVision® IDE
	14.4.1 What Are Needed to Start
	14.4.2 Starting Keil MDK
	14.4.3 Project Setup Steps for Freescale FRDM-KL25Z
	Clock Configuration Settings
	Project Settings
	Debugger Settings
	Compilation

	14.4.4 Project Setup Steps for STMicroelectronics STM32L0 Discovery
	Project Settings
	Debugger Settings

	14.4.5 Project Setup Steps for STMicroelectronics STM32F0 Discovery
	Compilation

	14.4.6 Project Setup Steps for NXP LPC1114FN28
	Project Settings
	Debugger Settings
	Compilation

	14.5 Using the IDE and the Debugger
	14.6 Under the Hood
	14.6.1 CMSIS Files
	14.6.2 Clock Setup
	14.6.3 Stack and Heap Setup
	14.6.4 Compilation

	14.7 Customizations of the Project Environment
	14.7.1 Target Options
	Device Options
	Target Options
	Output Options
	Listing Options
	User Options
	C/C++ Options
	Assembler Options
	Linker Options
	Debug Options
	Utilities Options

	14.7.2 Optimization Options
	14.7.3 Runtime Environment Options
	14.7.4 Project Management

	14.8 Using the Simulator
	14.9 Execution in SRAM
	14.10 Using MTB for Instruction Trace

	15. Getting Started with IAR Embedded Workbench for ARM®
	15.1 Overview of IAR Embedded Workbench for ARM®
	15.2 Typical Program Compilation Flow
	15.3 Creating a Simple Blinky Project
	15.4 Project Options
	15.5 Using MTB Instruction Trace with IAR EWARM
	15.6 Hints and Tips

	16. Getting Started with gcc �䜀一唀 䌀漀洀瀀椀氀攀爀 䌀漀氀氀攀挀琀椀漀渀
	16.1 About the GNU Compiler Collection Tool Chain
	16.2 About the Examples in This Chapter
	16.3 Typical Development Flow
	16.4 Creating a Simple Blinky Project
	16.5 Overview of the Command Line Options
	16.6 Flash Programming
	16.7 Using Keil® MDK-ARM™ with GNU Tools for ARM® Embedded Processors
	16.8 Using CooCox CoIDE with GNU Tools for ARM® Embedded Processors
	16.8.1 Overview and Setup
	16.8.2 Create a New Project
	16.8.3 Using the IDE and the Debugger

	17. Getting Started with mbed™
	17.1 What is mbed™
	17.2 How the mbed™ System Works
	17.3 Advantages of mbed™
	Easy to Use
	Portable and Reusable
	Wide Range of Software Components and Examples
	Low Cost

	17.4 Setting Up Your FRDM-KL25Z Board and mbed™ Account
	17.4.1 Check Out mbed Web Page
	17.4.2 Register for an Account with mbed
	17.4.3 Additional Setup for the Personal Computer

	17.5 Creating a Blinky Program
	17.5.1 Simple Version with Just Red LED On/Off
	17.5.2 LED with Pulse Width Modulation Control

	17.6 Common Peripheral Objects Support
	17.7 Using printf
	17.8 Application Example—A Model Railway Controller
	17.9 Interrupts
	17.10 Hints and Tips

	18. Programming Examples
	18.1 Producing Output with Universal Asynchronous Receiver/Transmitter
	18.1.1 Overview of Universal Asynchronous Receiver/Transmitter Communication
	18.1.2 Overview of UART Configurations on Microcontroller
	18.1.3 Programming the UART on FRDM-KL25Z
	18.1.4 Programming the UART on STM32L0 Discovery
	18.1.5 Programming the UART on STM32F0 Discovery
	18.1.6 Programming the UART on LPC1114FN28

	18.2 Handling printf
	18.2.1 Overview
	18.2.2 Retargeting with Keil® MDK
	18.2.3 Retargeting with IAR EWARM
	18.2.4 Retargeting with GNU Compiler Collection
	18.2.5 Semihosting with IAR EWARM
	18.2.6 Semihosting with CoIDE

	18.3 Developing Your Own Input and Output Functions
	18.3.1 Why Reinventing the Wheel?
	18.3.2 Other Interfaces
	18.3.3 Other Hints and Tips About scanf

	18.4 Interrupt Programming Examples
	18.4.1 General Overview of Interrupt Handling
	18.4.2 Overview of Interrupt Control Functions

	18.5 Application Example—Another Controller for a Model Train
	18.6 Different Versions of CMSIS-CORE

	19. Ultralow-Power Designs
	19.1 Examples of Using Low-Power Features
	19.1.1 Overview
	19.1.2 Entering Sleep Modes
	19.1.3 WFE versus WFI
	19.1.4 Using Sleep-On-Exit Feature
	19.1.5 Using Send-Event-on-Pend Feature
	19.1.6 Using Wake-up Interrupt Controller
	19.1.7 Using Event Communication Interface

	19.2 Requirements of Low-Power Designs
	19.3 Where Does the Power Go?
	19.4 Developing Low-Power Applications
	19.4.1 Overview of Low-Power Design Practices
	19.4.2 Various Approaches to Reduce Power
	Run the Application Quickly and Then Go to Sleep as Much as Possible
	Slow Down the Clock as Much as Possible
	Power Down and Restart
	Other Possibilities

	19.4.3 Selecting the Right Approach

	19.5 Debug Considerations
	19.5.1 Debug and Low-Power
	19.5.2 “Safe Mode” for Debug and Flash Programming
	19.5.3 Debug Interface and Low-Voltage Pins

	19.6 Benchmarking of Low-Power Devices
	19.6.1 Background of ULPBench™
	19.6.2 Overview of the ULPBench-CP

	19.7 Example of Using Low-Power Features on Freescale KL25Z
	19.7.1 Objective
	19.7.2 Test Setup
	19.7.3 Low-Power Modes on KL25Z
	19.7.4 Clocking Arrangement
	19.7.5 The Test Setup
	19.7.6 Measurement Results

	19.8 Example of Using Low-Power Feature on LPC1114
	19.8.1 Overview of LPC1114FN28
	19.8.2 First Experiment—Running at 12MHz with Internal and External Crystal
	19.8.3 Second Experiment—Running at Reduced Frequencies of 1MHz and 100KHz
	19.8.4 Additional Improvements
	19.8.5 Using Deep Sleep on LPC1114

	20. Programming with Embedded OS
	20.1 Introduction
	20.1.1 Background
	20.1.2 Embedded OS and RTOS
	20.1.3 Why Use an Embedded OS?
	20.1.4 Role of CMSIS-RTOS
	20.1.5 About the Keil® RTX Kernel
	20.1.6 Setting Up a Simple RTX Example with Keil MDK

	20.2 Overview of the RTX Kernel
	20.2.1 Thread
	20.2.2 RTX Configurations
	20.2.3 A Closer Look at the First Example
	When We Created the blinky Thread, a Number of Macros Are Used

	20.2.4 Interthread Communciation Overview
	20.2.5 Signal Event Communication
	20.2.6 Mutual Exclusive �䴀甀琀攀砀
	20.2.7 Semaphore
	20.2.8 Message Queue
	20.2.9 Mail Queue
	20.2.10 Memory Pool Management Feature
	20.2.11 Generic Wait Function and Time-Out Value
	20.2.12 Timer Feature
	20.2.13 Adding SVC Services for Unprivileged Threads

	20.3 Using RTX in an Application
	20.4 Debugging an Application with RTX
	20.5 Trouble Shooting
	20.5.1 Stack Size Requirements
	20.5.2 Privileged Level
	20.5.3 Utilize OS Error Reporting Support
	20.5.4 OS Feature Configurations
	20.5.5 Miscellaneous

	20.6 Other Hints and Tips
	20.6.1 Customization of RTX_Config_CM.c
	20.6.2 Thread Priority
	20.6.3 A Short Waiting Time
	20.6.4 Additional Information

	21. Mixed Language Projects �䌀⼀䌀⬀⬀ 眀椀琀栀 䄀猀猀攀洀戀氀礀
	21.1 Use of Assembly in Project Developments
	21.2 Recommended Practices in Assembly Programming and AAPCS
	21.3 Overview of an Assembly Function
	21.3.1 ARM® Tool Chains
	21.3.2 Gcc Tool Chains
	21.3.3 IAR Embedded Workbench for ARM

	21.4 Inline Assembly
	21.5 Embedded Assembler Feature �䄀刀䴀글 吀漀漀氀 䌀栀愀椀渀
	21.6 Mixed Language Projects
	21.7 Creating Assembly Projects in Keil® MDK-ARM
	21.7.1 A Small Project
	21.7.2 Hello World
	21.7.3 Additional Text Output Functions

	21.8 Generic Assembly Code for Interrupt Control
	21.8.1 Enable and Disable Interrupts
	21.8.2 Set and Clear Interrupt Pending Status
	21.8.3 Setting Up Interrupt Priority Level

	21.9 Other Programming Techniques for Assembly Language
	21.9.1 Allocating Data Space for Variables
	21.9.2 Complex Branch Handling

	21.10 Accessing Special Instructions
	21.10.1 CMSIS-CORE
	21.10.2 Idiom Recognitions

	22. Software Porting
	22.1 Overview
	22.2 Porting Software from 8-Bit/16-Bit Microcontrollers to ARM® Cortex®-M
	22.2.1 Common Modifications
	22.2.2 Memory Requirements
	22.2.3 Nonapplicable Optimizations for 8-Bit or 16-Bit Microcontrollers
	22.2.4 Example—Migrate from 8051 to ARM Cortex-M0/Cortex-M0+
	Vector Table
	Data Type
	Interrupt
	Sleep Mode

	22.3 Differences between ARM7TDMI™ and Cortex®-M0/M0+ Processor
	22.3.1 Overview of Classic ARM® Processors
	22.3.2 Operation Mode
	22.3.3 Registers
	22.3.4 Instruction Set
	22.3.5 Interrupts

	22.4 Porting Software from ARM7TDMI™ to the Cortex®-M0/Cortex-M0+ Processors
	22.4.1 Start-up Code and Vector Table
	22.4.2 Interrupt
	22.4.3 C Program Code
	22.4.4 Assembly Code
	22.4.5 Atomic Access
	22.4.6 Optimizations

	22.5 Differences between Various Cortex®-M Processors
	22.5.1 Overview
	22.5.2 Programmer's Model
	22.5.3 NVIC and Exceptions
	22.5.4 Instruction Set
	22.5.5 System Level Features
	22.5.6 Debug and Trace Features

	22.6 General Software Modifications when Porting between Cortex®-M Processors
	22.7 Porting Software between Cortex®-M0/M0+ and Cortex-M1
	22.8 Porting Software between Cortex®-M0/M0+ and Cortex-M3
	22.9 Porting Software between Cortex®-M0/M0+ and the Cortex-M4/M7 Processor

	23. Advanced Topics
	23.1 Bit Data Handling in C Programming
	23.2 Startup Code in C
	23.3 Stack Overflow Detection
	23.3.1 What is Stack Overflow?
	23.3.2 Stack Analysis by Tool Chain
	23.3.3 Stack Analysis by Trial
	23.3.4 Stack Limit Using Memory Protection Unit
	23.3.5 Stack Checking in OS Context Switching

	23.4 Reentrant Interrupt Service Routine
	23.5 Semaphore Implementation
	23.6 Memory Ordering and Memory Barriers

	Appendix A Instruction Set Quick Reference
	A.1 List of Instructions

	Appendix B Exception Type Quick Reference
	B.1 Exception Types
	B.2 Stack Frame Layout �匀琀愀挀欀 䌀漀渀琀攀渀琀猀 䄀昀琀攀爀 䔀砀挀攀瀀琀椀漀渀 匀琀愀挀欀椀渀最

	Appendix C CMSIS-CORE Quick Reference
	C.1 Overview
	C.2 Data Type
	C.3 Exception Enumeration
	C.4 Nested Vectored Interrupt Controller Access Functions
	C.5 System and SysTick Access Functions
	C.6 Core Registers Access Functions
	C.7 Special Instructions Access Functions
	C.7.1 System Feature Accesses

	C.7.2 Functions for Data Processing

	Appendix D NVIC, SCB, and SysTick Registers Quick Reference
	D.1 NVIC Register Summary
	D.1.1 Interrupt Set Enable Register �一嘀䤀䌀ⷾ攀 䤀匀䔀刀
	D.1.2 Interrupt Clear Enable Register �一嘀䤀䌀ⷾ攀 䤀䌀䔀刀
	D.1.3 Interrupt Set Pending Register �一嘀䤀䌀ⷾ攀 䤀匀倀刀
	D.1.4 Interrupt Clear Pending Register �一嘀䤀䌀ⷾ攀 䤀䌀倀刀
	D.1.5 Interrupt Priority Registers �一嘀䤀䌀ⷾ攀 䤀刀儀嬀　崀 琀漀 一嘀䤀䌀ⷾ攀 䤀刀儀嬀㜀崀

	D.2 SCB Register Summary
	D.2.1 CPU ID Base Register �匀䌀䈀ⷾ攀䌀倀唀䤀䐀
	D.2.2 Interrupt Control State Register �匀䌀䈀ⷾ攀䤀䌀匀刀
	D.2.3 Vector Table Offset Register �匀䌀䈀ⷾ攀嘀吀伀刀Ⰰ 　砀䔀　　　䔀䐀　㠀
	D.2.4 Application Interrupt and Reset Control State Register �匀䌀䈀ⷾ攀䄀䤀刀䌀刀
	D.2.5 System Control Register �匀䌀䈀ⷾ攀匀䌀刀
	D.2.6 Configuration and Control Register �匀䌀䈀ⷾ攀䌀䌀刀
	D.2.7 System Handler Priority Register 2 �匀䌀䈀ⷾ攀匀䠀刀嬀　崀
	D.2.8 System Handler Priority Register 3 �匀䌀䈀ⷾ攀匀䠀刀嬀崀
	D.2.9 System Handler Control and State Register

	D.3 SysTick Register Summary
	D.3.1 SysTick Control and Status Register �匀礀猀吀椀挀欀ⷾ攀䌀吀刀䰀
	D.3.2 SysTick Reload Value Register �匀礀猀吀椀挀欀ⷾ攀䰀伀䄀䐀
	D.3.3 SysTick Current Value Register �匀礀猀吀椀挀欀ⷾ攀嘀䄀䰀
	D.3.4 SysTick Calibration Value Register �匀礀猀吀椀挀欀ⷾ攀䌀䄀䰀䤀䈀

	Appendix E Debug Registers Quick Reference
	E.1 Overview
	E.2 Core Debug Registers
	E.3 Breakpoint Unit
	E.4 Data Watchpoint Unit
	E.5 ROM Table Registers
	E.6 Micro Trace Buffer
	E.6.1 Overview
	E.6.2 POSITION Register
	E.6.3 MASTER Register
	E.6.4 FLOW Register
	E.6.5 BASE Register
	E.6.6 Packet Format
	E.6.7 Examples

	Appendix F Debug Connector Arrangements
	F.1 The 10-Pin Cortex® Debug Connector
	F.2 The 20-Pin Cortex® Debug+ETM Connector
	F.3 The Legacy 20-Pin IDC Connector Arrangement

	Appendix G Trouble Shooting
	G.1 Program Does Not Run/Start
	G.1.1 Vector Table Missing or Vector Table in Wrong Place
	G.1.2 Incorrect C Startup Code Being Used
	G.1.3 Incorrect Values in Reset Vector
	G.1.4 Program Image Not Programmed in Flash Correctly
	G.1.5 Incorrect Tool Chain Configurations
	G.1.6 Incorrect Stack Pointer Initialization Value
	G.1.7 Incorrect Endian Setting

	G.2 Program Started, but Enter HardFault
	G.2.1 Overview
	G.2.2 Invalid Memory Access
	G.2.3 Unaligned Data Access
	G.2.4 Memory Access Permission �䌀漀爀琀攀砀ⴀ䴀　⬀ 倀爀漀挀攀猀猀漀爀 伀渀氀礀
	G.2.5 Bus Slave Return Error
	G.2.6 Stack Corruption in Exception Handler
	G.2.7 Program Crash at Some C Functions
	G.2.8 Accidental Trying to Switch to ARM State
	G.2.9 SVC Executed at Incorrect Priority Level

	G.3 Sleep Problems
	G.3.1 Execution of WFE Does Not Enter Sleep
	G.3.2 Sleep-on-Exit Triggers Sleep Too Early
	G.3.3 SEVONPEND Does Not Work for Interrupt Which Is Already in Pending State
	G.3.4 Processor Cannot Wake Up because Sleep Mode Might Disable Some Clocks
	G.3.5 Race Condition

	G.4 Interrupt Problem
	G.4.1 Extra Interrupt Handler Executed
	G.4.2 Additional SysTick Handler Execution
	G.4.3 Disabling of Interrupt within Interrupt Handler
	G.4.4 Incorrect Interrupt Return Instructions
	G.4.5 Exception Priority Setup Values

	G.5 Other Issues
	G.5.1 Incorrect SVC Parameter Passing Method
	G.5.2 Debug Connection Affect by I/O Setting, or Low-Power Modes
	G.5.3 Debug Protocol Selection/Configuration
	G.5.4 Using Event Output as Pulse I/O
	G.5.5 Device Specific Requirements in Vector Table or Code Placement

	G.6 Other Possible Pitfalls in Programming
	G.6.1 Interrupt Priority Levels
	G.6.2 Stack Overflow When Using Both Main and Process Stacks
	G.6.3 Data Alignment
	G.6.4 Missing Volatile Keyword
	G.6.5 Function Pointers
	G.6.6 Read-Modify-Write
	G.6.7 Interrupt Disable
	G.6.8 SystemInit Function
	G.6.9 Breakpoints and Inline

	Appendix H A Breadboard Project with an ARM® Cortex®-M0 Microcontroller
	H.1 Background
	H.2 Building the Hardware

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

